Abstract
Mice are used extensively in preclinical diabetes research to model various aspects of blood glucose homeostasis. Careful experimental design is vital for maximising welfare and improving reproducibility of data. Alongside decisions regarding physiological characteristics of the animal cohort (e.g., sex, strain and age), experimental protocols must also be carefully considered. This includes choosing relevant end points of interest and understanding what information they can provide and what their limitations are. Details of experimental protocols must, therefore, be carefully planned during the experimental design stage, especially considering the impact of researcher interventions on preclinical end points. Indeed, in line with the 3Rs of animal research, experiments should be refined where possible to maximise welfare. The role of welfare may be particularly pertinent in preclinical diabetes research as blood glucose concentrations are directly altered by physiological stress responses. Despite the potential impact of variations in experimental protocols, there is distinct lack of standardisation and consistency throughout the literature with regards to several experimental procedures including fasting, cage changing and glucose tolerance test protocol. This review firstly highlights practical considerations with regard to the choice of end points in preclinical diabetes research and the potential for novel technologies such as continuous glucose monitoring and glucose clamping techniques to improve data resolution. The potential influence of differing experimental protocols and in vivo procedures on both welfare and experimental outcomes is then discussed with focus on standardisation, consistency and full disclosure of methods.
Original language | English |
---|---|
Article number | e14705 |
Journal | Diabetic Medicine |
Volume | 38 |
Issue number | 12 |
Early online date | 13 Oct 2021 |
DOIs | |
Publication status | Published - Dec 2021 |
Keywords
- diabetes
- experimental design
- mouse
- refinement