Ultralight dark matter searches at the sub-Hz frontier with atom multigradiometry

Christopher McCabe, Leonardo Badurina, Jeremiah Mitchell, Valerie Gibson

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
15 Downloads (Pure)


Single-photon atom gradiometry is a powerful experimental technique that can be employed to search for the oscillation of atomic transition energies induced by ultralight scalar dark matter (ULDM). In the sub-Hz regime, the background is expected to be dominated by gravity gradient noise (GGN), which arises as a result of mass fluctuations around the experiment. In this work, we model the GGN as surface Rayleigh waves, and we construct a likelihood-based analysis that consistently folds GGN into the sensitivity estimates of vertical atom gradiometers in the frequency window between 10-3 Hz and 1 Hz. We show that in certain geological settings GGN can be significantly mitigated when operating a multigradiometer configuration, which consists of three or more atom interferometers in the same baseline. Multigradiometer experiments, such as future versions of AION and MAGIS-100, have the potential to probe regions of scalar ULDM parameter space in the sub-Hz regime that have not been excluded by existing experiments.

Original languageEnglish
Article number055002
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Issue number5
Publication statusPublished - 3 Mar 2023


Dive into the research topics of 'Ultralight dark matter searches at the sub-Hz frontier with atom multigradiometry'. Together they form a unique fingerprint.

Cite this