VelcroVax: a “Bolt-On” Vaccine Platform for Glycoprotein Display

Natalie J. Kingston, Keith Grehan, Joseph S. Snowden, Mark Hassall, Jehad Alzahrani, Guido C. Paesen, Lee Sherry, Connor Hayward, Amy Roe, Sam Stephen, Darren Tomlinson, Antra Zeltina, Katie J. Doores, Neil A. Ranson, Martin Stacey, Mark Page, Nicola J. Rose, Thomas A. Bowden, David J. Rowlands*, Nicola J. Stonehouse

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Having varied approaches to the design and manufacture of vaccines is critical in being able to respond to worldwide needs and newly emerging pathogens. Virus-like particles (VLPs) form the basis of two of the most successful licensed vaccines (against hepatitis B virus [HBV] and human papillomavirus). They are produced by recombinant expression of viral structural proteins, which assemble into immunogenic nanoparticles. VLPs can be modified to present unrelated antigens, and here we describe a universal “bolt-on” platform (termed VelcroVax) where the capturing VLP and the target antigen are produced separately. We utilize a modified HBV core (HBcAg) VLP with surface expression of a high-affinity binding sequence (Affimer) directed against a SUMO tag and use this to capture SUMO-tagged gp1 glycoprotein from the arenavirus Junín virus (JUNV). Using this model system, we have solved the first high-resolution structures of VelcroVax VLPs and shown that the VelcroVax-JUNV gp1 complex induces superior humoral immune responses compared to the noncomplexed viral protein. We propose that this system could be modified to present a range of antigens and therefore form the foundation of future rapid-response vaccination strategies. IMPORTANCE The hepatitis B core protein (HBc) forms noninfectious virus-like particles, which can be modified to present a capturing molecule, allowing suitably tagged antigens to be bound on their surface. This system can be adapted and provides the foundation for a universal “bolt-on” vaccine platform (termed VelcroVax) that can be easily and rapidly modified to generate nanoparticle vaccine candidates.

Original languageEnglish
JournalmSphere
Volume8
Issue number1
DOIs
Publication statusPublished - Jan 2023

Keywords

  • HBcAg
  • Junín virus
  • platform
  • vaccine
  • VLP

Fingerprint

Dive into the research topics of 'VelcroVax: a “Bolt-On” Vaccine Platform for Glycoprotein Display'. Together they form a unique fingerprint.

Cite this