Abstract
We establish the existence and uniqueness of a well-concentrated giant component in the supercritical excursion sets of three important ensembles of spherical Gaussian random fields: Kostlan's ensemble, band-limited ensembles, and the random spherical harmonics. Our main results prescribe quantitative bounds for the volume fluctuations of the giant that are essentially optimal for non-monochromatic ensembles, and suboptimal but still strong for monochromatic ensembles.
Our results support the emerging picture that giant components in Gaussian random field excursion sets have similar large-scale statistical properties to giant components in supercritical Bernoulli percolation. The proofs employ novel decoupling inequalities for spherical ensembles which are of independent interest.
Our results support the emerging picture that giant components in Gaussian random field excursion sets have similar large-scale statistical properties to giant components in supercritical Bernoulli percolation. The proofs employ novel decoupling inequalities for spherical ensembles which are of independent interest.
Original language | English |
---|---|
Journal | PROBABILITY THEORY AND RELATED FIELDS |
Publication status | Accepted/In press - 19 Feb 2025 |