Citation for published version (APA):
Cox, H. M. (2016). Neuroendocrine peptide mechanisms controlling intestinal epithelial function: Gastrointestinal • Endocrine and metabolic diseases. DOI: 10.1016/j.coph.2016.08.010

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
'Neuroendocrine peptide mechanisms controlling intestinal epithelial function'
Helen M Cox

Highlights
- Dietary nutrients and microbial metabolites can selectively activate different EECs.
- L cell peptides, PYY and GLP-1 can be stored independently and released differentially.
- Selective GPR119, FFA1-4 and MC4R agonism cause L cell peptide release but,
- there are some notable species and intestinal area differences.
- Dual agonism amplifies incretin release and could be more physiologically relevant.

Abstract
Enteroendocrine cells (EECs) contain different combinations of hormones, which are released following stimulation of nutrient receptors that are selectively expressed by these cells. This chemosensation varies according to the intestinal area and species of interest, and responses to meals are rapidly modified following bariatric surgery. Such surgically-induced gastrointestinal (GI) changes highlight considerable enteroplasticity, however our understanding of even the acute physiological control and consequences of neuroendocrine peptide release is still under-developed. This review focuses on recent advances in nutrient G protein-coupled receptor (GPCR)-chemosensation in L cells, the patterns of peptide release and consequent changes in GI function. A clearer resolution of these mucosal mechanisms will shed light on potential receptor-target combinations that could provide less-invasive anti-diabesity strategies in future.

Address
Wolfson Centre for Age-Related Diseases, IoPPN, King's College London, London SE1 1UL, UK

Corresponding author: Cox, Helen (helen.cox@kcl.ac.uk)

Introduction
It is notable that certain bariatric surgeries have striking neuroendocrine effects that are implicated to contribute to weight loss and resolution of type 2 diabetes (T2D) [1]. Accelerated nutrient delivery to more distal intestinal regions where nutrient-sensitive, open-type EECs predominate (particularly L cells), leads to enhanced release of gastrointestinal (GI) hormones, such as peptide YY (PYY), glucagon-like peptide 1 (GLP-1), GLP-2, oxyntomodulin, and glucose-dependent insulinotropic peptide (GIP) [1] that are pro-absorptive, proliferative, facilitate insulin secretion and can suppress appetite. Mucosal hyperplasia and increased cellular metabolism also occur and this GI remodelling contributes to the therapeutic benefits of bypass surgery [2] but the underlying integrated changes in neuroendocrine signalling are inadequately understood. Variations in EEC developmental lineages are also apparent with likely physiological consequences [3,4,5].

