Abstract
Twelve mono- and dimetallic complexes (the metals being CuII, PtII, and ZnII) with terpyridine-based ligands have been prepared and fully characterized. The X-ray crystal structures of two of the complexes (monometallic CuII and ZnII complexes with a morpholino-substituted terpyridine ligand) are reported. The affinities of the 12 complexes toward duplex and quadruplex (HTelo and c-myc) DNA have been investigated using a combination of techniques including fluorescent indicator displacement (FID) assay, UV-vis spectroscopy and circular dichroism (CD). These studies revealed that the dicopper and diplatinum complexes 11 and 12 bind very strongly to quadruplex DNA (up to K = 7.97×106 M-1) and with good selectivity (up to 100-fold) over duplex DNA. In these dimetallic complexes, one of the metals is coordinated to a terpyridine moiety yielding square based pyramidal (with CuII) or square planar (with Pt II) geometries. The second metal is coordinated to a dipicolyl amine linked to terpyridine by a three-atom spacer. We propose that these complexes bind to quadruplex DNA via a combination of interactions: π-π end-stacking between the metal-terpyridine fragment and the guanine quartet, and electrostatic/metal-phosphate interactions (between the metal-dipicolyl amine fragment and DNAs backbone).
Original language | English |
---|---|
Pages (from-to) | 8371-8380 |
Number of pages | 10 |
Journal | INORGANIC CHEMISTRY |
Volume | 49 |
Issue number | 18 |
DOIs | |
Publication status | Published - 20 Sept 2010 |