Title: Management and five year outcomes in 9978 women with screen detected DCIS: the UK Sloane Project.

Article Type: Original Research Article

Keywords: Ductal carcinoma in situ (DCIS); radiotherapy; margins; recurrence.

Corresponding Author: Professor David Dodwell,
Corresponding Author's Institution: Institute of Oncology, Level 4 - Bexley wing, St James Hospital
First Author: David Dodwell
Order of Authors: David Dodwell; Alastair Thompson; Karen Clements; Shan Cheung; Sarah Pinder; Gill Lawrence; Elinor Sawyer; Olive Kearins; Graham Ball; Ian Tomlinson; Andrew Hanby; Andrew Hanby; Jeremy Thomas; Anthony Maxwell; Matthew G Wallis

Methods: A prospective cohort of DCIS diagnosed through the UK National Health Service Breast Screening Programme (1 April 2003 to 31 March 2012) was linked to national databases and case note review to analyse patterns of care, recurrence and mortality.

Results: Screen-detected DCIS in 9938 women, mean age 60 years (range 46-87), was treated by mastectomy (2931) or breast conservation surgery (BCS) (7007; 70%). At 64 months median follow up, 697 (6.8%) had further DCIS or invasive breast cancer after BCS (7.8%) or mastectomy (4.5%) (p<0.001). Breast radiotherapy (RT) after BCS (4363/7007; 62.3%) was associated with a 3.1% absolute reduction in ipsilateral recurrent DCIS or invasive breast cancer (No RT: 7.2% vs RT: 4.1% (p<0.001) and a 1.9% absolute reduction for ipsilateral invasive breast recurrence (No RT: 3.8% vs RT: 1.9% (p<0.001), independent of excision margin width or size of DCIS. Women without RT after BCS had more ipsilateral breast recurrences (p<0.001) when the radial excision margin was <2mm. Adjuvant endocrine therapy (1208/9938; 12%) was associated with a reduction in any ipsilateral recurrence, whether RT was received (HR 0.57: 95% CI 0.41 - 0.80) or not (HR 0.68: 95% CI 0.51 - 0.91) after BCS. Women who developed invasive breast recurrence had a worse survival than those with recurrent DCIS (p<0.001). Among 321 (3.2%) who died, only 46 deaths were attributed to invasive breast cancer.

Conclusion:
Recurrent DCIS or invasive cancer is uncommon following screen-detected DCIS. Both RT and endocrine therapy were associated with a reduction in further events but not with breast cancer mortality within 5 years of diagnosis. Further research to identify biomarkers of recurrence risk, particularly as invasive disease, is indicated.
Many thanks for your further editorial suggestions. I have included these in the uploaded revision notes with a point by point response.

The title has been changed and shortened as requested

- please shorten the highlights before or after the study a.o. by using telegram style

Done

- make the titles of tables and figures more informative (time and place) so that they could also be used more easily for presentations

This has been done although we struggled to include time and place in the titles

- for historical reasons it would be interesting to indicate in time when the DCIS problem became a relevant problem (40-50 years ago?) (I remember that this was already mentioned by pathologists in Holland in 1979 as a serious problem (born around 1905) and hopes for adequate biomarkers were uttered

Some time literature searching identified some publications in the 30s and 40s! – The earliest of these has been referenced

The work of Nederend et al. upon introduction of digital mammography make clear that it needs to become worse before becoming better (hopefully)
I mentioned earlier that Hazel Thornton has made a huge problem of this in the 1990’s. I would appreciate if you referred to her work as well

This has been done. It seemed best suited to the discussion [ref 26]

With best regards

D Dodwell
European Journal of Cancer

Author Form

All manuscripts submitted to the *EJC* must be accompanied by this form. Please scan the form and transmit it to the Editorial Office via EES with the manuscript. If you are unable to do this, please contact the Editorial Office at ejcancer@elsevier.com to organise an alternative way of sending the form to the *EJC*.

Title of Manuscript:

Contribution

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study concepts:</td>
<td>all</td>
</tr>
<tr>
<td>Study design:</td>
<td>all</td>
</tr>
<tr>
<td>Data acquisition:</td>
<td>all</td>
</tr>
<tr>
<td>Quality control of data and algorithms:</td>
<td>all</td>
</tr>
<tr>
<td>Data analysis and interpretation:</td>
<td>all</td>
</tr>
<tr>
<td>Statistical analysis:</td>
<td>SC GB</td>
</tr>
<tr>
<td>Manuscript preparation:</td>
<td>all</td>
</tr>
<tr>
<td>Manuscript editing:</td>
<td>all</td>
</tr>
<tr>
<td>Manuscript review:</td>
<td>all</td>
</tr>
</tbody>
</table>

Ethical Approval for Research: No / Yes / N.A. N/A

External Funding: No / Yes

Source of Funding: PHE

Name of Principal Investigator: Alastair Thompson

(If funded, please include a statement as to the role of the study sponsor at end of manuscript under a heading ‘Role of the Funding Source’)

Possible Conflict of Interest: No / Yes

Number of Tables: 7

Number of Figures: 12

Name and Title of Corresponding Author: David Dodwell - Consultant in Clinical Oncology

Address: Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF

Tel No: 01132068938

Fax No: 01132068938

Email: david.dodwell@nhs.net

“I confirm that all the authors have made a significant contribution to this manuscript, have seen and approved the final manuscript, and have agreed to its submission to the *European Journal of Cancer*”.

Signed (corresponding author): D Dodwell

Date: 3-2-18
Responses to Editor comments:

thank you for extensive revisions. (my apology for delay)
I only have a few requests related to readability
- a (more) challenging title (current one is rather boring); also with an indication of calendar time and country (instead of national)

The title has been changed and shortened as requested

- please shorten the highlights before or after the study a.o. by using telegram style

Done

- make the titles of tables and figures more informative (time and place) so that they could also be used more easily for presentations

This has been done although we struggled to include time and place in the titles

- for historical reasons it would be interesting to indicate in time when the DCIS problem became a relevant problem (40-50 years ago?) (I remember that this was already mentioned by pathologists in Holland in 1979 as a serious problem (born around 1905) and hopes for adequate biomarkers were uttered

Some time literature searching identified some publications in the 30s and 40s – The earliest of these has been referenced

The work of Nederend et al. upon introduction of digital mammography make clear that it needs to become worse before becoming better (hopefully)
I mentioned earlier that Hazel Thornton has made a huge problem of this in the 1990’s. I would appreciate if you referred to her work as well

This has been done. It seemed best suited to the discussion [ref 26]
Evidence before this study - Highlights

- DCIS represents 20-25% of screen-detected breast cancer.
- Management remains controversial.
- Adjuvant radiotherapy (RT) following wide excision reduces ipsilateral recurrence but not mortality.
- A 2mm surgical excision margin is widely recommended.
- Survival following treatment of DCIS is excellent, with few subsequent deaths from breast cancer.

Added value of this study

- Further DCIS or invasive breast cancer is not uncommon (6.8% at 5 years).
- Breast RT was associated with reductions in ipsilateral breast events independent of width of margin of excision or size of DCIS.
- Endocrine therapy was rarely utilised.
- 5 year mortality was not impacted by use of radiotherapy or endocrine therapy.
Title: Management and five year outcomes in 9978 women with screen detected DCIS: the UK Sloane Project

A prospective, national cohort study of treatment and outcomes for screen-detected ductal carcinoma in situ (DCIS) of the breast.

Authors: Alastair M Thompson a, Karen Clements b, Shan Cheung b, Sarah E Pinder c, Gill Lawrence b, Elinor Sawyer c, Olive Kearins b, Graham R Ball d, Ian Tomlinson e, Andrew Hanby f, Jeremy St J Thomas g, Anthony J Maxwell h, Matthew G Wallis i, David J Dodwell j. On behalf of the Sloane Project Steering Group (NHS Prospective Study of Screen-Detected Non-invasive Neoplasias).

a. University of Texas MD Anderson Cancer Center, Houston, Texas 77030, US.
 AThompson1@mdanderson.org

b. Public Health England, 1st Floor, 5 St Philip’s Place, Birmingham, B3 2PW, UK.
 karen.clements@phe.gov.uk; shan.cheung@phe.gov.uk; oldpogill@gmail.com;
 Olive.Kearins@phe.gov.uk

c. Division of Cancer Studies, King’s College London, 9th Floor Innovation Hub, Comprehensive Cancer Centre, Guy’s Hospital, Great Maze Pond, London. SE1 9RT. sarah.pinder@kcl.ac.uk;
 elinar.sawyer@kcl.ac.uk

d. John van Geest Cancer Research Centre, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS. graham.ball@ntu.ac.uk

e. Oxford Centre for Cancer Gene Research, and Molecular Pathology and Diagnostics Theme, Oxford NIHR Comprehensive Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN. ian.tomlinson@well.ox.ac.uk

f. Leeds Institute of Cancer and Pathology (LICAP), Section of Pathology and Tumour Biology, Wellcome Trust Brenner Building, Level 4, Room 4.13 St James's University Hospital, Beckett Street, Leeds, LS9 7TF a.m.hanby@leeds.ac.uk

g. Western General Hospital, Edinburgh. EH4 2XU.jeremy.thomas@luht.scot.nhs.uk

h. Nightingale Centre, University Hospital of South Manchester, Manchester, M23 9LT, UK & School of Health Sciences, University of Manchester, Manchester, M13 9PT, UK.
 anthony.maxwell@manchester.ac.uk

i. Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge & NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK.
 matthew.wallis@addenbrookes.nhs.uk
j. Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF. david.dodwell@nhs.net

Corresponding author:
Professor David J Dodwell, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF. david.dodwell@nhs.net.

