TY - JOUR
T1 - Towards green, scalable peptide synthesis
T2 - leveraging DEG-crosslinked polystyrene resins to overcome hydrophobicity challenges
AU - Al Musaimi, Othman
AU - Tomkins, Joshua
AU - Barry, Sarah M.
AU - Basso, Alessandra
AU - Kou, Xiaokang
AU - Zhang, Cheng
AU - Serban, Simona
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024/12/23
Y1 - 2024/12/23
N2 - Diethylene glycol dimethacrylate (DEG)-crosslinked polystyrene (PS) resin offers a promising alternative to traditional divinyl benzene (DVB)-PS resin for solid-phase peptide synthesis (SPPS), particularly for challenging sequences with hydrophobic or bulky amino acids. DEG-PS resin's reduced hydrophobicity and enhanced flexibility improve synthesis efficiency, yielding peptides up to 28 residues with higher purities and yields compared to DVB-PS. In various syntheses, DEG-PS outperformed DVB-PS resin, with higher purities and yields for challenging peptides such as ABC analogue (73.2%, 58.3% vs. 72.5%, 46.3%) and Thymosin (58.4%, 48.6% vs. 54.0%, 39.2%). In addition, DEG-PS resin effectively suppressed common side reactions, such as dipeptide formation, typically encountered with Wang PS-based resins. Incorporating green chemistry principles, DEG-PS enabled the synthesis of complex peptides with satisfactory results using environmentally friendly solvents and reagents. Three challenging peptides; β (34-42), Jung and Redemann (JR), and ABRF 1992 - were synthesized on DEG-PS resin, achieving purities of 41.4%, 41.0%, and 68.0%, and yields of 50.5%, 52.6%, and 56.2%, respectively. These findings highlight DEG-PS resin's advantages for classical, green, and automated SPPS, offering superior performance and scalability for industrial applications.
AB - Diethylene glycol dimethacrylate (DEG)-crosslinked polystyrene (PS) resin offers a promising alternative to traditional divinyl benzene (DVB)-PS resin for solid-phase peptide synthesis (SPPS), particularly for challenging sequences with hydrophobic or bulky amino acids. DEG-PS resin's reduced hydrophobicity and enhanced flexibility improve synthesis efficiency, yielding peptides up to 28 residues with higher purities and yields compared to DVB-PS. In various syntheses, DEG-PS outperformed DVB-PS resin, with higher purities and yields for challenging peptides such as ABC analogue (73.2%, 58.3% vs. 72.5%, 46.3%) and Thymosin (58.4%, 48.6% vs. 54.0%, 39.2%). In addition, DEG-PS resin effectively suppressed common side reactions, such as dipeptide formation, typically encountered with Wang PS-based resins. Incorporating green chemistry principles, DEG-PS enabled the synthesis of complex peptides with satisfactory results using environmentally friendly solvents and reagents. Three challenging peptides; β (34-42), Jung and Redemann (JR), and ABRF 1992 - were synthesized on DEG-PS resin, achieving purities of 41.4%, 41.0%, and 68.0%, and yields of 50.5%, 52.6%, and 56.2%, respectively. These findings highlight DEG-PS resin's advantages for classical, green, and automated SPPS, offering superior performance and scalability for industrial applications.
UR - http://www.scopus.com/inward/record.url?scp=85213032991&partnerID=8YFLogxK
U2 - 10.1039/d4ra07484j
DO - 10.1039/d4ra07484j
M3 - Article
AN - SCOPUS:85213032991
SN - 2046-2069
VL - 14
SP - 40255
EP - 40266
JO - RSC Advances
JF - RSC Advances
IS - 54
ER -