King's College London

Research portal

Unipolar MR elastography: Theory, numerical analysis and implementation

Research output: Contribution to journalArticle

Christian Guenthner, Sweta Sethi, Marian Troelstra, Robbert J.H. van Gorkum, Mareike Gastl, Ralph Sinkus, Sebastian Kozerke

Original languageEnglish
Article numbere4138
JournalNMR in Biomedicine
Volume33
Issue number1
DOIs
Publication statusPublished - 1 Jan 2020

King's Authors

Abstract

In MR elastography (MRE), zeroth moment balanced motion-encoding gradients (MEGs) are incorporated into MRI sequences to induce a phase shift proportional to the local displacement caused by external actuation. To maximize the signal-to-noise ratio (SNR), fractional encoding is employed, i.e., the MEG duration is reduced below the wave period. Here, gradients encode primarily the velocity of the motion-reducing encoding efficiency. Thus, in GRE-MRE, T2* decay and motion sensitivity have to be balanced, imposing a lower limit on repetition times (TRs). We propose to use a single trapezoidal gradient, a “unipolar gradient”, to directly encode spin displacement. Such gradients cannot be used in conventional sequences as they exhibit a large zeroth moment and dephase magnetization. By time-reversing a spoiled SSFP sequence, the spoiling gradient becomes an efficient unipolar MEG. The proposed “unipolar MRE” technique benefits from this approach in three ways: first, displacement encoding is split over multiple TRs increasing motion sensitivity; second, spoiler and MEG coincide, allowing a reduction in TR; third, motion sensitivity of a typical unipolar lobe is of an order of magnitude higher than a bipolar MEG of equal duration. In this work, motion encoding using unipolar MRE is analyzed using the extended phase graph (EPG) formalism with a periodic motion propagator. As an approximation, the two-transverse TR approximation for diffusion-weighted SSFP is extended to incorporate cyclic motion. A complex encoding efficiency metric is introduced to compare the displacement fields of unipolar and conventional GRE-MRE sequences in both magnitude and phase. The derived theoretical encoding equations are used to characterize the proposed sequence using an extensive parameter study. Unipolar MRE is validated against conventional GRE-MRE in a phantom study showing excellent agreement between measured displacement fields. In addition, unipolar MRE yields significantly increased octahedral shear strain-SNR relative to conventional GRE-MRE and allows for the recovery of high stiffness inclusions, where conventional GRE-MRE fails.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454