TY - JOUR
T1 - Toward prediction of immune mechanisms and design of immunotherapies in melanoma
AU - Tsoka, Sophia
AU - Ainali, Chrysanthi
AU - Karagiannis, Panos
AU - Josephs, Debra
AU - Saul, Louise
AU - Nestle, Frank
AU - Karagiannis, Sophia N
PY - 2012
Y1 - 2012
N2 - Malignant melanoma, the most lethal skin cancer, is considered as a representative model for cross talk between immune responses and malignancy. Efforts to elucidate the nature of these interactions have translated into immunotherapeutic strategies. Adjuvant therapeutics such as IL-2 and IFNα2b have reached clinical application, and emerging therapies targeting key immunomodulatory molecules such as CTLA-4 have renewed excitement in the field, highlighting the potential of manipulating immune responses in the clinical setting, but also the merits for further elucidating complex underlying immunological pathways. Screening technologies have yielded new insights leading to identification of biomarkers for disease prognosis and applied clinical immunotherapies. The promise of systems biology is to integrate diverse biomedical characterizations into detailed models of underlying mechanisms and therapies through suitable computational and mathematical formalisms. In this review, we discuss recent developments in dissecting the complex and diverse immune responses associated with melanoma through both computational and experimental means. We show the significance of devising new, improved approaches that can better serve as models of immune interactions and therapies. We propose that efforts in this direction may realize the potential of personalized medicine and facilitate development of the next generation of efficacious tools to treat patients.
AB - Malignant melanoma, the most lethal skin cancer, is considered as a representative model for cross talk between immune responses and malignancy. Efforts to elucidate the nature of these interactions have translated into immunotherapeutic strategies. Adjuvant therapeutics such as IL-2 and IFNα2b have reached clinical application, and emerging therapies targeting key immunomodulatory molecules such as CTLA-4 have renewed excitement in the field, highlighting the potential of manipulating immune responses in the clinical setting, but also the merits for further elucidating complex underlying immunological pathways. Screening technologies have yielded new insights leading to identification of biomarkers for disease prognosis and applied clinical immunotherapies. The promise of systems biology is to integrate diverse biomedical characterizations into detailed models of underlying mechanisms and therapies through suitable computational and mathematical formalisms. In this review, we discuss recent developments in dissecting the complex and diverse immune responses associated with melanoma through both computational and experimental means. We show the significance of devising new, improved approaches that can better serve as models of immune interactions and therapies. We propose that efforts in this direction may realize the potential of personalized medicine and facilitate development of the next generation of efficacious tools to treat patients.
U2 - 10.1615/CritRevBiomedEng.v40.i4.40
DO - 10.1615/CritRevBiomedEng.v40.i4.40
M3 - Literature review
SN - 0278-940X
VL - 40
SP - 279
EP - 294
JO - Critical Reviews in Biomedical Engineering
JF - Critical Reviews in Biomedical Engineering
IS - 4
ER -