Theoretical Foundations of a Starling-Like Controller for Rotary Blood Pumps

Robert Francis Salamonsen, Einly Lim, Nicholas Gaddum, Abdul-Hakeem H. AlOmari, Shaun David Gregory, Michael Stevens, David Glen Mason, John F. Fraser, Daniel Timms, Mohan K. Karunanithi, Nigel Hamilton Lovell

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)


A clinically intuitive physiologic controller is desired to improve the interaction between implantable rotary blood pumps and the cardiovascular system. This controller should restore the Starling mechanism of the heart, thus preventing overpumping and underpumping scenarios plaguing their implementation. A linear Starling-like controller for pump flow which emulated the response of the natural left ventricle (LV) to changes in preload was then derived using pump flow pulsatility as the feedback variable. The controller could also adapt the control line gradient to accommodate longer-term changes in cardiovascular parameters, most importantly LV contractility which caused flow pulsatility to move outside predefined limits. To justify the choice of flow pulsatility, four different pulsatility measures (pump flow, speed, current, and pump head pressure) were investigated as possible surrogates for LV stroke work. Simulations using a validated numerical model were used to examine the relationships between LV stroke work and these measures. All were approximately linear (r(2) (mean +/- SD) = 0.989 +/- 0.013, n = 30) between the limits of ventricular suction and opening of the aortic valve. After aortic valve opening, the four measures differed greatly in sensitivity to further increases in LV stroke work. Pump flow pulsatility showed more correspondence with changes in LV stroke work before and after opening of the aortic valve and was least affected by changes in the LV and right ventricular (RV) contractility, blood volume, peripheral vascular resistance, and heart rate. The system (flow pulsatility) response to primary changes in pump flow was then demonstrated to be appropriate for stable control of the circulation. As medical practitioners have an instinctive understanding of the Starling curve, which is central to the synchronization of LV and RV outputs, the intuitiveness of the proposed Starling-like controller will promote acceptance and enable rational integration into patterns of hemodynamic management.

Original languageEnglish
Pages (from-to)787-796
Number of pages10
JournalArtificial Organs
Issue number9
Early online date25 May 2012
Publication statusPublished - Sept 2012

Cite this