Funding:
Principal funding from Public Health England [PHE] (previously United Kingdom National Health Service Breast Screening Programme (NHSBSP)).
Abstract

Background:
Management of screen-detected ductal carcinoma *in situ* (DCIS) remains controversial.

Methods:
A prospective cohort of DCIS diagnosed through the UK National Health Service Breast Screening Programme (1 April 2003 to 31 March 2012) was linked to national databases and case note review to analyse patterns of care, recurrence and mortality.

Results:
Screen-detected DCIS in 9938 women, mean age 60 years (range 46-87), was treated by mastectomy (2931) or breast conservation surgery (BCS) (7007; 70%). At 64 months median follow up, 697 (6.8%) had further DCIS or invasive breast cancer after BCS (7.8%) or mastectomy (4.5%) (p<0.001). Breast radiotherapy (RT) after BCS (4363/7007; 62.3%) was associated with a 3.1% absolute reduction in ipsilateral recurrent DCIS or invasive breast cancer (No RT: 7.2% vs RT: 4.1% (p<0.001) and a 1.9% absolute reduction for ipsilateral invasive breast recurrence (No RT: 3.8% vs RT: 1.9% (p<0.001), independent of excision margin width or size of DCIS. Women without RT after BCS had more ipsilateral breast recurrences (p<0.001) when the radial excision margin was <2mm. Adjuvant endocrine therapy (1208/9938; 12%) was associated with a reduction in any ipsilateral recurrence, whether RT was received (HR 0.57: 95% CI 0.41 - 0.80) or not (HR 0.68: 95% CI 0.51 - 0.91) after BCS. Women who developed invasive breast recurrence had a worse survival than those with recurrent DCIS (p<0.001). Among 321 (3.2%) who died, only 46 deaths were attributed to invasive breast cancer.

Conclusion:
Recurrent DCIS or invasive cancer is uncommon following screen-detected DCIS. Both RT and endocrine therapy were associated with a reduction in further events but not with breast cancer mortality within 5 years of diagnosis. Further research to identify biomarkers of recurrence risk, particularly as invasive disease, is indicated.

Keywords: Ductal carcinoma in situ (DCIS); radiotherapy; margins; recurrence.
Introduction

Ductal carcinoma \textit{in situ} (DCIS) comprises 20-25\% of screen-detected breast cancer and, like invasive breast cancer, is heterogeneous in terms of underlying biology, presentation and outcome [1]. The clinical behaviour of DCIS is unpredictable, challenging clinical decision-making. Recently, concern regarding the over-treatment of DCIS [1], has been fueled by large retrospective American series demonstrating excellent (>95\%) long term survival 10-20 years after diagnosis although others have suggested that detection and treatment of screen-detected DCIS may prevent subsequent invasive disease. [2-4]

Standard treatment for DCIS includes mastectomy or breast conserving surgery (BCS), with or without radiotherapy (RT) and/or endocrine therapy to decrease ipsilateral recurrence and/or contralateral breast carcinoma. [5-7] It remains unclear which patients benefit from these adjuvant therapies. Prospective data are lacking and the clinical significance of early detection and treatment for DCIS remains unclear. Here, we report the first analysis of recurrence and mortality from a prospective cohort study of DCIS detected through a contemporary national screening programme. Utilising diagnostic imaging, surgery, histopathology and adjuvant therapy data provided by the local breast screening unit where diagnosis was reached, along with longitudinal follow-up of patients through case note review and linkage to national databases, we describe the features and outcomes following diagnosis of screen-detected DCIS.

Methods

The United Kingdom National Health Service Breast Screening Programme (NHSBSP) invites women aged 50-70 to attend breast screening every three years (\textit{supplementary figure and text p2}). The Sloane Project was established in memory of Professor John Sloane, a breast pathologist, to audit the features, patterns of care and outcomes for women with non-invasive neoplasia detected within the NHSBSP. Data capture was via radiology, pathology, surgery and radiotherapy (RT) paper proformas collected at screening unit level, sent to Public Health England, then each patient’s data entered on a secure database held on an SQL server that generated an individual patient and tumour identifier. The data reported here is for women in the dataset who had DCIS
identified. For the 34 women with bilateral DCIS, the higher grade and/or larger lesion was considered the index.

Data included demographic, diagnostic, treatment and vital status. Adherence to NHSBSP guidelines and participation in the relevant quality assurance programmes were mandatory. Participating units were required to follow a pathology protocol containing definitions for DCIS, microinvasion, cytonuclear grade, comedo necrosis and assessment of excision margins and to handle and report specimens to NHSBSP pathology standards. [8] Radiology guidelines mandated participating radiologists should complete detailed radiology proformas [9] and participate in the NHSBSP PERFORMS external quality assurance scheme. [10]

Missing (unknown) data were rare for key comparisons including use of radiotherapy (0.5%), grade of DCIS (0.1%), lesion size (0.4%) or cause of death (0.1%). Events were identified by matching women by NHS number and date of birth to information provided by breast screening units, and to routinely collected UK datasets including Hospital Episode Statistics (HES), Cancer Waiting Times (CWT), the English Cancer Analysis System (CAS)/National Cancer Registration and Analysis Service (NCRAS), the English National Radiotherapy Dataset (RTDS) and the Information Services Division, Scotland (ISD). The census date was the date of death or 31 December 2012. Validation of data was undertaken by cross-checking with original screening unit source documents for those patients with recurrence and more generally, for the overall dataset, against the Association of Breast Surgery national audits 2006-2012.

Ethics Committee approval was not required for this prospective cohort study originally conducted under the NHS Cancer Screening Programme’s application to the Patient Information Advisory Group (PIAG). More recently, access to patient data was approved to quality assure National Cancer Screening Programmes under the Health and Social Care Act 2006 (Section 251) via the Confidentiality Advisory Group (CAG).

Classification of recurrence & mortality

Given the difficulties in distinguishing local recurrence versus a new primary lesion in the same breast, the following terminology was used (see supplementary figure and text p 2-3). A ‘breast event’ was defined as (any of): ipsilateral breast recurrence (or new primary) after BCS; ipsilateral
recurrence (includes post-mastectomy/chest wall recurrence); regional or distant recurrence; or contralateral re/occurrence. (See supplementary figure and text, [p3-4] for definitions of mortality).

Statistical analyses
Logistic linear regression analysis was used to test the relationship between a binary variable and continuous or ordered categorical dependent variables. The importance of factors was determined by likelihood ratio tests that compared the full model and a reduced model with one factor removed at a time. A factor with a lower p-value from the likelihood ratio test was deemed to be more important than one with a higher p-value.

For disease recurrence, cumulative incidence plots were produced, taking account of the competing risks between recurrence and death. K-sample tests were performed to compare the groups in the cumulative incidence plots. For overall and breast cancer specific survival, Kaplan-Meier survival plots were produced; log rank tests were used to test the difference between survival curves. All time to event analyses were performed using the Cox semi-parametric proportional hazard regression. Tied times were adjusted using the Breslow’s method. The proportional hazard assumption was assessed by Schoenfeld residuals test. For most analyses, the proportional hazard assumption is valid. Analyses were performed in R. Considering the high number of variables and groups within the variables, probability values lower than one in a hundred (0.01) were used to assign statistical significance.

