Vinculin acts as a sensor in lipid regulation of adhesion-site turnover

Indra Chandrasekar, Theresia E.B. Stradal, Mark R. Holt, Frank Entschladen, Brigitte M. Jockusch, Wolfgang H. Ziegler*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

101 Citations (Scopus)

Abstract

The dynamics of cell adhesion sites control cell morphology and motility. Adhesion-site turnover is thought to depend on the local availability of the acidic phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2). PIP2 can bind to many cell adhesion proteins such as vinculin and talin, but the consequences of this interaction are poorly understood. To study the significance of phospholipid binding to vinculin for adhesion-site turnover and cell motility, we constructed a mutant, vinculin-LD, deficient in acidic phospholipid binding yet with functional actin-binding sites. When expressed in cells, vinculin-LD was readily recruited to adhesion sites, as judged by fluorescence recovery after photobleaching (FRAP) analysis, but cell spreading and migration were strongly impaired, and PIP2-dependent disassembly of adhesions was suppressed. Thus, PIP2 binding is not essential for vinculin activation and recruitment, as previously suggested. Instead, we propose that PIP2 levels can regulate the uncoupling of adhesion sites from the actin cytoskeleton, with vinculin functioning as a sensor.

Original languageEnglish
Pages (from-to)1461-1472
Number of pages12
JournalJournal of Cell Science
Volume118
Issue number7
DOIs
Publication statusPublished - 1 Apr 2005

Keywords

  • 5-bisphosphate
  • Cell motility
  • Cell-matrix adhesion
  • Microfilaments
  • Phosphatidylinositol-4
  • Vinculin

Fingerprint

Dive into the research topics of 'Vinculin acts as a sensor in lipid regulation of adhesion-site turnover'. Together they form a unique fingerprint.

Cite this