King's College London

Research portal

Unsticking the Wi-Fi Client: Smarter decisions using a software defined wireless solution

Research output: Contribution to journalArticlepeer-review

Jose Saldana, Ruben Munilla, Salim Eryigit, Omer Topal, Jose Ruiz-Mas, Julian Fernandez-Navajas, Luis Sequeira

Original languageEnglish
Pages (from-to)30917-30931
Number of pages15
JournalIEEE Access
Volume6
Early online date4 Jun 2018
DOIs
Accepted/In press27 May 2018
E-pub ahead of print4 Jun 2018
Published26 Jun 2018

Documents

King's Authors

Abstract

This paper presents a novel software-defined wireless network architecture that integrates coordination mechanisms to enhance the capabilities of a set of central managed Wi-Fi access points (APs). The global architecture is presented in detail, where the handoff mechanism is integrated with a set of active and passive monitoring tools and other functionalities, resulting in a solution that is able to provide smart functionalities using low-cost commercial APs. The framework includes a central controller that has all the information available, and is therefore able to make smart decisions about the assignment of clients to APs. This avoids the problem of the 'sticky client' that remains connected to the original AP it is associated with, rather than moving to a nearby AP, which would be a better choice. Two different test scenarios are used to compare a proactive and a reactive handoff mechanism in realistic conditions, with different walking speeds. The results illustrate the advantage of the proactive handoff, as it is more scalable and allows a better integration with other functionalities such as load balancing. The delay incurred by the handoff between APs in different channels is measured with three wireless devices, using five values for the inter-beacon time, proving that fast and seamless handoffs are possible in the scenario. The paper shows that these advanced functionalities, usually available in proprietary solutions, can also be achieved using off-the-shelf equipment.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454