Contraction of the levator ani muscle during Valsalva maneuver (co-activation) is associated with a longer active second stage of labor in nulliparous women undergoing induction of labor

Rasha Kamel, MD, PhD, Elisa Montaguti, MD, Kypros H. Nicolaides, MD, Mahmoud Soliman, MD, PhD, Maria Gaia Dodaro, MD, Sherif Negm, MD, PhD, Gianluigi Pilu, MD, PhD, Mohamed Momtaz, MD, PhD, Aly Youssef, MD, PhD

PII: S0002-9378(18)30895-0
DOI: 10.1016/j.ajog.2018.10.013
Reference: YMOB 12378

Received Date: 30 August 2018
Revised Date: 2 October 2018
Accepted Date: 7 October 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Contraction of the levator ani muscle during Valsalva maneuver (co-activation) is associated with a longer active second stage of labor in nulliparous women undergoing induction of labor.

Rasha Kamel, MD, PhD, Elisa Montaguti, MD, Kypros H. Nicolaides, MD, Mahmoud Soliman, MD, PhD, Maria Gaia Dodaro, MD, Sherif Negm, MD, PhD, Gianluigi Pilu, MD, PhD, Mohamed Momtaz, MD, PhD, Aly Youssef, MD, PhD

1 Department of Obstetrics and Gynecology, Kasr Al-Ainy University Hospital, Cairo University, Egypt

2 Department of Obstetrics and Gynecology, Sant’Orsola Malpighi University Hospital, University of Bologna, Bologna, Italy

3 Harris Birthright Research Center for Fetal Medicine, King’s College, London, UK

Corresponding author:
Aly Youssef, MD, PhD
Department of Obstetrics and Gynecology, Sant’Orsola Malpighi University Hospital, University of Bologna, Italy
Address: Via Massarenti, 13, Bologna, 40138
Tel +39 051 214 3358
e-mail: aly.youssef78@gmail.com

The authors report no conflict of interest.
Contraction of the levator ani muscle during Valsalva maneuver (co-activation) is associated with a longer active second stage of labor in nulliparous women undergoing induction of labor.

Short title

Levator ani contraction and active second stage.

AJOG at a glance

A. Why was this study conducted? Levator ani muscle contraction during Valsalva maneuver (co-activation) may represent an obstacle to spontaneous vaginal delivery. The effect of this phenomenon on labor outcome has not been studied previously.

B. What are the key findings?

- Levator ani muscle contraction during Valsalva maneuver (co-activation) is associated with a significantly longer active second stage of labor.
- Larger diameters of the levator hiatus under Valsalva maneuver, but not at rest, are associated with shorter second and active second stage of labor.

C. What does this study add to what is already known? What the study adds is the effect of a new mechanism (namely levator ani muscle contraction during Valsalva; also known as co-activation) on the duration of the active second stage of labor.
Abstract

Background: The Valsalva maneuver is normally accompanied by relaxation of the levator ani muscle, which stretches around the presenting part, but in some women the maneuver is accompanied by levator ani muscle contraction, which is referred to as levator ani muscle co-activation. The effect of such co-activation on labor outcome in women undergoing induction of labor has not been previously assessed.

Objectives: The aim of the study was to assess the effect of levator ani muscle co-activation on labor outcome, in particular on the duration of the second and active second stage of labor, in nulliparous women undergoing induction of labor.

Study design: Transperineal ultrasound was used to measure the anteroposterior diameter of the levator hiatus, both at rest and at maximum Valsalva maneuver, in a group of nulliparous women undergoing induction of labor in two tertiary-level University hospitals. The correlation between anteroposterior diameter of the levator hiatus values and levator ani muscle co-activation with the mode of delivery and various labor durations was assessed.

