Abstract

The use of clinical prediction models to produce individualized risk estimates can facilitate the implementation of precision psychiatry. As a source of data from large, clinically representative patient samples, electronic health records (EHRs) provide a platform to develop and validate clinical prediction models, as well as potentially implement them in routine clinical care. The current review describes promising use cases for the application of precision psychiatry to EHR data and considers their performance in terms of discrimination (ability to separate individuals with and without the outcome) and calibration (extent to which predicted risk estimates correspond to observed outcomes), as well as their potential clinical utility (weighing benefits and costs associated with the model compared to different approaches across different assumptions of the number needed to test). We review 4 externally validated clinical prediction models designed to predict psychosis onset, psychotic relapse, cardiometabolic morbidity, and suicide risk. We then discuss the prospects for clinically implementing these models and the potential added value of integrating data from evidence syntheses, standardized psychometric assessments, and biological data into EHRs. Clinical prediction models can utilize routinely collected EHR data in an innovative way, representing a unique opportunity to inform real-world clinical decision making. Combining data from other sources (e.g., meta-analyses) or enhancing EHR data with information from research studies (clinical and biomarker data) may enhance our abilities to improve the performance of clinical prediction models.

Original languageEnglish
JournalBiological psychiatry
DOIs
Publication statusAccepted/In press - 2024

Keywords

  • Electronic health records
  • Implementation
  • Precision psychiatry
  • Prediction modeling
  • Psychosis
  • Suicide

Fingerprint

Dive into the research topics of 'Using Electronic Health Records to Facilitate Precision Psychiatry'. Together they form a unique fingerprint.

Cite this