Variations in peptide expression and release from L cells in different species and GI areas
EECs have for some time been known to extend elongated vesicle-filled basal processes under the basolateral surface, recent ultrastructural studies showing they can extend underneath 10-15 adjacent epithelial cells [6] implicating paracrine modulation of mucosal function. These basal processes appear to be guided by enteric glia towards submucosal enteric neurons, a proportion of which are calcitonin gene-related peptide (CGRP)-containing [7*] and potentially sensory in function. This connectivity complements that established using rotaviral and cholera toxin, both of which activate 5HT-containing enterochromaffin cells (ECs) resulting in enteric nerve stimulation [8,9]. Some L cells are long-lasting residents, remaining in the mucosa for up to 60 days [7*] about 10 times longer than their surrounding epithelial cells, indicating prolonged signaling role(s). The EEC capacity to mediate afferent signals from luminal nutrients is well established (having been shown for CCK cells, ghrelin cells, L cells and duodenal 5-HT cells), but the identification of specific enteric neurons involved is still in its infancy.
L cell frequency increases distally in most mammalian intestines but the gradient varies between species e.g. it is steeper in the mouse compared with the pig GI tract [10,11]. L cell peptide combinations also vary along the gut length [4,5,10] with a greater peptide number exhibited in small intestinal mucosa [4,5]. Different L cell subtypes result from variations in the numbers of peptides per cell; proximal L cells containing GIP and CCK, both peptides more typical of K- and I-cells [10,12], plus neurotensin [4,5]. The peptide repertoire also changes as cells progress from crypt to villus. Crypt GLP-1 cells appear to gain peptide partners as they travel towards the lumen [13*] and such plasticity is likely to have functional consequences. In the mouse distal ileum neurotensin is co-released with PYY and GLP-1 causing synergistic reductions in gastric emptying and food intake, despite a degree of separate vesicle packaging [13*]. Super-resolution confocal microscopy has shown that PYY and GLP-1 are often segregated in different vesicle populations of mouse, pig, rat and human L cells [14*] providing the possibility for differential peptide release. Indeed, this may occur in response to the luminal microbiota-generated short chain fatty acid (SCFA) propionate; PYY levels far exceeded those of GLP-1, while GIP appearance did not change significantly (in rat small intestine) [15]. Hormonal release from K- and L cells is glucose-dependent, involving sodium-dependent glucose co-transporter (SGLT1) and GLUT2 [15,16] confirmed by functional studies (below). However, further in vivo studies are required to better resolve the patterns and time-dependence of peptide co-release linking them with GI functions. In summary, EEC peptide expression patterns change along the crypt-villus axis, the gut length and between species and some L cells are much longer-lived than their epithelial neighbours [7*]. This remarkable variability and plasticity very likely underpins both the amplified hormone responses seen after bariatric surgery and the loss of absorptive capacity when EEC numbers are depleted or their hormone processing is incomplete [1,2,3].

Nutrient-sensing, MC4R signaling, and microbial metabolite-sensing pathways involving L cells

The generation of reporter mice has provided impetus and superior characterisation of EECs [16,17]. The proglucaggon promoter-driven transgenic mouse confirmed the predominance of L cells in colonic regions and identified gluco-sensory machinery (SGLT1, glucokinase) and KATP channel subunits selectively in L cells [18]. The oleylethanolamide (OEA) and 2-monoacyl glycerol (2-MAG) lipid sensor GPR119, plus GPR40 (now known as free fatty acid receptor 1, FFA1), GPR120 (free fatty acid receptor 4, FFA4) and the bile acid receptor, TGR5 (also known as G protein-coupled bile acid receptor 1, GPBAR1) were discovered to be highly L cell-expressed [18]. A similar range of glucose-, and fat-sensing receptors (GPR119, FFA1 and FFA4) were identified in K cells from GIP promoter-driven transgenic mice, while low levels of sweet tastant receptors were observed, only in colonic L cells [19]. Readers are directed elsewhere for information on sweet and other taste receptor signalling (e.g. T1R2-T1R3; Figure 1) [20].

