TY - JOUR
T1 - Use of retroviral-mediated gene transfer to deliver and test function of chimeric antigen receptors in human T-cells
AU - Parente Pereira, Ana
AU - Wilkie, Scott
AU - Van der Stegen, S.
AU - Davies, Marc
AU - Maher, John
PY - 2014
Y1 - 2014
N2 - Chimeric antigen receptors (CARs) are genetically delivered fusion molecules that elicit T-cell activation upon binding of a native cell surface molecule. These molecules can be used to generate a large number of memory and effector T-cells that are capable of recognizing and attacking tumor cells. Most commonly, stable CAR expression is achieved in T-cells using retroviral vectors. In the method described here, retroviral vectors are packaged in a two-step procedure. First, H29D human retroviral packaging cells (a derivative of 293 cells) are transfected with the vector of interest, which is packaged transiently in vesicular stomatitis virus (VSV) G pseudotyped particles. These particles are used to deliver the vector to PG13 cells, which achieve stable packaging of gibbon ape leukaemia virus (GALV)-pseudotyped particles that are suitable for infection of human T-cells. The key advantage of the method reported here is that it robustly generates polyclonal PG13 cells that are 100% positive for the vector of interest. This means that efficient gene transfer may be repeatedly achieved without the need to clone individual PG13 cells for experimental pre-clinical testing. To achieve T-cell transduction, cells must first be activated using a non-specific mitogen. Phytohemagglutinin (PHA) provides an economic and robust stimulus to achieve this. After 48-72 h, activated T-cells and virus-conditioned medium are mixed in RetroNectin-coated plasticware, which enhances transduction efficiency. Transduced cells are analyzed for gene transfer efficiency by flow cytometry 48 h following transduction and may then be tested in several assays to evaluate CAR function, including target-dependent cytotoxicity, cytokine production and proliferation.
AB - Chimeric antigen receptors (CARs) are genetically delivered fusion molecules that elicit T-cell activation upon binding of a native cell surface molecule. These molecules can be used to generate a large number of memory and effector T-cells that are capable of recognizing and attacking tumor cells. Most commonly, stable CAR expression is achieved in T-cells using retroviral vectors. In the method described here, retroviral vectors are packaged in a two-step procedure. First, H29D human retroviral packaging cells (a derivative of 293 cells) are transfected with the vector of interest, which is packaged transiently in vesicular stomatitis virus (VSV) G pseudotyped particles. These particles are used to deliver the vector to PG13 cells, which achieve stable packaging of gibbon ape leukaemia virus (GALV)-pseudotyped particles that are suitable for infection of human T-cells. The key advantage of the method reported here is that it robustly generates polyclonal PG13 cells that are 100% positive for the vector of interest. This means that efficient gene transfer may be repeatedly achieved without the need to clone individual PG13 cells for experimental pre-clinical testing. To achieve T-cell transduction, cells must first be activated using a non-specific mitogen. Phytohemagglutinin (PHA) provides an economic and robust stimulus to achieve this. After 48-72 h, activated T-cells and virus-conditioned medium are mixed in RetroNectin-coated plasticware, which enhances transduction efficiency. Transduced cells are analyzed for gene transfer efficiency by flow cytometry 48 h following transduction and may then be tested in several assays to evaluate CAR function, including target-dependent cytotoxicity, cytokine production and proliferation.
U2 - 10.14440/jbm.2014.30
DO - 10.14440/jbm.2014.30
M3 - Article
VL - 1
JO - Journal of Biological Methods
JF - Journal of Biological Methods
IS - 2
M1 - e7
ER -