Abstract

We introduce an uncertainty-aware deep learning deformable image registration solution for magnetic resonance imaging multi-channel data. In our proposed framework, the contributions of structural and microstructural data to the displacement field are weighted with spatially varying certainty maps. We produce certainty maps by employing a conditional variational autoencoder image registration network, which enables us to generate uncertainty maps in the deformation field itself. Our approach is quantitatively evaluated on pairwise registrations of 36 neonates to a standard structural and/or microstructural template, and compared with models trained on either single modality, or both modalities together. Our results show that by incorporating uncertainty while fusing the two modalities, we achieve superior alignment in cortical gray matter and white matter regions, while also achieving a good alignment of the white matter tracts. In addition, for each of our trained models, we show examples of average uncertainty maps calculated for 10 neonates scanned at 40 weeks post-menstrual age.

Original languageEnglish
Title of host publicationUncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm Image Analysis - 3rd International Workshop, UNSURE 2021, and 6th International Workshop, PIPPI 2021, Held in Conjunction with MICCAI 2021, Proceedings
EditorsCarole H. Sudre, Roxane Licandro, Christian Baumgartner, Andrew Melbourne, Adrian Dalca, Jana Hutter, Ryutaro Tanno, Esra Abaci Turk, Koen Van Leemput, Jordina Torrents Barrena, William M. Wells, Christopher Macgowan
PublisherSpringer Science and Business Media Deutschland GmbH
Pages54-63
Number of pages10
ISBN (Print)9783030877347
DOIs
Publication statusPublished - 2021
Event3rd International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2021, and the 6th International Workshop on Perinatal, Preterm and Paediatric Image Analysis, PIPPI 2021, held in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: 1 Oct 20211 Oct 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12959 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference3rd International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, UNSURE 2021, and the 6th International Workshop on Perinatal, Preterm and Paediatric Image Analysis, PIPPI 2021, held in conjunction with the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period1/10/20211/10/2021

Keywords

  • Certainty maps
  • Multi-channel registration
  • Uncertainty

Fingerprint

Dive into the research topics of 'Uncertainty-Aware Deep Learning Based Deformable Registration'. Together they form a unique fingerprint.

Cite this