King's College London

Research portal

TRPV1 deletion enhances local inflammation and accelerates the onset of Systemic Inflammatory Response Syndrome

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)5741-5751
Number of pages11
JournalJournal of Immunology
Volume188
Issue number11
DOIs
Published1 Jun 2012

King's Authors

Abstract

The transient receptor potential vanilloid 1 (TRPV1) is primarily localized to sensory nerve fibers and is associated with the stimulation of pain and inflammation. TRPV1 knockout (TRPV1KO) mice show enhanced LPS-induced sepsis compared with wild type (WT). This implies that TRPV1 may have a key modulatory role in increasing the beneficial and reducing the harmful components in sepsis. We investigated immune and inflammatory mechanisms in a cecal ligation and puncture (CLP) model of sepsis over 24 h. CLP TRPV1KO mice exhibited significant hypothermia, hypotension, and organ dysfunction compared with CLP WT mice. Analysis of the inflammatory responses at the site of initial infection (peritoneal cavity) revealed that CLP TRPV1KO mice exhibited: 1) decreased mononuclear cell integrity associated with apoptosis, 2) decreased macrophage tachykinin NK1-dependent phagocytosis, 3) substantially decreased levels of nitrite (indicative of NO) and reactive oxygen species, 4) increased cytokine levels, and 5) decreased bacteria clearance when compared with CLP WT mice. Therefore, TRPV1 deletion is associated with impaired macrophage-associated defense mechanisms. Thus, TRPV1 acts to protect against the damaging impact of sepsis and may influence the transition from local to a systemic inflammatory state. The Journal of Immunology, 2012, 188: 5741-5751.

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454