TY - JOUR
T1 - The Identifying Depression Early in Adolescence Chatbot (IDEABot): Protocol for development and implementation of a frugal innovation tool for mood assessment
AU - Viduani, Anna
AU - Cosenza, Victor
AU - Fisher, Helen
AU - Buchweitz, Claudia
AU - Piccin, Jadar
AU - Pereira, Rivka
AU - Kohrt, Brandon A
AU - Mondelli, Valeria
AU - van Heerden, Alastair
AU - Araújo, Ricardo Matsumura
AU - Kieling, Christian
N1 - Funding Information:
The authors are extremely grateful to the schools and individuals who participated in this study and to all members of the Identifying Depression Early in Adolescence (IDEA) team for their dedication, hard work, and insights. This project was supported by the Royal Academy of Engineering under the Frontiers Follow-On Funding scheme (FF\1920\1\61). The original IDEA project was funded by an MQ Brighter Futures grant (MQBF/1 IDEA). Additional support was provided by the UK Medical Research Council (MC_PC_MR/R019460/1) and the Academy of Medical Sciences (GCRFNG_100281) under the Global Challenges Research Fund. This work was also supported by research grants from Brazilian public funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (477129/2012-9 and 445828/2014-5), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (62/2014), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (17/2551-0001009-4). CK is a Conselho Nacional de Desenvolvimento Científico e Tecnológico researcher and an Academy of Medical Sciences Newton Advanced Fellow. CK and BAK are supported by the US National Institute of Mental Health (R21MH124072). HLF was partly supported by the Economic and Social Research Council Centre for Society and Mental Health at King’s College London (ES/S012567/1). VM was supported by the National Institute for Health and Care Research Maudsley Biomedical Research Centre hosted by South London and Maudsley NHS Foundation Trust and King’s College London and MQ funding (MQBF/4). The views expressed are those of the authors and not necessarily those of the funders, the National Health Service, the National Institute for Health and Care Research, the Department of Health and Social Care, the Economic and Social Research Council, or King’s College London.
Publisher Copyright:
© Anna Viduani, Victor Cosenza, Helen L Fisher, Claudia Buchweitz, Jader Piccin, Rivka Pereira, Brandon A Kohrt, Valeria Mondelli, Alastair van Heerden, Ricardo Matsumura Araújo, Christian Kieling.
PY - 2023
Y1 - 2023
N2 - Background: Mental health status assessment is mostly limited to clinical or research settings, but recent technological advances provide new opportunities for measurement using more ecological approaches. Leveraging apps already in use by individuals on their smartphones, such as chatbots, could be a useful approach to capture subjective reports of mood in the moment. Objective: This study aimed to describe the development and implementation of the Identifying Depression Early in Adolescence Chatbot (IDEABot), a WhatsApp-based tool designed for collecting intensive longitudinal data on adolescents’ mood. Methods: The IDEABot was developed to collect data from Brazilian adolescents via WhatsApp as part of the Identifying Depression Early in Adolescence Risk Stratified Cohort (IDEA-RiSCo) study. It supports the administration and collection of self-reported structured items or questionnaires and audio responses. The development explored WhatsApp’s default features, such as emojis and recorded audio messages, and focused on scripting relevant and acceptable conversations. The IDEABot supports 5 types of interactions: textual and audio questions, administration of a version of the Short Mood and Feelings Questionnaire, unprompted interactions, and a snooze function. Six adolescents (n=4, 67% male participants and n=2, 33% female participants) aged 16 to 18 years tested the initial version of the IDEABot and were engaged to codevelop the final version of the app. The IDEABot was subsequently used for data collection in the second- and third-year follow-ups of the IDEA-RiSCo study. Results: The adolescents assessed the initial version of the IDEABot as enjoyable and made suggestions for improvements that were subsequently implemented. The IDEABot’s final version follows a structured script with the choice of answer based on exact text matches throughout 15 days. The implementation of the IDEABot in 2 waves of the IDEA-RiSCo sample (140 and 132 eligible adolescents in the second- and third-year follow-ups, respectively) evidenced adequate engagement indicators, with good acceptance for using the tool (113/140, 80.7% and 122/132, 92.4% for second- and third-year follow-up use, respectively), low attrition (only 1/113, 0.9% and 1/122, 0.8%, respectively, failed to engage in the protocol after initial interaction), and high compliance in terms of the proportion of responses in relation to the total number of elicited prompts (12.8, SD 3.5; 91% out of 14 possible interactions and 10.57, SD 3.4; 76% out of 14 possible interactions, respectively). Conclusions: The IDEABot is a frugal app that leverages an existing app already in daily use by our target population. It follows a simple rule-based approach that can be easily tested and implemented in diverse settings and possibly diminishes the burden of intensive data collection for participants by repurposing WhatsApp. In this context, the IDEABot appears as an acceptable and potentially scalable tool for gathering momentary information that can enhance our understanding of mood fluctuations and development.
