King's College London

Research portal

The interferon inducible isoform of NCOA7 inhibits endosome-mediated viral entry

Research output: Contribution to journalArticle

Tomas Doyle, Olivier Moncorgé, Boris Bonaventure, Darja Pollpeter, Marion Lussignol, Marine Tauziet, Luis Apolonia, Maria Teresa Catanese, Caroline Goujon, Michael H. Malim

Original languageEnglish
Pages (from-to)1369–1376
JournalNature Microbiology
Volume3
Early online date26 Nov 2018
DOIs
Publication statusE-pub ahead of print - 26 Nov 2018

Documents

King's Authors

Abstract

Interferons (IFNs) mediate cellular defence against viral pathogens by upregulation of interferon-stimulated genes (ISGs) whose products interact with viral components or alter cellular physiology to suppress viral replication (1-3). Among the ISGs that can inhibit influenza A virus (IAV) (4) are the myxovirus resistance 1 (MX1) GTPase (5) and IFN-induced transmembrane protein 3 (IFITM3) (6, 7). Here we use ectopic expression and gene knock-out to demonstrate that the IFN-inducible 219 amino acid short isoform of human nuclear receptor coactivator 7 (NCOA7) is an inhibitor of IAV as well as other viruses that enter the cell by endocytosis, including hepatitis C virus (HCV). NCOA7 interacts with the vacuolar H+-ATPase (V-ATPase) and its expression promotes cytoplasmic vesicle acidification, lysosomal protease activity and the degradation of endocytosed antigen. Step-wise dissection of the IAV entry pathway demonstrates that NCOA7 inhibits fusion of the viral and endosomal membranes and subsequent nuclear translocation of viral ribonucleoproteins (vRNPs). NCOA7, therefore, provides a mechanism for immune regulation of endo-lysosomal physiology that not only suppresses viral entry into the cytosol from this compartment but may also regulate other V-ATPase-associated cellular processes such as physiological adjustments to nutritional status, or the maturation and function of antigen presenting cells.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454