Results

Patterns of care
From 12,788 patients (12,838 non-invasive lesions) diagnosed from 1 April 2003 to 31 March 2012 complete data were available for 9938 women (age range 46-87, mean age 60) diagnosed with DCIS (with or without lobular carcinoma in situ (LCIS) and/or atypical ductal hyperplasia (ADH)) (Figure 1). Seventy-eight breast screening units in England and Scotland contributed data (82% of the 95 units). Median follow up was 64 months (range 6 - 116 months). Over the same decade in the UK, 30,187 women were diagnosed with non-invasive and microinvasive breast cancers through the NHSBSP; thus, the data analysed represent 77% (9938/12,838) of non-invasive lesions.
within this prospective cohort, and 33% (9938/30,187) of women with a final diagnosis of in situ breast carcinoma diagnosed through the NHSBSP.

Surgical treatment
Breast conservation surgery (BCS) was definitive surgery in 7007 (70%) women and was utilised more often with increasing age up to 59 years and thereafter appeared constant. Mastectomy was definitive surgery for 2931 (30%) women. The use of mastectomy was associated with DCIS of high or intermediate rather than low grade (p<0.001) and with larger lesion size (p<0.001). The use of BCS versus mastectomy was unchanged over time.

Radiotherapy
For 7007 women who had BCS, 62% also had RT; the use of RT increased over time (p<0.001). Women aged 70 or older were less likely to have RT compared to women aged 50-70 (p=0.006). Use of RT after BCS increased with grade of DCIS (p<0.001), DCIS size (p<0.001), the presence of microinvasion (p<0.001) and comedo necrosis (p<0.001), but not with margin width (Table 1), confirmed by multivariable analysis (result not shown). RT was administered after mastectomy in 33 (1%) women, as previously reported. [11]

Endocrine Therapy
Endocrine therapy was prescribed to more women following BCS (14%) than mastectomy (8%) (p<0.001). The use of endocrine therapy was not related to age and was prescribed less frequently over time (p<0.001). There was no relationship between the receipt of endocrine therapy and RT use after BCS.

Outcomes
At a median follow up of 64 months, 6.8% of women (679/9938) had a breast (DCIS or invasive) event: 451 (4.5%) were ipsilateral breast, regional or distant recurrences and 228 (2.3%) represented a re/occurrence in the contralateral breast/nodes. Ipsilateral breast recurrence after BCS was 5.3% (368/7007); ipsilateral chest wall recurrence after mastectomy was 0.8% (24/2931). The risk of a further breast event did not differ by year of screening.
Recurrence following BCS
Following BCS, there was a greater risk of ipsilateral breast recurrence for those who did not have RT compared to those who had RT (p<0.001, HR=0.59; 95% CI 0.53 - 0.67) (no RT: 7.2% vs RT: 4.1%) (Figure 2). There was a significantly lower risk of invasive ipsilateral breast recurrence (no RT: 3.8% vs RT: 1.9%) (p<0.001, HR=0.51; 95% CI 0.43 - 0.60) but not ipsilateral DCIS recurrence (no RT: 3.3% vs RT: 2.2%) (p=0.05, HR=0.69; 95% CI =0.58 - 0.82) in women who received RT.

After BCS, the risk of developing ipsilateral breast recurrence was greater in patients with a negative or close DCIS margin (0 to <2mm: 7.4% vs ≥2mm: 4.8%; p<0.001, HR=0.67; 95% CI 0.57 - 0.78), (p <0.001) whether patients received RT (p=0.011, HR=0.75; 95% CI 0.60 - 0.94) or not (p<0.001, HR=0.59; 95% CI 0.47 - 0.73).

RT and endocrine therapy were independently associated with a decreased risk of ipsilateral breast recurrence (RT: p<0.001, HR=0.59; 95% CI 0.52 – 0.66; endocrine therapy; p=0.003, HR=0.7: 95% CI 0.55 – 0.89; interaction: p=0.20).

Multivariable analyses for recurrence
By multivariable analyses, following BCS, use of RT (HR 0.38: 95% CI 0.33-0.45) and endocrine therapy (HR 0.63: 95% CI 0.50 - 0.78) were each independently associated with a significantly reduced risk of breast events and ipsilateral breast recurrence (RT: HR 0.40: 95% CI 0.34 - 0.48) (endocrine therapy: HR 0.56: 95% CI 0.44 - 0.72).

After adjusting for all other factors, the presence of high grade of DCIS and of comedo necrosis were significantly associated with a higher risk of breast events (excluding contralateral occurrence) (high grade - HR 1.50: 95% CI 1.14 - 1.98, comedo necrosis HR 1.31: 95% CI 1.09 - 1.57) and of ipsilateral breast recurrence (high grade - HR 1.40: 95% CI 1.05 - 1.87); comedo necrosis - HR 1.30: (95% CI 1.07 – 1.57).

Contralateral disease
Contralateral breast cancer was seen in 218 women (2.2%); more commonly after mastectomy (81/2931; 2.8%) than after BCS (137/7007; 1.9%) (p<0.001).

Survival
Among the 9938 women, there were 321 deaths (3.2%), 46 attributed to breast cancer. There was no difference in overall (or breast cancer-related) mortality comparing BCS (3.1% [218/7007]) to mastectomy (3.5% [103/2931]).

Women treated with RT after BCS had a lower all-cause mortality (RT: 2.5% vs no RT: 4.2%; p<0.001), even when corrected for age (p<0.001, HR=0.65: 95% CI 0.49 - 0.85), but not a lower breast cancer mortality (p=0.41, HR=0.73: 95% CI 0.34 - 1.56) The use of endocrine therapy was not associated with overall or breast cancer specific mortality.

Women who developed an invasive breast recurrence had a significantly worse overall survival (log rank p-value <0.001) and breast cancer specific survival (log rank p-value<0.001) from the time of the further event compared with those who developed recurrent DCIS (Figure 3) (supplementary figure 1).

Discussion
This study of 9938 women with DCIS detected through the UK NHSBSP confirms that recurrent DCIS or invasive cancer remains a concern following modern management of screen-detected DCIS. Both RT and endocrine therapy were associated with a reduction in further events but not with breast cancer mortality within 5 years of diagnosis. The present prospective cohort study contrasts with recent but retrospective studies of US [2, 3] and European data. [12] Unlike those series, we report prospectively collected data from the setting of an established national breast screening programme, with built in quality assurance of imaging, surgery, pathology and RT. [10, 13] An additional major strength, in contrast to other studies including the randomised clinical trials, is the prospective collection of margin status, an area of significant international controversy. In addition, available data include the use of endocrine therapy with linkage to outcomes. [2, 3] Conversely, one limitation of the present study, in keeping with the recently published retrospective series [2-4, 12] is its observational nature with the consequent difficulty in
accounting for all possible confounders. Follow up is also relatively short in the context of the long natural history of DCIS.

Breast conservation was the definitive surgery for 70.5% of women, more frequently used with increasing age. This may reflect perceptions about risk of within breast recurrence in younger patients. Whilst it is likely that RT following BCS was used in patients perceived (based on pathological and patient-related factors) to be at higher risk of recurrence, RT use was, surprisingly, not associated with close or involved circumferential resection margins. Conversely, mastectomy was, not unexpectedly, associated with features of more aggressive DCIS.

RT following BCS was associated with a significant reduction in all ipsilateral breast further events (DCIS or invasive) at a median follow up of 64 months. The association of RT with reduced recurrence risk is consistent with the effects seen in the overview of the prospective randomized trials. [14] Significantly, however, in the present study, the reduction of breast recurrence associated with RT was independent of margin of excision. Differing minimum margin widths for DCIS have been proposed [15, 16]. One recent series has suggested that a 1mm margin may be sufficient, with or without RT [17]. Others have suggested that those with margin widths <1mm may benefit from postoperative radiation therapy whilst those with >10mm margins receive no benefit with regard to recurrence. [18] However, specifically for women who did not receive RT, in this series there was an association between a DCIS margin of <2mm and ipsilateral breast recurrence. This provides direct evidence in support of more recent reviews, meta-analysis and consensus guidelines [19, 20] as well as recent studies [21].

The higher all-cause mortality in patients not receiving RT after BCS is likely to reflect comorbidities not captured in the current study. Nevertheless, patients not receiving RT had a higher (7.2%) breast recurrence rate, confirming patient selection for RT could be improved. [22] Endocrine therapy was associated with a non-significant reduction in ipsilateral breast recurrence independent of RT, although the greatest effect was seen for the reduction of invasive further events in the absence of RT. In a contemporary analysis of the US retrospective National Cancer Data Base (70% of the US population), 36.5% of women (most commonly between 50 and 59 years of age) received adjuvant endocrine therapy for DCIS [23] compared with 12.2% in this UK-based study, and no-one in a cohort in the Netherlands [12], reflecting the inconsistent interpretation of
evidence from trials examining the impact of endocrine therapy for DCIS on local recurrence, the associated toxicities and issues of adherence to adjuvant tamoxifen treatment.

