The effects of culture on genomic imprinting profiles in human embryonic and fetal mesenchymal stem cells

Jennifer M. Frost, Dave Monk, Dafni Moschidou, Pascale V. Guillot, Philip Stanier, Stephen L. Minger, Nicholas M. Fisk, Harry D. Moore, Gudrun E. Moore

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

Human embryonic stem (hES) cells and fetal mesenchymal stem cells (fMSC) offer great potential for regenerative therapy strategies. It is therefore important to characterize the properties of these cells in vitro. One major way the environment impacts on cellular physiology is through changes to epigenetic mechanisms. Genes subject to epigenetic regulation via genomic imprinting have been characterized extensively. The integrity of imprinted gene expression therefore provides a measurable index for epigenetic stability. Allelic expression of 26 imprinted genes and DNA methylation at associated differentially methylated regions (DMRs) was measured in fMSC and hES cell lines. Both cell types exhibited monoallelic expression of 13 imprinted genes, biallelic expression of six imprinted genes, and there were seven genes that differed in allelic expression between cell lines. fMSCs exhibited the differential DNA methylation patterns associated with imprinted expression. This was unexpected given that gene expression of several imprinted genes was biallelic. However, in hES cells, differential methylation was perturbed. These atypical methylation patterns did not correlate with allelic expression. Our results suggest that regardless of stem cell origin, in vitro culture affects the integrity of imprinted gene expression in human cells. We identify biallelic and variably expressed genes that may inform on overall epigenetic stability. As differential methylation did not correlate with imprinted expression changes we propose that other epigenetic effectors are adversely influenced by the in vitro environment. Since DMR integrity was maintained in fMSC but not hES cells, we postulate that specific hES cell derivation and culturing practices result in changes in methylation at DMRs.
Original languageEnglish
Pages (from-to)52 - 62
Number of pages11
JournalEpigenetics
Volume6
Issue number1
DOIs
Publication statusPublished - Jan 2011

Fingerprint

Dive into the research topics of 'The effects of culture on genomic imprinting profiles in human embryonic and fetal mesenchymal stem cells'. Together they form a unique fingerprint.

Cite this