Abstract
Saliva is formed from contributions of salivary glands and the serum exudates principally from gingival margins or damaged mucosa combined with components derived from the environment, including a community of microorganisms - the microbiome. I postulate that changes in microbial diversity and population structure play key roles in the modulation of host- microbial interactions which influence both the hypersensitive autoimmune responses and inflammation seen in these inflammatory mucocutaneous disorders. For my research, a total of 186 participants were recruited: 48 mucous membrane pemphigoid (MMP), 48 pemphigus vulgaris (PV), 50 oral lichen planus (OLP) patients, and 40 healthy controls. Unstimulated whole saliva, subgingival plaque, serum, and plasma samples were collected from 186 participants. In addition, metadata were collected on the following covariates: age, gender, ethnicity, type of the diet, disease history and therapeutic intervention in the preceding six months. Oral disease severity scores (ODSS) were assessed, and periodontal status was examined using a periodontal six pocket chart.To characterise microbiome profiles, saliva and subgingival plaque were processed for sequencing genomic DNA using the NGS Shotgun metagenomics sequencing technique. Inflammatory cytokines and proteases were investigated in saliva and serum using Human Magnetic Luminex Screening Assay (R&D Systems). Selected cytokines were analysed by enzyme-linked immunosorbent assay (ELISA) technique (R&D Systems) to determine host inflammatory responses in saliva and serum samples. Additionally, saliva and plasma samples were analysed for metabolites by nuclear magnetic resonance (NMR).
Significant increases in periodontal score (PISA) in all three groups of disease were identified compared to healthy control group with significant positive correlation between oral disease severity (ODSS) and PISA in OLP and PV groups.
All three groups of diseases had significantly higher levels of inflammatory Th2/Th17 cytokines (IL-6, IL-13 and IL-17 in saliva samples), as well as higher levels of MMP-3 matrixins in saliva. In addition, there were positive correlations between ODSS and salivary IL-6, IL-13 and MMP-3 in saliva of OLP, salivary and serum levels of IL-6 and MMP-3 in MMP group, and significant association of salivary IL-6, IL-1β and MMP-3 in PV group.
Metabolomic data showed that saliva is a better biofluid for correlation of the metabolomic profile with oral disease severity than plasma. Salivary ethanol was corelated with disease severity in the OLP group, whereas in PV was a strong correlation of ODSS with choline. Finally, a unique microbial community was found in each group of diseases. In the MMP group, ODSS was significantly correlated with L. hofstadii, C. sputigena, N. meningitidis, N. cinerea and P. sacchar0lytica. In PV, a positive correlation was found with F. nucleatum, G. morbillorum, and E. corrodens, G. elegans, H. sapiens and T. vincentii. In OLP, the disease tends to worsen when there was reduced abundance of X. cellulosilytica, Actinomyces ICM 47, S. parasanguinis, S. salivarius, L. mirabilis and O. sinus. Lower microbial diversity was correlated with ODSS in saliva and plaque of the OLP group.
In conclusion, this study provides strong evidence of the complex interplay between the oral microbiome, immunological factors, and metabolites in the context of immunobullous diseases and OLP. The findings highlight the integral role of oral bacteria in disease progression, the significance of immune dysregulation, and the potential impact of specific microbial species and metabolic pathways. These insights give the way for further research and clinical applications, offering the promise of personalized approaches for diagnosis, and management of OLP, MMP and PV. Future investigations should focus on discovering the mechanistic details underlying these associations and validating the identified biomarkers in larger patient cohorts, ultimately contributing to a deeper understanding of the pathogenesis of these conditions.
Date of Award | 1 Jan 2024 |
---|---|
Original language | English |
Awarding Institution |
|
Supervisor | Jane Setterfield (Supervisor) & Dave Moyes (Supervisor) |