The first description that GPR119 immunolabelling was limited to L cells along the length of human and mouse intestine as well as pancreatic β cells [21] remains notable. Selective GPR119 agonism increased both GIP and GLP-1 release and improved glycaemic control in wild type (WT) but not GPR119 knockout (KO) mice [21]. This inspired the investigation of small molecule GPR119 agonists, OEA and other lipids with GPR119 affinity, in mucosal preparations from which the epithelial ion transport effects of endogenous peptide release could be measured [22]. GPR119 responses were more pronounced in the distal colon, matching L cell predominance and PYY-Y1 receptor distribution (Figure 1). Symonds et al. [23**] observed increasing incidence of GPR119 (also FFA2 and FFA4) expression down the mouse gut. In contrast, consistent levels of TGR5, the protein hydrolysate receptor (GPR93), amino acid/calcium-sensing receptor (CaSR) and fatty acid receptors (FFA1, FFA3 and GPR84 a lauric acid-sensitive receptor) were observed. In man, the only notable increase from antrum-to-rectum was for FFA4 expression [23**]. A notable species difference shows CaSR expression exclusively in mouse L cells, while human colonic L cells and 5HT-containing ECs both express CaSR [23**] and the functional consequence of this difference has yet to be determined.
Figure 1. Schematic of GPCR-induced L cell signaling and consequent paracrine peptide mechanisms in mouse and human colon mucosa. For clarity L cells with gustducin-, Gs- or Gq-coupled signaling are drawn separately, although the pathways overlap. Apical (Ap) sweet taste receptors (e.g. T1R2-T1R3 heterodimers) sense luminal sugars and can release PYY and GLP-1. Ap or basolateral (Bl) GPR119 are stimulated either by luminal nutrients (e.g. 2-MAG such as 2-OG) or endogenous lipids (e.g. OEA). Basolaterally-targeted MC4 receptors are most likely activated by the hormone ACTH and/or locally released β-endorphin (possibly from tuft cells, not shown). These Gs-coupled pathways result in predominant PYY (over GLP-1) signaling via epithelial Gi-coupled Y1 receptors, reduced intra-epithelial cAMP levels and attenuated Cl- transport through apical epithelial Cl- channels (CFTR). Presynaptic Y2 receptors mediate a proportion of endogenous PYY response via submucosal neuron(s) whose identity is not yet known (they may be vasoactive intestinal polypeptide (VIP) neurons). When GLP-1 is involved it acts on GLP-1R, and in the colon these receptors are present on CGRP-containing neurons; the neuropeptide then activates epithelial CGPRR. The GLP-1R is additionally expressed by intra- and subepithelial lymphocytes, which also express FFA2. For Gq-coupled L cell mechanisms all four FFA receptors (FFA1-4) and CaSR are probably present on both Ap and Bl domains and activated by metabolites in the lumen or lamina propria. Very few studies include oxyntomodulin's roles so this L cell peptide is omitted for now.

GPR119 and the melanocortin 4 receptor (MC4R; better known as part of the central homeostatic response to dietary fats) are both Gs-coupled and amongst the most highly expressed L cell receptors [24*, Schwartz et al. unpublished]. Agonism promotes PYY and GLP-1 release with consequent clear PYY-Y1 receptor (Y1R) epithelial anti-secretory and incretin effects [22, 24*]. Both receptor activities are glucose-dependent and their peptide mediator pharmacologies are the same in mouse and human mucosae (Figure 1). Epithelial Y1R and Y4R, and neural Y2R mechanisms mediate the full repertoire of PYY-related (including neuropeptide Y, NPY and pancreatic polypeptide, PP) electrogenic responses in mouse and human mucosae [25,26,27,28] but there are significant differences between these two species and the rat. In the latter, Y2R are epithelial while Y1R are pre- and post-junctional in colon [29] and MC4R activation has no effect on PYY or GLP-1 release [24*] in stark contrast to mouse and human mucosal responses. GPR119 stimulation does however cause PYY and GLP-1 release in rat intestine [13*,15] with consequent PYY-Y1R mucosal responses; activities that are also present in
models of T2D [30*]. Mucosal GLP-1R activity (in mouse colon) involves calcitonin gene-related peptide (CGRP) release from enteric submucosal neurons [31] as implicated by the close apposition of L cells and GLP-1R positive nerves [32*] (Figure 1). Hormonal PYY is well established as a mediator of postprandial ileal brake which together with the Y2R-prefering product, PYY(3-36) and GLP-1 retards GI transit [24*,28,33,34], these peripheral mechanisms contributing to the lean phenotype.

GPR119 specific agonists include the digestive products of dietary triacylglycerol (2-MAG; e.g. 2-OG) as likely luminal stimulants [35] alongside endogenous OEA and other oleic acid-containing lipids [36]. GPR119 is located on both luminal and basal surfaces (Schwartz, Cox et al. unpublished) and is therefore accessible to exogenous and endogenous lipids. The stress hormone ACTH, and β-endorphin (derived from tuft/brush cells or neurons) are both potential MC4R agonists, while a gut bacterial mimetic of αMSH has been proposed recently as a MC4R activator [37*] although, how this protein accesses the basolaterally-located MC4R is unclear. Notably, GPR119 and MC4R tonic activities exist in the colon and when blocked selectively result in similar epithelial responses and faster colonic transit [22,24] implicating ongoing anti-secretory and anti-motility effects of L cell PYY. Conditional GPR119 knockout from proglucagon-expressing α- and L cells leads to impaired lipid-stimulated GLP-1 release in vivo and reduced GPR119 agonism in vitro [38]. Acute loss of α- and L cells also impairs glucose metabolism [39], further highlighting their physiological importance.

