King's College London

Research portal

Using smart wearables to monitor cardiac ejection

Research output: Chapter in Book/Report/Conference proceedingConference paper

Original languageEnglish
Title of host publicationProceedings
PublisherMultidisciplinary Digital Publishing Institute (MDPI)
Volume4
EditionECSA-5
DOIs
Publication statusPublished - 12 Feb 2019
Event5th International Conference on Sensors and Applications -
Duration: 15 Nov 201830 Nov 2018
Conference number: 5
https://ecsa-5.sciforum.net/

Conference

Conference5th International Conference on Sensors and Applications
Abbreviated titleECSA
Period15/11/201830/11/2018
Internet address

Bibliographical note

This paper was made publicly available for the 5th International Conference on Sensors and Applications on the 15th - 30th November 2018.

Documents

King's Authors

Prizes

Abstract

An individual's cardiovascular state is a crucial aspect of healthy life. However, it is not routinely assessed outside the clinical setting. Smart wearables use photoplethysmography (PPG) to monitor the arterial pulse wave (PW) and estimate heart rate. The PPG PW is strongly influenced by the ejection of blood from the heart, providing opportunity to monitor cardiac parameters using smart wearables. The aim of this study was to investigate the feasibility of monitoring cardiac contractility and left ventricular ejection time (LVET) from a peripheral PPG signal.

PPG PWs were simulated under a range of cardiovascular conditions using a numerical model of PW propagation. PWs were simulated at measurement sites suitable for non-invasive measurements, including the upper arm, wrist, and neck. Indices of cardiac contractility and LVET were extracted from the first and second derivatives of the PPG PWs, and compared to reference values extracted from the blood pressure PW at the aortic root.

There was strong agreement between the estimated and reference values of LVET, indicating that it may be feasible to assess LVET from PPG signals, including those acquired by smart watches. The correlations between the estimated and reference contractility parameters were less strong, indicating that further work is required to assess contractility robustly using smart wearables.

This study demonstrated the feasibility of assessing LVET using smart wearables, which would allow individuals to monitor their cardiovascular state on a daily basis. Further development of techniques to monitor contractility would be particularly for safety monitoring during drug trials.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454