Results: In total, 138 women were included in the analysis. Larger anteroposterior diameter of the levator hiatus at Valsalva was associated with a shorter second stage (r = -0.230, P =0.021) and active second stage of labor (r=-0.338, P=0.001). Women with levator ani muscle co-activation had a significantly longer active second stage duration (60±56 vs. 28±16 minutes, P<0.001). Cox regression analysis, adjusted for maternal age and epidural analgesia, demonstrated an independent significant correlation between levator ani muscle co-activation and a longer active second stage of labor (hazard ratio 2.085, 95% confidence interval 1.158 – 3.752; P=0.014).

There was no significant difference between women who underwent operative delivery (n=46) when compared with the spontaneous vaginal delivery group (n=92) as regards anteroposterior diameter of the levator hiatus at rest and at Valsalva maneuver, nor in the prevalence of levator ani muscle co-activation (10/46 vs. 15/92, P=0.49).

Conclusions: Levator ani co-activation is associated with a longer active second stage of labor.
Key words: co-activation, levator ani muscle, induction of labor, transperineal ultrasound, pelvic floor, operative vaginal delivery, perineal ultrasound, levator hiatus.
Introduction

The second stage of labor is defined as the duration from full cervical dilatation to delivery.1 Prolonged second stage of labor is associated with an increased risk of maternal and neonatal complications.2 The length of the second stage of labor can be influenced by many factors. These may include fetal head dimensions, fetal weight, the use of epidural analgesia, and fetal head engagement.3-5 However, accurate prediction of the second stage duration, the definition and management and of a prolonged second stage of labor remain challenging.6

Valsalva maneuver, whereby the mother is asked to take a deep breath, hold the breath and push downward when uterine contraction starts, is widely used in the management of the active second stage of labor. However, there is contradictory evidence concerning the benefit and harm in the use of this maneuver.7-9 The Valsalva maneuver is normally accompanied by relaxation of the levator ani muscle, which stretches around the presenting part, but in some women the maneuver is accompanied by levator ani muscle contraction, which is referred to as levator ani muscle co-activation.10

Vaginal delivery is one of the most important risk factors for pelvic floor dysfunction.11-15 Transperineal ultrasound has been used extensively for assessment of the levator hiatus and levator ani muscle integrity 16-28 and several studies have increased the understanding of the relationship between failure of vaginal delivery and pelvic floor dysfunction.24, 26, 28-30 Indeed, it has been suggested that the viscoelastic properties of the intact distal birth canal in healthy nulliparous women may predict the duration of the second stage of labor.31 However, the effect of levator ani muscle co-activation on labor outcome in women undergoing induction of labor has not been previously assessed.

The aim of this study was to assess the effect of levator ani muscle co-activation on the outcome of labor, in particular on the duration of the second and active second stage of labor in nulliparous women undergoing induction of labor.
Material and methods

This was a prospective observational study conducted between November 2017 and May 2018 in two tertiary level university hospitals (Bologna University Hospital and Cairo University Hospital). The study population constituted a non-consecutive series of nulliparous women with singleton pregnancies, fetuses in cephalic presentation and no history of previous uterine surgery, undergoing induction of labor at 37-42 weeks of gestation for any indication. Pregnancies resulting in operative delivery for suspected fetal distress due to an abnormal fetal heart rate pattern in labor were excluded from the study, as it is unlikely that pelvic floor function may influence fetal condition. Women were recruited when one of the physicians involved in the study and experienced in transperineal ultrasound was available.

Following recruitment, an operator with more than 3 years of experience in transperineal ultrasound, blinded to clinical examination results, performed a transperineal ultrasound scan with a convex transducer covered by a sterile glove (Voluson 730 Expert or E10, GE Medical Systems, Zipf, Austria). In the midsagittal view the following structures were visualized: pubic symphysis, fetal head, rectum and puborectalis muscle (Figure 1). The anteroposterior diameter of the levator hiatus, running from the inferior border of the symphysis pubis to the anterior border of the puborectalis muscle, which is the main portion of the levator ani muscle, was measured under resting condition and under maximum Valsalva maneuver (Figure 2). Levator ani muscle co-activation was diagnosed when the anteroposterior diameter of the levator hiatus under Valsalva maneuver was less than that in the resting state. Phenomenon of levator ani muscle co-activation.