The four free fatty acid receptors FFA1-4, are also expressed by EECs but not surrounding epithelial cells, in mouse and human intestine [18,19,23] with FFA4 being more prominent in colonic mucosa [23**,40]. Activation of FFA1 and FFA4 requires FA (saturated or unsaturated) of C12-C22 chain lengths e.g. palmitic or oleic acids for FFA1, ω3 fatty acids for FFA4 [40,41]. K cells also express FFA1 and FFA4 [19], GLP-1 and GIP secretion occurring upon activation by selective ligands or dietary FAs [42,43]. Use of synthetic FFA1 agonists indicates (in rat small intestine) that this receptor maybe preferentially targeted to basolateral surfaces [44]. However, these lipid soluble agents preclude absolute sidedness being determined. The Gαs-signalling pathway most likely mediates FFA1 and FFA4-induced GLP-1, PYY and insulin secretion, but Hauge et al. [45*] recently described a FFA1 agonist that co-activates Gq- and Gs-pathways with significantly elevated GLP-1 secretory capacity in vitro and in vivo. Additionally, α-gustducin can mediate some FFA1-4, GPR119- and TGR5-induced GLP-1 release in colonic mucosa [46] and apical transient receptor activation causes PYY-Y1 responses [47] and GLP-1 release (Figure 1). Dietary triglycerides (TG) are digested and sensed by EECs as FFAs with 2-MAG which activates Gαs-coupled GPR119, so dual- (or more complex) agonism is more physiologically relevant and provides amplified incretin responses [45*]. In addition, micellar formation of dietary TGs with bile acids (BAs; that alone stimulate TGR5) could also co-activate mucosal pathways with enhanced efficacy. TGR5 is highly expressed in EECs [18,23] and BAs trigger GLP-1 [18,48], PYY and GIP secretion [15] with a degree of basolateral preference in mouse distal ileum [48,49] indicating that BAs may require absorption prior to chemosensation via TGR5. Interestingly, others have shown luminal BAs inhibit GI transit via neurogenic TGR5 mechanisms [50] while we observe epithelial responses to BAs added to either surface [Cox et al. unpublished]. Intestinal BA concentrations are influenced by dietary fat and protein, and are modified by the colonic microbes. These metabolites affect gut motility differently, unconjugated BAs correlate with faster whole-gut transit while conjugated BAs appear to be associated with slower transit [51**], aspects of which may also be mediated by the nuclear BA farsenoid X receptor, providing further functional complexity to diet-microbial-BA signalling.

SCFA receptors, FFA2 (GPR43) and to a lesser extent, FFA3 (GPR41) are expressed by L cells [23**,52,53,54] (Figure 1). FFA2 is also found on subepithelial lymphocytes while FFA3 appears to be a reporter gene in most EECs and more notably in enteric neurons [53] although which neuron type(s) is unclear. The major products of bacterial fermentation of dietary fibre, i.e. luminal acetate, propionate and butyrate, are not only epithelial energy sources but they also stimulate PYY and GLP-1 release in rat, mouse and human small intestine [15,52,53,54]. Selective (Gαq-linked) FFA2 agonism promotes robust PYY release with consequent PYY-Y1R epithelial responses, reduced transit and food intake, [55,56*] with minimal GLP-1 involvement even when dipeptidyl peptidase-4 is blocked [56*]. FFA2 activity encompasses GI proliferative and anti-inflammatory effects [57; part-mediated via butyrate-
preferring GPR109A; 58*], linking colonic microflora, FFA-signalling and host mucosal integrity and adaptive immunity. FFA3-mediated intestinal gluconeogenesis underpins the metabolic benefits of portal propionate [59**] while intracolonic propionate administration to mice [60] and humans [61*] results in PYY and GLP-1 release and longer-term prevention of weight gain in humans, further highlighting the therapeutic potential of SCFA-mimetics.

