TY - JOUR

T1 - Thermodynamic Bethe ansatz for non-equilibrium steady states

T2 - exact energy current and fluctuations in integrable QFT

AU - Castro-Alvaredo, Olalla A.

AU - Chen, Yixiong

AU - Doyon, Benjamin

AU - Hoogeveen, Marianne

PY - 2014/3

Y1 - 2014/3

N2 - We evaluate the exact energy current and scaled cumulant generating function (related to the large-deviation function) in non-equilibrium steady states with energy flow, in any integrable model of relativistic quantum field theory (IQFT) with diagonal scattering. Our derivations are based on various recent results of D. Bernard and B. Doyon. The steady states are built by connecting homogeneously two infinite halves of the system thermalized at different temperatures Tl, Tr, and waiting for a long time. We evaluate the current J(Tl,Tr) using the exact QFT density matrix describing these non-equilibrium steady states and using Al.B. Zamolodchikov's method of the thermodynamic Bethe ansatz (TBA). The scaled cumulant generating function is obtained from the extended fluctuation relations which hold in integrable models. We verify our formula in particular by showing that the conformal field theory (CFT) result is obtained in the high-temperature limit. We analyze numerically our non-equilibrium steady-state TBA equations for three models: the sinh-Gordon model, the roaming trajectories model, and the sine-Gordon model at a particular reflectionless point. Based on the numerics, we conjecture that an infinite family of non-equilibrium c-functions, associated to the scaled cumulants, can be defined, which we interpret physically. We study the full scaled distribution function and find that it can be described by a set of independent Poisson processes. Finally, we show that the "additivity" property of the current, which is known to hold in CFT and was proposed to hold more generally, does not hold in general IQFT, that is J(Tl,Tr) is not of the form f(Tl)−f(Tr).

AB - We evaluate the exact energy current and scaled cumulant generating function (related to the large-deviation function) in non-equilibrium steady states with energy flow, in any integrable model of relativistic quantum field theory (IQFT) with diagonal scattering. Our derivations are based on various recent results of D. Bernard and B. Doyon. The steady states are built by connecting homogeneously two infinite halves of the system thermalized at different temperatures Tl, Tr, and waiting for a long time. We evaluate the current J(Tl,Tr) using the exact QFT density matrix describing these non-equilibrium steady states and using Al.B. Zamolodchikov's method of the thermodynamic Bethe ansatz (TBA). The scaled cumulant generating function is obtained from the extended fluctuation relations which hold in integrable models. We verify our formula in particular by showing that the conformal field theory (CFT) result is obtained in the high-temperature limit. We analyze numerically our non-equilibrium steady-state TBA equations for three models: the sinh-Gordon model, the roaming trajectories model, and the sine-Gordon model at a particular reflectionless point. Based on the numerics, we conjecture that an infinite family of non-equilibrium c-functions, associated to the scaled cumulants, can be defined, which we interpret physically. We study the full scaled distribution function and find that it can be described by a set of independent Poisson processes. Finally, we show that the "additivity" property of the current, which is known to hold in CFT and was proposed to hold more generally, does not hold in general IQFT, that is J(Tl,Tr) is not of the form f(Tl)−f(Tr).

U2 - 10.1088/1742-5468/2014/03/P03011

DO - 10.1088/1742-5468/2014/03/P03011

M3 - Article

SN - 1742-5468

VL - 2014

JO - Journal of Statistical Mechanics: Theory and Experiment

JF - Journal of Statistical Mechanics: Theory and Experiment

IS - 3

M1 - 1310.4779

ER -