Significantly, neither the use of RT, endocrine therapy, nor type of surgery, appeared to influence breast cancer mortality, although women who developed invasive ipsilateral breast cancer had a poorer survival than those who had DCIS recurrence. Indeed, breast cancer mortality (0.46%) was a fifth of other cause mortality, in keeping with several retrospective studies. [2, 3, 12]

The increasing incidence of DCIS, likely to be sustained with the enhanced visualisation that digital mammography provides, now deployed in the UK NHS BSP, emphasises the potential for overtreatment of women diagnosed though breast screening. [1] Since digital mammography was not deployed during the time of data collection for this study, the impact of digital mammography and any influences on the data reported here remain uncertain. However, the present study findings do re-emphasise the issue of potential overtreatment of DCIS and the need to improve the selection of adjuvant therapy for women with DCIS. This requires a greater understanding of the underlying biology of DCIS, on reliable predictive and prognostic assessment, particularly to select women at risk of invasive breast cancer recurrence. Predictive models of ipsilateral breast recurrence after DCIS, and a more recent prognostic score for DCIS for RT benefit, require prospective validation if they are to be widely adopted. [24-28] Meanwhile, a major international initiative between the UK, Netherlands and the US, the PRECISION (PREvent ductal Carcinoma In Situ Invasive Overtreatment Now) study funded by Cancer Research UK and the Dutch Cancer Society seeks to define underlying molecular mechanisms in DCIS related to risk of progression and, together with diagnostic and clinical elements, construct risk models for the future management of patients. (http://www.cancerresearchuk.org/funding-for-researchers/how-we-deliver-research/grand-challenge-award/funded-teams-wesseling) [28] Emulating studies in prostate, thyroid and renal neoplasia, active surveillance, rather than initial surgery, for carefully selected patients with low risk DCIS has been advocated and may avoid the potential sequelae of breast surgery. Indeed, prospective randomised trials of active surveillance versus conventional surgical care, e.g. the LOw RISk DCIS (LORIS) trial in the UK, COMET in the USA and LORD in mainland Europe [29-31] seek to identify a cohort of patients with sufficiently low risk to obviate the need for surgical excision.
Conclusions
This large prospective cohort study allows us to examine, in contemporary practice, the effects of present-day treatments, and the patient and pathological features that have previously been described in retrospective studies and randomised clinical trials. The reduction in recurrence rates seen with the use of RT and endocrine therapy has not, to date, yielded a survival benefit to patients, although other-cause mortality is five times greater than that attributable to breast cancer. Ipsilateral breast recurrence risk is, however, higher in patients treated by BCS without RT, particularly if the radial excision margin is narrow (<2mm). Women with recurrence as invasive disease have poorer survival than those with recurrent DCIS and further research targeting clinical, biological and imaging biomarkers of risk of invasive recurrence after a diagnosis of screen-detected DCIS is indicated, to improve personalisation of therapy and outcomes.

References:

Acknowledgements 1. Members of the Sloane Project Steering Group:

Surgery
- Professor Alastair Thompson (Chair)
- Professor Adele Francis**
- Mr Mark Sibbering
- Mr Hugh Bishop (previous Chair) *
- Mr Robert Carpenter *
- Professor W D George *
- Mr Martin Lee *
- Mr Stewart Nicholson *

Radiology
- Dr Hilary Dobson *
- Professor Andy Evans
- Dr Anthony Maxwell
- Dr Matthew Wallis

Oncology
- Professor David Dodwell
- Dr Elinor Sawyer
- Dr Julian Adlard *
- Professor John Dewar *
- Dr Gillian Ross *

Patient Representative
- Maggie Wilcox

Pathology
- Professor Andrew Hanby
- Professor Sarah Pinder
- Professor Valerie Speirs
- Dr Jeremy Thomas
- Professor Ian Ellis *
- Professor Sunil Lakhani *
- Dr James Macartney *
Molecular and Population Genetics

Professor Ian Tomlinson

Bioinformatics

Mrs Shan Cheung
Dr Gill Lawrence
Professor Graham Ball

Management

Mrs Karen Clements
Mrs Bridget Hilton
Mrs Olive Kearins
Mrs Margot Wheaton *

* Indicates former members of the steering group

** deceased

Acknowledgments 2.

Individuals who contribute to the Sloane Project are also supported by the Breast Cancer Research Trust, Breast Cancer Now, and Cancer Research UK (grant no C8225/A21133). Individuals who contribute to the Sloane Project are also supported by the Breast Cancer Research Trust, Breast Cancer Now, CR-UK, from CTSU – University of Oxford, MRC and the British Heart Foundation.

The Sloane Project acknowledges financial support from Public Health England (previously the NHS Breast Screening Programme). The Sloane Project has previously received an unrestricted educational grant for 3 years from Pfizer UK and from the Breast Cancer Research Trust, UK via a two year project grant.
Appendix

UK Breast Screening Units contributing to the Sloane Project:

Avon
Barking, Havering, Redbridge & Brentwood
Barnsley
Bedfordshire & Hertfordshire
Bolton, Bury & Rochdale
Breast Test Wales – North*
Breast Test Wales – South East*
Breast Test Wales – South West*
Cambridge & Huntingdon
Central & East London
Chelmsford & Colchester
Chester
City, Sandwell & Walsall
Cornwall
Crewe
Doncaster
Dorset
Dudley & Wolverhampton
East Berkshire (Windsor)
East Cheshire & Stockport
East Lancashire
East Scotland
East Sussex, Brighton & Hove
Gateshead
Gloucestershire
Great Yarmouth & Waveney
Greater Manchester
Hereford & Worcester
Humberside
North Derbyshire
North East Scotland
North Lancashire & South Cumbria
North London
North Nottinghampshire
North Staffordshire
North Yorkshire
Northampton
Nottingham
Oxfordshire
Pennine (Bradford)
Peterborough
Portsmouth
Rotherham
Sheffield
Shropshire
Somerset
South Birmingham
South Derbyshire
South Devon
South East London & Queen Mary’s
South East Scotland
South Essex
South Staffordshire
South West London (St George’s)
South West Scotland
Southampton & Salisbury
Surrey (Jarvis)
Warrington
<table>
<thead>
<tr>
<th>Location</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isle of Wight</td>
<td>Warwickshire, Solihull & Coventry</td>
</tr>
<tr>
<td>King’s Lynn</td>
<td>West Berkshire</td>
</tr>
<tr>
<td>Leeds & Wakefield</td>
<td>West Devon & East Cornwall</td>
</tr>
<tr>
<td>Leicestershire</td>
<td>West Essex</td>
</tr>
<tr>
<td>Liverpool</td>
<td>West of London</td>
</tr>
<tr>
<td>Maidstone</td>
<td>West of Scotland</td>
</tr>
<tr>
<td>Medway (Gillingham, Kent)</td>
<td>West Suffolk</td>
</tr>
<tr>
<td>Milton Keynes</td>
<td>Western, Northern Ireland*</td>
</tr>
<tr>
<td>Newcastle-Upon-Tyne</td>
<td>Wiltshire</td>
</tr>
<tr>
<td>Norfolk & Norwich</td>
<td>Wirral</td>
</tr>
<tr>
<td>North & Eastern Devon</td>
<td>Wycombe</td>
</tr>
<tr>
<td>North & Mid Hampshire</td>
<td></td>
</tr>
<tr>
<td>North Cumbria</td>
<td></td>
</tr>
</tbody>
</table>

* Unit data not included in these analyses
Title: Management and five year outcomes in 9978 women with screen detected DCIS: the UK Sloane Project.