Glutamine is a supplement used in parenteral nutrition that also increases GLP-1, GIP, PYY, glucagon and insulin release in rodents and man [15,62,63]. These effects are mediated in part by CaSR, which is highly expressed by L cells resulting in the co-activation of Gα- and Gβγ-pathways in vitro [63]. Symonds et al. [23**] observed possible cell entrainment, groups of epithelial cells surrounding a CaSR- Gα-stimulated EEC were activated in mouse colon, but how prevalent this effect is has yet to be established. Functional studies do indicate that physiologically relevant levels of glutamine or other L-amino acids are effective on apical and basolateral surfaces [64] and these responses are glucose-dependent [65]. Oligopeptides and peptones also act via CaSR to release GLP-1 [15,66,67]. Thus, many products of dietary protein stimulate incretin release exerting acute paracrine epithelial effects, often slowing GI transit, improving glucose tolerance and/or reducing food intake.

Conclusions
The discovery that numerous nutrient GPCRs are expressed discretely by EECs, highlights their chemosensory roles. However, physiologically meaningful combinations of luminal and/or blood borne nutrients have yet to be compared in terms of their hormone releasing capacities. Knowledge of the interactions of nutrient combinations (usually encountered by EECs) will be fundamental to understanding the acute and longer-term modulatory effects of dietary constituents and endogenous ligands on EEC signalling linked to amplified incretin peptide secretion and reduced weight. L cell plasticity is clearly evident in disease, numbers decline in metabolic syndrome, T2D, or obesity, and increase after bariatric surgery and in chronic diarrhoea. In future targeted nutrient, or nutrient receptor agonist delivery to the distal bowel where higher levels of nutrient-sensitive GPCRs exist, may well recapitulate the effects of bariatric surgery, offering dietary-inducible, intestinal-limited mechanisms with anti-diabetic and anti-obesity potential.

Acknowledgements
Thanks go to Iain Tough for drawing Figure 1. The author’s research in this area has been funded by the BBSRC (BB/N006763/1; BB/D017165/1; 29/GAN13101), the EU (7th Framework Programme, Grant agreement no. 223057 (GIPIO)), The Wellcome Trust (ref: 079291/Z/06/Z) and other sources including the Novo Nordisk Foundation Denmark, and collaborations with pharmaceutical companies.

Conflict of interest
HC has no competing interests to declare.

References and recommended reading
Papers of particular interest have been highlighted as: * of special interest, ** of outstanding interest

13. * Grunddal KV, Ratner CF, Svendsen B, Sommer F, Engelstroft MS, Madsen AN, Pedersen J, Nøhr MK, Egerod KL, Nawrocki AR et al.: Neurotensin is co-expressed, co-released and acts together with GLP-1 and PYY in enteroendocrine control of metabolism. *Endocrinol* 2016, 157:176-194. A study showing that in distal ileum L cells neurotensin is stored in separate vesicles from those containing GLP-1 and/or PYY. Neurotensin acts synergistically in vivo with GLP-1 and PYY to for example, decrease food intake and slow gastric emptying.

32. * Richards P, Parker HE, Adriaenssens AE, Hodgson JM, Cork SC, Trapp S, Gribble FM, Reimann F: Identification and characterisation of GLP-1 receptor-expressing cells using a new transgenic mouse model. *Diabetes* 2014, **63**:1224-1233. Important resolution of GLP-1 receptor expression in a reporter mouse, showing within the gut proximity between a GLP-1-containing L cell and a GLP-1 receptor-expressing submucosal nerve fibre.

