TY - JOUR
T1 - The metabolic co-regulator PGC1α suppresses prostate cancer metastasis
AU - Torrano, Veronica
AU - Valcarcel-Jimenez, Lorea
AU - Cortazar, Ana Rosa
AU - Liu, Xiaojing
AU - Urosevic, Jelena
AU - Castillo-Martin, Mireia
AU - Fernández-Ruiz, Sonia
AU - Morciano, Giampaolo
AU - Caro-Maldonado, Alfredo
AU - Guiu, Marc
AU - Zúñiga-García, Patricia
AU - Graupera, Mariona
AU - Bellmunt, Anna
AU - Pandya, Pahini
AU - Lorente, Mar
AU - Martín-Martín, Natalia
AU - David Sutherland, James
AU - Sanchez-Mosquera, Pilar
AU - Bozal-Basterra, Laura
AU - Zabala-Letona, Amaia
AU - Arruabarrena-Aristorena, Amaia
AU - Berenguer, Antonio
AU - Embade, Nieves
AU - Ugalde-Olano, Aitziber
AU - Lacasa-Viscasillas, Isabel
AU - Loizaga-Iriarte, Ana
AU - Unda-Urzaiz, Miguel
AU - Schultz, Nikolaus
AU - Aransay, Ana Maria
AU - Sanz-Moreno, Victoria
AU - Barrio, Rosa
AU - Velasco, Guillermo
AU - Pinton, Paolo
AU - Cordon-Cardo, Carlos
AU - Locasale, Jason W.
AU - Gomis, Roger R.
AU - Carracedo, Arkaitz
PY - 2016/6/30
Y1 - 2016/6/30
N2 - Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment.
AB - Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment.
UR - http://www.scopus.com/inward/record.url?scp=84969816000&partnerID=8YFLogxK
U2 - 10.1038/ncb3357
DO - 10.1038/ncb3357
M3 - Article
AN - SCOPUS:84969816000
SN - 1465-7392
VL - 18
SP - 645
EP - 656
JO - Nature Cell Biology
JF - Nature Cell Biology
IS - 6
ER -