Authors: Alastair M Thompson a, Karen Clements b, Shan Cheung b, Sarah E Pinder c, Gill Lawrence b, Elinor Sawyer c, Olive Kearins b, Graham R Ball d, Ian Tomlinson e, Andrew Hanby f, Jeremy St J Thomas g, Anthony J Maxwell h, Matthew G Wallis i, David J Dodwell j. On behalf of the Sloane Project Steering Group (NHS Prospective Study of Screen-Detected Non-invasive Neoplasias).

a. University of Texas MD Anderson Cancer Center, Houston, Texas 77030, US.
AThompson1@mdanderson.org

b. Public Health England, 1st Floor, 5 St Philip’s Place, Birmingham, B3 2PW, UK.
karen.clements@phe.gov.uk; shan.cheung@phe.gov.uk; oldpogill@gmail.com;
Olive.Kearins@phe.gov.uk

c. Division of Cancer Studies, King’s College London, 9th Floor Innovation Hub, Comprehensive Cancer Centre, Guy’s Hospital, Great Maze Pond, London. SE1 9RT. sarah.pinder@kcl.ac.uk; elinor.sawyer@kcl.ac.uk

d. John van Geest Cancer Research Centre, Nottingham Trent University, Clifton Lane,
Nottingham NG11 8NS. graham.ball@ntu.ac.uk

e. Oxford Centre for Cancer Gene Research, and Molecular Pathology and Diagnostics Theme,
Oxford NIHR Comprehensive Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN. ian.tomlinson@well.ox.ac.uk

f. Leeds Institute of Cancer and Pathology (LICAP), Section of Pathology and Tumour Biology,
Wellcome Trust Brenner Building, Level 4, Room 4.13 St James’s University Hospital, Beckett Street, Leeds, LS9 7TF a.m.hanby@leeds.ac.uk

g. Western General Hospital, Edinburgh. EH4 2XU jeremy.thomas@luht.scot.nhs.uk

h. Nightingale Centre, University Hospital of South Manchester, Manchester, M23 9LT, UK & School of Health Sciences, University of Manchester, Manchester, M13 9PT, UK.
anthony.maxwell@manchester.ac.uk

i. Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge & NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ, UK.
matthew.wallis@addenbrookes.nhs.uk

j. Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF. david.dodwell@nhs.net
Corresponding author:
Professor David J Dodwell, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF. david.dodwell@nhs.net.

Funding:
Principal funding is from Public Health England [PHE] (previously United Kingdom National Health Service Breast Screening Programme (NHSBSP)). Individuals who contribute to the Sloane Project are also supported by the Breast Cancer Research Trust, Breast Cancer Now, and Cancer Research UK (grant no C8225/A21133). The Sloane Project has previously received an unrestricted educational grant for 3 years from Pfizer UK and from the Breast Cancer Research Trust, UK via a twoyear project grant.
Abstract

Background:
Management of screen-detected ductal carcinoma in situ (DCIS) remains controversial.

Methods:
A prospective cohort of DCIS diagnosed through the UK National Health Service Breast Screening Programme (1 April 2003 to 31 March 2012) was linked to national databases and case note review to analyse patterns of care, recurrence and mortality.

Results:
Screen-detected DCIS in 9938 women, mean age 60 years (range 46-87), was treated by mastectomy (2931) or breast conservation surgery (BCS) (7007; 70%). At 64 months median follow up, 697 (6.8%) had further DCIS or invasive breast cancer after BCS (7.8%) or mastectomy (4.5%) (p<0.001). Breast radiotherapy (RT) after BCS (4363/7007; 62.3%) was associated with a 3.1% absolute reduction in ipsilateral recurrent DCIS or invasive breast cancer (No RT: 7.2% vs RT: 4.1% (p<0.001) and a 1.9% absolute reduction for ipsilateral invasive breast recurrence (No RT: 3.8% vs RT: 1.9% (p<0.001), independent of excision margin width or size of DCIS. Women without RT after BCS had more ipsilateral breast recurrences (p<0.001) when the radial excision margin was <2mm. Adjuvant endocrine therapy (1208/9938; 12%) was associated with a reduction in any ipsilateral recurrence, whether RT was received (HR 0.57: 95% CI 0.41 - 0.80) or not (HR 0.68: 95% CI 0.51 - 0.91) after BCS. Women who developed invasive breast recurrence had a worse survival than those with recurrent DCIS (p<0.001). Among 321 (3.2%) who died, only 46 deaths were attributed to invasive breast cancer.

Conclusion:
Recurrent DCIS or invasive cancer is uncommon following screen-detected DCIS. Both RT and endocrine therapy were associated with a reduction in further events but not with breast cancer mortality within 5 years of diagnosis. Further research to identify biomarkers of recurrence risk, particularly as invasive disease, is indicated.

Keywords: Ductal carcinoma in situ (DCIS); radiotherapy; margins; recurrence.
Introduction

Although described over 80 years ago [1] ductal carcinoma in situ (DCIS) became a common management problem after the introduction of breast screening and now comprises 20-25% of screen-detected breast cancer. Like invasive breast cancer, DCIS is heterogeneous in terms of underlying biology, presentation and outcome [2]. The clinical behaviour of DCIS is unpredictable, challenging clinical decision-making. Recently, concern regarding the over-treatment of DCIS [2], has been fueled by large retrospective American series demonstrating excellent (>95%) long term survival 10-20 years after diagnosis although others have suggested that detection and treatment of screen-detected DCIS may prevent subsequent invasive disease. [3-5]

Standard treatment for DCIS includes mastectomy or breast conserving surgery (BCS), with or without radiotherapy (RT) and/or endocrine therapy to decrease ipsilateral recurrence and/or contralateral breast carcinoma. [6-8] It remains unclear which patients benefit from these adjuvant therapies. Prospective data are lacking and the clinical significance of early detection and treatment for DCIS remains unclear. Here, we report the first analysis of recurrence and mortality from a prospective cohort study of DCIS detected through a contemporary national screening programme. Utilising diagnostic imaging, surgery, histopathology and adjuvant therapy data provided by the local breast screening unit where diagnosis was reached, along with longitudinal follow-up of patients through case note review and linkage to national databases, we describe the features and outcomes following diagnosis of screen-detected DCIS.

Methods

The United Kingdom National Health Service Breast Screening Programme (NHSBSP) invites women aged 50-70 to attend breast screening every three years (supplementary figure and text p2). The Sloane Project was established in memory of Professor John Sloane, a breast pathologist, to audit the features, patterns of care and outcomes for women with non-invasive neoplasia detected within the NHSBSP. Data capture was via radiology, pathology, surgery and radiotherapy (RT) paper proformas collected at screening unit level, sent to Public Health England, then each patient’s data entered on a secure database held on an SQL server that generated an individual patient and tumour identifier.
The data reported here is for women in the dataset who had DCIS identified. For the 34 women with bilateral DCIS, the higher grade and/or larger lesion was considered the index.

Data included demographic, diagnostic, treatment and vital status. Adherence to NHSBSP guidelines and participation in the relevant quality assurance programmes were mandatory. Participating units were required to follow a pathology protocol containing definitions for DCIS, microinvasion, cytonuclear grade, comedo necrosis and assessment of excision margins and to handle and report specimens to NHSBSP pathology standards. [9] Radiology guidelines mandated participating radiologists should complete detailed radiology pro formas [10] and participate in the NHSBSP PERFORMS external quality assurance scheme. [11]

Missing (unknown) data were rare for key comparisons including use of radiotherapy (0.5%), grade of DCIS (0.1%), lesion size (0.4%) or cause of death (0.1%). Events were identified by matching women by NHS number and date of birth to information provided by breast screening units, and to routinely collected UK datasets including Hospital Episode Statistics (HES), Cancer Waiting Times (CWT), the English Cancer Analysis System (CAS)/National Cancer Registration and Analysis Service (NCRAS), the English National Radiotherapy Dataset (RTDS) and the Information Services Division, Scotland (ISD). The census date was the date of death or 31 December 2012. Validation of data was undertaken by cross-checking with original screening unit source documents for those patients with recurrence and more generally, for the overall dataset, against the Association of Breast Surgery national audits 2006-2012.

Ethics Committee approval was not required for this prospective cohort study originally conducted under the NHS Cancer Screening Programme’s application to the Patient Information Advisory Group (PIAG). More recently, access to patient data was approved to quality assure National Cancer Screening Programmes under the Health and Social Care Act 2006 (Section 251) via the Confidentiality Advisory Group (CAG).

Classification of recurrence & mortality

Given the difficulties in distinguishing local recurrence versus a new primary lesion in the same breast, the following terminology was used *(see supplementary figure and text p 2-3)*. A ‘breast event’ was defined as (any of): ipsilateral breast recurrence (or new primary) after BCS; ipsilateral
recurrence (includes post-mastectomy/chest wall recurrence); regional or distant recurrence; or contralateral recurrence. (See supplementary figure and text, [p3-4] for definitions of mortality).

Statistical analyses
Logistic linear regression analysis was used to test the relationship between a binary variable and continuous or ordered categorical dependent variables. The importance of factors was determined by likelihood ratio tests that compared the full model and a reduced model with one factor removed at a time. A factor with a lower p-value from the likelihood ratio test was deemed to be more important than one with a higher p-value.