Birth attendants were unaware of the results of transperineal ultrasound assessment. The second stage of labor was defined as the duration from full cervical dilatation to delivery, while the active second stage was calculated from the beginning of active maternal effort following confirmation of full dilatation of the cervix to delivery.
Since there is insufficient evidence to justify routine use of any specific timing of pushing in the second stage, in both centers immediate and delayed pushing approaches were chosen according to women’s preference and comfort, and to the preference and experience of the birth attendant. In the two participating centers there is no policy to limit the time of second or active second stage of labor and the pushing technique, coached versus spontaneous, is left to the preference of the birth attendant.

Following delivery, the medical records of the women were examined and the following data were extracted: maternal age and BMI, gestational age, indication and method of induction of labor, use of epidural analgesia, mode of delivery, birthweight, interval between ultrasound assessment and delivery, duration of second and active second stages of labor. The primary outcome of the present study was the duration of the second stage.

Statistical analysis

Differences between women with spontaneous vaginal delivery and the operative delivery group, and between women with and without co-activation, were assessed by unpaired two-tailed Student’s t-test and Fisher Exact test. Pearson correlation was used to assess the significance of association between the anteroposterior diameter of the levator hiatus and various labor durations. The durations of induction of labor to delivery, second and active second stage were evaluated in relation to levator ani muscle co-activation using Cox regression analysis adjusted for identified significant confounders, and with Kaplan Meier survival analysis.

Considering the duration of the second stage as the primary outcome, an incidence of co-activation of 20%, and based on recent unpublished data from a study on nulliparous women at term in Bologna University hospital showing an average second stage duration of 60± 30 minutes, we calculated that a sample size of 135 women would be needed to exclude the null hypothesis that co-activation increases the second stage duration by 30%, considering an \(\alpha \) of 0.05% and 80% power.

The statistical analyses were performed using 21.0 SPSS version (SPSS Inc., Chicago, IL, USA), and two-tailed P-values < 0.05 were considered statistically significant.
The protocol of the study was approved by the local Ethical Committee of each participating hospital (reference number 139/2016/U/Oss in Bologna University Hospital and O18001 in Cairo University Hospital) and a consent form was signed by each eligible patient at the onset of labor. The study protocol coheres with the ethical guidelines of the "World Medical Association Declaration of Helsinki - Ethical Principles for Medical Research Involving Human Subjects" adopted by the 18th WMA General Assembly, Helsinki, Finland, June 1964 and amended by the 59th WMA General Assembly, Seoul, South Korea, October 2008.

Results

In total, 161 women were recruited to the study, but 23 were excluded because of operative delivery for fetal distress. Demographic characteristics and data on labor and delivery for the 138 women (96 from Cairo University Hospital and 42 from Bologna University Hospital) included in the study are summarized in Table 1.

Delivery was spontaneous vaginal in 92 (66.7%), by vacuum in 6 (4.4%) and Cesarean in 40 (28.9%) women. Women in the operative delivery group, in comparison with the spontaneous vaginal delivery group, were older, had a higher BMI and higher birthweight, but there were no significant differences between the two groups in the anteroposterior diameter of the levator hiatus at rest and at maximum Valsalva, nor in the prevalence of levator ani muscle co-activation.