AB - Background: Mental health status assessment is mostly limited to clinical or research settings, but recent technological advances provide new opportunities for measurement using more ecological approaches. Leveraging apps already in use by individuals on their smartphones, such as chatbots, could be a useful approach to capture subjective reports of mood in the moment. Objective: This study aimed to describe the development and implementation of the Identifying Depression Early in Adolescence Chatbot (IDEABot), a WhatsApp-based tool designed for collecting intensive longitudinal data on adolescents’ mood. Methods: The IDEABot was developed to collect data from Brazilian adolescents via WhatsApp as part of the Identifying Depression Early in Adolescence Risk Stratified Cohort (IDEA-RiSCo) study. It supports the administration and collection of self-reported structured items or questionnaires and audio responses. The development explored WhatsApp’s default features, such as emojis and recorded audio messages, and focused on scripting relevant and acceptable conversations. The IDEABot supports 5 types of interactions: textual and audio questions, administration of a version of the Short Mood and Feelings Questionnaire, unprompted interactions, and a snooze function. Six adolescents (n=4, 67% male participants and n=2, 33% female participants) aged 16 to 18 years tested the initial version of the IDEABot and were engaged to codevelop the final version of the app. The IDEABot was subsequently used for data collection in the second- and third-year follow-ups of the IDEA-RiSCo study. Results: The adolescents assessed the initial version of the IDEABot as enjoyable and made suggestions for improvements that were subsequently implemented. The IDEABot’s final version follows a structured script with the choice of answer based on exact text matches throughout 15 days. The implementation of the IDEABot in 2 waves of the IDEA-RiSCo sample (140 and 132 eligible adolescents in the second- and third-year follow-ups, respectively) evidenced adequate engagement indicators, with good acceptance for using the tool (113/140, 80.7% and 122/132, 92.4% for second- and third-year follow-up use, respectively), low attrition (only 1/113, 0.9% and 1/122, 0.8%, respectively, failed to engage in the protocol after initial interaction), and high compliance in terms of the proportion of responses in relation to the total number of elicited prompts (12.8, SD 3.5; 91% out of 14 possible interactions and 10.57, SD 3.4; 76% out of 14 possible interactions, respectively). Conclusions: The IDEABot is a frugal app that leverages an existing app already in daily use by our target population. It follows a simple rule-based approach that can be easily tested and implemented in diverse settings and possibly diminishes the burden of intensive data collection for participants by repurposing WhatsApp. In this context, the IDEABot appears as an acceptable and potentially scalable tool for gathering momentary information that can enhance our understanding of mood fluctuations and development.
UR - http://www.scopus.com/inward/record.url?scp=85169415373&partnerID=8YFLogxK
U2 - 10.2196/44388
DO - 10.2196/44388
M3 - Article
SN - 2292-9495
VL - 10
JO - JMIR Human Factors
JF - JMIR Human Factors
M1 - e44388
ER -