For disease recurrence, cumulative incidence plots were produced, taking account of the competing risks between recurrence and death. K-sample tests were performed to compare the groups in the cumulative incidence plots. For overall and breast cancer specific survival, Kaplan-Meier survival plots were produced; log rank tests were used to test the difference between survival curves. All time to event analyses were performed using the Cox semi-parametric proportional hazard regression. Tied times were adjusted using the Breslow’s method. The proportional hazard assumption was assessed by Schoenfeld residuals test. For most analyses, the proportional hazard assumption is valid. Analyses were performed in R. Considering the high number of variables and groups within the variables, probability values lower than one in a hundred (0.01) were used to assign statistical significance.

Results

Patterns of care
From 12,788 patients (12,838 non-invasive lesions) diagnosed from 1 April 2003 to 31 March 2012 complete data were available for 9938 women (age range 46-87, mean age 60) diagnosed with DCIS (with or without lobular carcinoma in situ (LCIS) and/or atypical ductal hyperplasia (ADH)) (Figure 1). Seventy-eight breast screening units in England and Scotland contributed data (82% of the 95 units). Median follow up was 64 months (range 6 - 116 months). Over the same decade in the UK, 30,187 women were diagnosed with non-invasive and microinvasive breast cancers through the NHSBSP; thus, the data analysed represent 77% (9938/12,838) of non-invasive lesions within this prospective cohort, and 33% (9938/30,187) of women with a final diagnosis of in situ breast carcinoma diagnosed through the NHSBSP.
Surgical treatment
Breast conservation surgery (BCS) was definitive surgery in 7007 (70%) women and was utilised more often with increasing age up to 59 years and thereafter appeared constant. Mastectomy was definitive surgery for 2931 (30%) women. The use of mastectomy was associated with DCIS of high or intermediate rather than low grade (p<0.001) and with larger lesion size (p<0.001). The use of BCS versus mastectomy was unchanged over time.

Radiotherapy
For 7007 women who had BCS, 62% also had RT; the use of RT increased over time (p<0.001). Women aged 70 or older were less likely to have RT compared to women aged 50-70 (p=0.006). Use of RT after BCS increased with grade of DCIS (p<0.001), DCIS size (p<0.001), the presence of microinvasion (p<0.001) and comedo necrosis (p<0.001), but not with margin width (Table 1), confirmed by multivariable analysis (result not shown). RT was administered after mastectomy in 33 (1%) women, as previously reported. [12]

Endocrine Therapy
Endocrine therapy was prescribed to more women following BCS (14%) than mastectomy (8%) (p<0.001). The use of endocrine therapy was not related to age and was prescribed less frequently over time (p<0.001). There was no relationship between the receipt of endocrine therapy and RT use after BCS.

Outcomes
At a median follow up of 64 months, 6.8% of women (679/9938) had a breast (DCIS or invasive) event: 451 (4.5%) were ipsilateral breast, regional or distant recurrences and 228 (2.3%) represented a re/occurrence in the contralateral breast/nodes. Ipsilateral breast recurrence after BCS was 5.3% (368/7007); ipsilateral chest wall recurrence after mastectomy was 0.8% (24/2931). The risk of a further breast event did not differ by year of screening.

Recurrence following BCS
Following BCS, there was a greater risk of ipsilateral breast recurrence for those who did not have RT compared to those who had RT (p<0.001, HR=0.59: 95% CI 0.53 - 0.67) (no RT: 7.2% vs RT: 4.1%) (Figure 2). There was a significantly lower risk of invasive ipsilateral breast recurrence (no RT: 3.8% vs RT: 1.9%) (p<0.001, HR=0.51: 95% CI 0.43 - 0.60) but not ipsilateral DCIS recurrence (no RT: 3.3% vs RT: 2.2%) (p=0.05, HR=0.69: 95% CI =0.58 - 0.82.) in women who received RT.

After BCS, the risk of developing ipsilateral breast recurrence was greater in patients with a negative or close DCIS margin (0 to <2mm: 7.4% vs ≥2mm: 4.8%; p<0.001, HR=0.67: 95% CI 0.57 - 0.78), (p <0.001) whether patients received RT (p=0.011, HR=0.75: 95% CI 0.60 - 0.94) or not (p<0.001, HR=0.59: 95% CI 0.47 - 0.73).

RT and endocrine therapy were independently associated with a decreased risk of ipsilateral breast recurrence (RT: p<0.001, HR=0.59: 95% CI 0.52 – 0.66; endocrine therapy; p=0.003, HR=0.7: 95% CI 0.55 – 0.89; interaction: p=0.20).

Multivariable analyses for recurrence

By multivariable analyses, following BCS, use of RT (HR 0.38: 95% CI 0.33-0.45) and endocrine therapy (HR 0.63: 95% CI 0.50 - 0.78) were each independently associated with a significantly reduced risk of breast events and ipsilateral breast recurrence (RT: HR 0.40: 95% CI 0.34 - 0.48) (endocrine therapy: HR 0.56: 95% CI 0.44 - 0.72).

After adjusting for all other factors, the presence of high grade of DCIS and of comedo necrosis were significantly associated with a higher risk of breast events (excluding contralateral occurrence) (high grade - HR 1.50: 95% CI 1.14 - 1.98, comedo necrosis HR 1.31: 95% CI 1.09 - 1.57) and of ipsilateral breast recurrence (high grade - HR 1.40: 95% CI 1.05 - 1.87); comedo necrosis - HR 1.30: (95% CI 1.07 – 1.57).

Contralateral disease

Contralateral breast cancer was seen in 218 women (2.2%); more commonly after mastectomy (81/2931; 2.8%) than after BCS (137/7007; 1.9%) (p<0.001).
Survival

Among the 9938 women, there were 321 deaths (3.2%), 46 attributed to breast cancer. There was no difference in overall (or breast cancer-related) mortality comparing BCS (3.1% [218/7007]) to mastectomy (3.5% [103/2931]).

Women treated with RT after BCS had a lower all-cause mortality (RT: 2.5% vs no RT: 4.2%; p<0.001), even when corrected for age (p<0.001, HR=0.65: 95% CI 0.49 - 0.85), but not a lower breast cancer mortality (p=0.41, HR=0.73: 95% CI 0.34 - 1.56) The use of endocrine therapy was not associated with overall or breast cancer specific mortality.

Women who developed an invasive breast recurrence had a significantly worse overall survival (log rank p-value <0.001) and breast cancer specific survival (log rank p-value<0.001) from the time of the further event compared with those who developed recurrent DCIS (Figure 3) (supplementary figure 1).

Discussion

This study of 9938 women with DCIS detected through the UK NHSBSP confirms that recurrent DCIS or invasive cancer remains a concern following modern management of screen-detected DCIS. Both RT and endocrine therapy were associated with a reduction in further events but not with breast cancer mortality within 5 years of diagnosis. The present prospective cohort study contrasts with recent but retrospective studies of US [3, 4] and European data. [13] Unlike those series, we report prospectively collected data from the setting of an established national breast screening programme, with built in quality assurance of imaging, surgery, pathology and RT. [11, 14] An additional major strength, in contrast to other studies including the randomised clinical trials, is the prospective collection of margin status, an area of significant international controversy. In addition, available data include the use of endocrine therapy with linkage to outcomes. [3, 4] Conversely, one limitation of the present study, in keeping with the recently published retrospective series [3-5, 13] is its observational nature with the consequent difficulty in accounting for all possible confounders. Follow up is also relatively short in the context of the long natural history of DCIS.

Breast conservation was the definitive surgery for 70.5% of women, more frequently used with increasing age. This may reflect perceptions about risk of within breast recurrence in younger patients. Whilst it is likely that RT following BCS was used in patients perceived (based on
pathological and patient-related factors) to be at higher risk of recurrence, RT use was, surprisingly, not associated with close or involved circumferential resection margins. Conversely, mastectomy was, not unexpectedly, associated with features of more aggressive DCIS.

RT following BCS was associated with a significant reduction in all ipsilateral breast further events (DCIS or invasive) at a median follow up of 64 months. The association of RT with reduced recurrence risk is consistent with the effects seen in the overview of the prospective randomized trials. [15] Significantly, however, in the present study, the reduction of breast recurrence associated with RT was independent of margin of excision. Differing minimum margin widths for DCIS have been proposed [16, 17]. One recent series has suggested that a 1mm margin may be sufficient, with or without RT [18]. Others have suggested that those with margin widths <1mm may benefit from postoperative radiation therapy whilst those with >10mm margins receive no benefit with regard to recurrence. [19] However, specifically for women who did not receive RT, in this series there was an association between a DCIS margin of <2mm and ipsilateral breast recurrence. This provides direct evidence in support of more recent reviews, meta-analysis and consensus guidelines [20, 21] as well as recent studies [22].

