Abstract
Renal artery aneurysmal (RAA) disease is a rare, but potentially life-threatening cause of renovascular disease presenting with hypertension. Conventional management involves aneurysmal excision followed by renal auto-transplantation. We present the management of a 13-year-old girl with complex multiple saccular aneurysmal disease of the left renal artery with hilar extension and symptomatic hypertension. We used 3D printing to print a patient-specific model that was not implanted in the patient but was used for surgical planning and discussion with the patient and their family. Endovascular options were precluded due to anatomical complexities. Following multi-disciplinary review and patient-specific 3D printing, she underwent successful in-situ RAA repair with intraoperative cooling, without the need for auto-transplantation. 3D printing enabled appreciation of aneurysmal spatial configuration and dimensions that also helped plan the interposition graft length needed following aneurysmal excision. The models provided informed multidisciplinary communications and proved valuable during the consent process with the family for this high-risk procedure. To our knowledge, this is the first reported case utilizing 3D printing to facilitate in-situ complex repair of RAA with intra-hilar extension for paediatric renovascular disease.
Original language | English |
---|---|
Pages (from-to) | 194-197 |
Number of pages | 4 |
Journal | Journal of hypertension |
Volume | 41 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2023 |
Keywords
- 3D printing
- hypertension
- in-situ repair
- paediatric
- renal artery aneurysm
- renovascular