Towards an Efficient Path Selection for Tactile Internet Traffic via Multi-Plane Routing

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

2 Citations (Scopus)
86 Downloads (Pure)


This paper presents a foundation study of the routing support in scoped IP access networks towards early investigations and conclusions on provisioning the tactile traffic class in related networks. A specification for a type of traffic for tactile/haptic communications is derived and applied in the paper and tested in network scenarios alongside with best effort traffic and varying traffic load conditions. To better facilitate the
experiments conducted, we have explicitly chosen and applied the most fitting routing solution in IP access network that enables balancing of the variations of performance criteria and costs typically encountered in packet communications, hence serving as the practical optimum for using the whole of the network routing resources. This specific routing scheme is a multipath routing solution; already tested and proven to combine multitude of performance benefits under practical deployment considerations. This protocol solution termed Multi-Plane Routing is accordingly adopted and applied in the analysis and experiment to expedite the various tactile traffic requirements and most importantly the packet loss and delay while ensuring maximization of the packet delivery throughput. The results indicate the performance margins in early but routing-dedicated study of the possibilities for supporting such novel and stringent traffic requirements inherent in the tactile traffic class.
Original languageEnglish
Title of host publication2019 26th International Conference on Telecommunications, ICT 2019
Subtitle of host publicationICT
Place of PublicationHanoi, Vietnam
Number of pages6
ISBN (Electronic)9781728102733
Publication statusPublished - 8 Apr 2019


  • Best-Effort
  • Multi-Plane
  • Routing
  • Tactile
  • Traffic


Dive into the research topics of 'Towards an Efficient Path Selection for Tactile Internet Traffic via Multi-Plane Routing'. Together they form a unique fingerprint.

Cite this