The higher all-cause mortality in patients not receiving RT after BCS is likely to reflect comorbidities not captured in the current study. Nevertheless, patients not receiving RT had a higher (7.2%) breast recurrence rate, confirming patient selection for RT could be improved. [23]

Endocrine therapy was associated with a non-significant reduction in ipsilateral breast recurrence independent of RT, although the greatest effect was seen for the reduction of invasive further events in the absence of RT. In a contemporary analysis of the US retrospective National Cancer Data Base (70% of the US population), 36.5% of women (most commonly between 50 and 59 years of age) received adjuvant endocrine therapy for DCIS [24] compared with 12.2% in this UK-based study, and no-one in a cohort in the Netherlands [13], reflecting the inconsistent interpretation of evidence from trials examining the impact of endocrine therapy for DCIS on local recurrence, the associated toxicities and issues of adherence to adjuvant tamoxifen treatment.

Significantly, neither the use of RT, endocrine therapy, nor type of surgery, appeared to influence breast cancer mortality, although women who developed invasive ipsilateral breast cancer had a poorer survival than those who had DCIS recurrence. Indeed, breast cancer mortality (0.46%) was a fifth of other cause mortality, in keeping with several retrospective studies. [3, 4, 13]
The increasing incidence of DCIS, likely to be sustained with the enhanced visualisation that digital mammography provides, now deployed in the UK NHS BSP, emphasises the potential for overtreatment of women diagnosed through breast screening. [1,25] Since digital mammography was not deployed during the time of data collection for this study, the impact of digital mammography and any influences on the data reported here remain uncertain. However, the present study findings do re-emphasise the issue of potential overtreatment of DCIS and the need to improve the selection of adjuvant therapy for women with DCIS. This requires a greater understanding of the underlying biology of DCIS, on reliable predictive and prognostic assessment, particularly to select women at risk of invasive breast cancer recurrence. Predictive models of ipsilateral breast recurrence after DCIS, and a more recent prognostic score for DCIS for RT benefit, require prospective validation if they are to be widely adopted. [26-30] Meanwhile, a major international initiative between the UK, Netherlands and the US, the PRECISION (PREvent ductal Carcinoma In Situ Invasive Overtreatment Now) study funded by Cancer Research UK and the Dutch Cancer Society seeks to define underlying molecular mechanisms in DCIS related to risk of progression and, together with diagnostic and clinical elements, construct risk models for the future management of patients. [30] Emulating studies in prostate, thyroid and renal neoplasia, active surveillance, rather than initial surgery, for carefully selected patients with low risk DCIS has been advocated and may avoid the potential sequelae of breast surgery. Indeed, prospective randomised trials of active surveillance versus conventional surgical care, e.g. the LOw RISk DCIS (LORIS) trial in the UK, COMET in the USA and LORD in mainland Europe [31-33] seek to identify a cohort of patients with sufficiently low risk to obviate the need for surgical excision.

Conclusions
This large prospective cohort study allows us to examine, in contemporary practice, the effects of present-day treatments, and the patient and pathological features that have previously been described in retrospective studies and randomised clinical trials. The reduction in recurrence rates seen with the use of RT and endocrine therapy has not, to date, yielded a survival benefit to patients, although other-cause mortality is five times greater than that attributable to breast cancer. Ipsilateral breast recurrence risk is, however, higher in patients treated by BCS without RT, particularly if the radial excision margin is narrow (<2mm). Women with recurrence as invasive disease have poorer survival than those with recurrent DCIS and further research targeting clinical, biological and imaging
biomarkers of risk of invasive recurrence after a diagnosis of screen-detected DCIS is indicated, to improve personalisation of therapy and outcomes.

References

Acknowledgements 1. Members of the Sloane Project Steering Group:

Surgery

Professor Alastair Thompson (Chair)
Professor Adele Francis**
Mr Mark Sibbering
Mr Hugh Bishop (previous Chair) *
Mr Robert Carpenter *
Professor W D George *
Mr Martin Lee *
Mr Stewart Nicholson *

Radiology

Dr Hilary Dobson *
Professor Andy Evans
Dr Anthony Maxwell
Dr Matthew Wallis

Oncology

Professor David Dodwell
Dr Elinor Sawyer
Dr Julian Adlard *
Professor John Dewar *
Dr Gillian Ross *

Patient Representative

Maggie Wilcox

Pathology

Professor Andrew Hanby
Professor Sarah Pinder
Professor Valerie Speirs
Dr Jeremy Thomas
Professor Ian Ellis *
Professor Sunil Lakhani *
Dr James Macartney *

Molecular and Population Genetics
Professor Ian Tomlinson

Bioinformatics
Mrs Shan Cheung
Dr Gill Lawrence
Professor Graham Ball

Management
Mrs Karen Clements
Mrs Bridget Hilton
Mrs Olive Kearins
Mrs Margot Wheaton *

* Indicates former members of the steering group

** deceased

Appendix

UK Breast Screening Units contributing to the Sloane Project:

Avon
Barking, Havering, Redbridge & Brentwood
Barnsley
Bedfordshire & Hertfordshire
Bolton, Bury & Rochdale
Breast Test Wales – North*
Breast Test Wales – South East*
Breast Test Wales – South West*
Cambridge & Huntingdon
Central & East London
Chelmsford & Colchester
Chester
City, Sandwell & Walsall
Cornwall
Crewe

North Derbyshire
North East Scotland
North Lancashire & South Cumbria
North London
North Nottinghamshire
North Staffordshire
North Yorkshire
Nottingham
Oxfordshire
Pennine (Bradford)
Peterborough
Portsmouth
Rotherham
Sheffield
<table>
<thead>
<tr>
<th>Region</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doncaster</td>
<td>Shropshire</td>
</tr>
<tr>
<td>Dorset</td>
<td>Somerset</td>
</tr>
<tr>
<td>Dudley & Wolverhampton</td>
<td>South Birmingham</td>
</tr>
<tr>
<td>East Berkshire (Windsor)</td>
<td>South Derbyshire</td>
</tr>
<tr>
<td>East Cheshire & Stockport</td>
<td>South Devon</td>
</tr>
<tr>
<td>East Lancashire</td>
<td>South East London & Queen Mary’s</td>
</tr>
<tr>
<td>East Scotland</td>
<td>South East Scotland</td>
</tr>
<tr>
<td>East Sussex, Brighton & Hove</td>
<td>South Essex</td>
</tr>
<tr>
<td>Gateshead</td>
<td>South Staffordshire</td>
</tr>
<tr>
<td>Gloucestershire</td>
<td>South West London (St George’s)</td>
</tr>
<tr>
<td>Great Yarmouth & Waveney</td>
<td>South West Scotland</td>
</tr>
<tr>
<td>Greater Manchester</td>
<td>Southampton & Salisbury</td>
</tr>
<tr>
<td>Hereford & Worcester</td>
<td>Surrey (Jarvis)</td>
</tr>
<tr>
<td>Humberside</td>
<td>Warrington</td>
</tr>
<tr>
<td>Isle of Wight</td>
<td>Warwickshire, Solihull & Coventry</td>
</tr>
<tr>
<td>King’s Lynn</td>
<td>West Berkshire</td>
</tr>
<tr>
<td>Leeds & Wakefield</td>
<td>West Devon & East Cornwall</td>
</tr>
<tr>
<td>Leicestershire</td>
<td>West Essex</td>
</tr>
<tr>
<td>Liverpool</td>
<td>West of London</td>
</tr>
<tr>
<td>Maidstone</td>
<td>West of Scotland</td>
</tr>
<tr>
<td>Medway (Gillingham, Kent)</td>
<td>West Suffolk</td>
</tr>
<tr>
<td>Milton Keynes</td>
<td>Western, Northern Ireland*</td>
</tr>
<tr>
<td>Newcastle-Upon-Tyne</td>
<td>Wiltshire</td>
</tr>
<tr>
<td>Norfolk & Norwich</td>
<td>Wirral</td>
</tr>
<tr>
<td>North & Eastern Devon</td>
<td>Wycombe</td>
</tr>
<tr>
<td>North & Mid Hampshire</td>
<td></td>
</tr>
<tr>
<td>North Cumbria</td>
<td></td>
</tr>
</tbody>
</table>

* Unit data not included in these analyses
Table 1: Radiotherapy (RT) use & pathological features after breast conservation surgery (BCS).

<table>
<thead>
<tr>
<th>Pathological feature</th>
<th>No RT (% all cases)</th>
<th>RT (% all cases)</th>
<th>All cases (% with each feature type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of cases</td>
<td>5,497 (55.3)</td>
<td>4,396 (44.2)</td>
<td>9,938 (100.0)</td>
</tr>
<tr>
<td>Number of BCS cases</td>
<td>2,616 (37.3)</td>
<td>4,363 (62.3)</td>
<td>7,007 (70.5)</td>
</tr>
<tr>
<td>Number of Mx cases</td>
<td>2,881 (98.3)</td>
<td>33 (1.1)</td>
<td>2,931 (29.5)</td>
</tr>
</tbody>
</table>

Cytonuclear grade

<table>
<thead>
<tr>
<th>Grade</th>
<th>No RT (% all cases)</th>
<th>RT (% all cases)</th>
<th>All cases (% with each feature type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>770 (19.2)</td>
<td>3,240 (80.6)</td>
<td>4,020 (57.4)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1,223 (54.9)</td>
<td>993 (44.6)</td>
<td>2,227 (31.8)</td>
</tr>
<tr>
<td>Low</td>
<td>616 (82.1)</td>
<td>127 (16.9)</td>
<td>750 (10.7)</td>
</tr>
<tr>
<td>Unknown</td>
<td>7 (70.0)</td>
<td>3 (30.0)</td>
<td>10 (0.1)</td>
</tr>
</tbody>
</table>

Tumour size (mm)

<table>
<thead>
<tr>
<th>Size</th>
<th>No RT (% all cases)</th>
<th>RT (% all cases)</th>
<th>All cases (% with each feature type)</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>1,403 (58.0)</td>
<td>1,002 (41.4)</td>
<td>2,418 (34.5)</td>
</tr>
<tr>
<td>10 - <20</td>
<td>808 (33.2)</td>
<td>1,619 (66.5)</td>
<td>2,437 (34.7)</td>
</tr>
<tr>
<td>20 - <30</td>
<td>247 (19.4)</td>
<td>1,022 (80.2)</td>
<td>1,274 (18.2)</td>
</tr>
<tr>
<td>30 - <40</td>
<td>85 (16.7)</td>
<td>423 (82.9)</td>
<td>510 (7.3)</td>
</tr>
<tr>
<td>40 - <50</td>
<td>33 (15.8)</td>
<td>176 (64.2)</td>
<td>209 (3.0)</td>
</tr>
<tr>
<td>50+</td>
<td>26 (19.0)</td>
<td>110 (80.3)</td>
<td>137 (2.0)</td>
</tr>
<tr>
<td>Unknown</td>
<td>14 (56.0)</td>
<td>11 (44.0)</td>
<td>25 (0.4)</td>
</tr>
</tbody>
</table>

Microinvasion

<table>
<thead>
<tr>
<th>Type</th>
<th>No RT (% all cases)</th>
<th>RT (% all cases)</th>
<th>All cases (% with each feature type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>70 (19.0)</td>
<td>298 (81.0)</td>
<td>368 (5.3)</td>
</tr>
<tr>
<td>No</td>
<td>2,519 (38.4)</td>
<td>4,020 (61.2)</td>
<td>6,566 (93.7)</td>
</tr>
<tr>
<td>Unknown</td>
<td>27 (37.0)</td>
<td>45 (61.6)</td>
<td>73 (1.0)</td>
</tr>
</tbody>
</table>

Comedo necrosis

<table>
<thead>
<tr>
<th>Type</th>
<th>No RT (% all cases)</th>
<th>RT (% all cases)</th>
<th>All cases (% with each feature type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>1,006 (24.3)</td>
<td>3,116 (75.3)</td>
<td>4,137 (59.0)</td>
</tr>
<tr>
<td>No</td>
<td>1,431 (39.2)</td>
<td>975 (60.4)</td>
<td>2,406 (34.5)</td>
</tr>
<tr>
<td>Unknown</td>
<td>179 (39.4)</td>
<td>272 (60.9)</td>
<td>454 (6.5)</td>
</tr>
</tbody>
</table>

Radial margin (mm)

<table>
<thead>
<tr>
<th>Margin</th>
<th>No RT (% all cases)</th>
<th>RT (% all cases)</th>
<th>All cases (% with each feature type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>72 (34.6)</td>
<td>132 (65.4)</td>
<td>204 (3.0)</td>
</tr>
<tr>
<td>>0 to <1</td>
<td>72 (35.5)</td>
<td>129 (63.6)</td>
<td>203 (2.9)</td>
</tr>
<tr>
<td>1 - 2</td>
<td>183 (35.0)</td>
<td>337 (65.0)</td>
<td>520 (7.5)</td>
</tr>
<tr>
<td>2 - 5</td>
<td>480 (34.5)</td>
<td>907 (65.2)</td>
<td>1,391 (19.9)</td>
</tr>
<tr>
<td>5 - 10</td>
<td>642 (35.2)</td>
<td>1,176 (64.5)</td>
<td>1,823 (26.0)</td>
</tr>
<tr>
<td>10+</td>
<td>1,059 (41.4)</td>
<td>1,486 (58.4)</td>
<td>2,545 (36.4)</td>
</tr>
<tr>
<td>Unknown</td>
<td>112 (35.9)</td>
<td>196 (62.8)</td>
<td>312 (4.5)</td>
</tr>
</tbody>
</table>
Figure 1: 9938 UK patients with screen-detected DCIS (2003-2012).

Cases in Sloane Project database diagnosed from 01 April 2003 to 31 March 2012 (n=12,838)

- Exclude Breast Test Wales (BTW) cases (n=395) and Northern Ireland (NI) cases (n=40). Total excluded (n=435)

On database excluding BTW and NI cases (n=12,403)

- Exclude cases without all 3 forms Radiology, Treatment and Pathology. Total excluded (n=1,352)

On database with all three forms (n=11,051)

- Exclude cases with non-invasive disease but without DCIS (n=853)

Lesions on database recorded as DCIS, +/- ADH +/- LISN (n=10,198)

- Exclude: No surgery cases (n=23); Case that had breast conserving surgery, then radiotherapy followed by mastectomy (n=1); Exclude node positive cases (n=14); Exclude the “best prognosis” lesion of the bilateral primaries (n=34); Exclude cases without follow-up until 31/12/12 (n=170); Exclude cases with less than 6 months to recurrence, death or censor date (n=9). Exclude bilateral recurrences

Women/cases on database to be included in the analyses (9,938):
- Have had surgery;
- Do not have positive nodes;
- If bilateral, then primary with “worst prognosis” included;
- Have follow-up until 31/12/12 (further event, death, censor date with neither);
- Have 6 months or longer to recurrence, death or censor date;
- Do not have bilateral recurrences.
Figure 2: Radiotherapy (RT) and ipsilateral breast events.

<table>
<thead>
<tr>
<th>Time from surgery of DCIS</th>
<th>Number at risk</th>
<th>Cumulative censoring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>RT low/int</td>
<td>1120</td>
<td>969</td>
</tr>
<tr>
<td>RT high</td>
<td>3240</td>
<td>2763</td>
</tr>
<tr>
<td>No RT low/int</td>
<td>1839</td>
<td>1587</td>
</tr>
<tr>
<td>No RT high</td>
<td>770</td>
<td>665</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time from surgery of DCIS</th>
<th>Cumulative incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>No RT high</td>
<td>0</td>
</tr>
<tr>
<td>RT low/int</td>
<td>0</td>
</tr>
<tr>
<td>RT high</td>
<td>0</td>
</tr>
<tr>
<td>No RT low/int</td>
<td>0</td>
</tr>
<tr>
<td>No RT high</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 3: Survival from the date of recurrence

![Survival curve diagram](image)

<table>
<thead>
<tr>
<th>Time from recurrence</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number at risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall DCIS</td>
<td>226</td>
<td>149</td>
<td>73</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>Overall Invasive</td>
<td>322</td>
<td>179</td>
<td>78</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>Breast DCIS</td>
<td>226</td>
<td>149</td>
<td>73</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>Breast Invasive</td>
<td>322</td>
<td>179</td>
<td>78</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>Cumulative censoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall DCIS</td>
<td>0</td>
<td>75</td>
<td>150</td>
<td>195</td>
<td>219</td>
</tr>
<tr>
<td>Overall Invasive</td>
<td>0</td>
<td>122</td>
<td>215</td>
<td>267</td>
<td>288</td>
</tr>
<tr>
<td>Breast DCIS</td>
<td>0</td>
<td>77</td>
<td>153</td>
<td>199</td>
<td>223</td>
</tr>
<tr>
<td>Breast Invasive</td>
<td>0</td>
<td>126</td>
<td>219</td>
<td>271</td>
<td>292</td>
</tr>
</tbody>
</table>
Conflict of Interest declaration

See manuscript for details and attached ICMJE forms