In 25 (18.1%) of women there was levator ani muscle co-activation and in this group, compared to those without co-activation, there was no significant difference in median gestational age at induction of labor, maternal age, BMI, anteroposterior diameter of the levator hiatus at rest, induction to delivery interval, duration of the second stage or incidence of epidural anesthesia (Table 2). However, in the levator ani muscle co-activation group the anteroposterior diameter of the levator hiatus at Valsalva was shorter and the duration of the active second stage was longer. There was a significant negative association between the anteroposterior diameter of the levator hiatus at Valsalva and duration of the second stage ($r=-0.230; P=0.021$) and duration of the active second stage ($r=-0.338; P=0.001$). There was no significant association between gestational age at
induction of labor, BMI, birthweight, or the anteroposterior diameter of the levator hiatus at rest with either the duration of the second stage or duration of the active second stage. Cox regression analysis, adjusted for potential significant confounders (maternal age and epidural analgesia), demonstrated that levator ani muscle co-activation was the only significant and independent predictor of the duration of the active second stage (hazard ratio 2.085, 95% confidence interval 1.158 - 3.752; P=0.014) (Figure 5). Kaplan-Meier survival analysis, with censoring of women who underwent operative delivery in the second stage, confirmed a significantly increased duration of the active second stage in women with co-activation in comparison with women who did not have co-activation. (P=0.007, log rank test).

Comment
Principal findings
This study has demonstrated that:

1. in nulliparous women undergoing induction of labor at term, levator ani muscle co-activation is associated with a longer active second stage
2. larger diameters of the levator hiatus under Valsalva maneuver, but not at rest, are associated with shorter second and active second stage of labor.

Comparison with results of previous studies
Viscoelastic properties of the distal birth canal have been suggested as a strong contributor to the time a mother needs to push in the second stage in order to deliver the fetal head.31 Previous studies used transperineal ultrasound to investigate the relation between antenatally assessed pelvic organ mobility on Valsalva and levator ani hialatal dimensions in the prediction of outcome of labor and reported that reduced mobility and smaller levator ani hialatal dimensions are associated with increased risk of operative delivery.33-35 However, other authors did not find any association between pelvic floor dimensions and the mode of delivery.36 None of these studies evaluated the association between levator ani co-activation and labor outcome. In the present study, we have
demonstrated that pelvic hiatal diameter at rest and under Valsalva was not associated with the mode of delivery. However, we have found that pelvic floor relaxation, as represented by larger levator hiatal diameter under Valsalva, was associated with a shorter duration of the second and active second stage of labor.

Clinical implications

Many studies have found an association between a prolonged second stage and various adverse labor outcomes. These include increased maternal morbidity, operative delivery rates, complicated cesarean deliveries, chorioamnionitis, severe perineal lacerations, pelvic floor damage and neonatal complications such as sepsis and asphyxia. Our study allows the identification of a group of nulliparous women at risk of a longer second stage of labor prior to induction of labor. Despite the importance of this finding, in the absence of a valid corrective intervention for these women with levator ani muscle co-activation, the clinical applicability of this information remains limited.

Research implications

In the present study, we identified a new mechanism involved in the duration of the active second stage of labor, namely levator ani muscle contraction during Valsalva (co-activation) in nulliparous women undergoing induction of labor.

Conflicting results have been reported on the efficacy of prenatal training of the pelvic floor in improving delivery outcome. A randomized controlled trial in 100 nulliparous women found that antenatal education utilizing observation of the perineum and vaginal examination did not result in altered obstetric outcomes. In contrast, another trial in 301 nulliparous women reported that structured pelvic floor training was associated with a lower rate of prolonged second stage labor. However, both of these studies included an unselected group of nulliparous women and as shown in our study more than 80% of nulliparous women are able to appropriately relax their levator ani muscle during Valsalva. Consequently, future intervention studies should focus in women with levator ani muscle co-activation, who are at increased risk of prolonged active second stage, rather
than unselected nulliparous women. Such interventions may include ultrasound coaching by visual feedback which have been reported to be beneficial when used in the labor ward.41,42

Strengths and weaknesses

This is the first study to investigate levator ani muscle co-activation during Valsalva maneuver and the duration of the active second stage of labor in women undergoing induction of labor. Induction of labor is one of the most common obstetrical procedures.43-45 Many predictors of the outcome of induction of labor have been assessed.45-50 However, the production of a reliable and validated predictive model remains challenging.51-57

A limitation of the study is that it was restricted to the measurement of the anteroposterior diameter of the levator hiatus. Although other measurements like the levator hiatal area and the transverse diameter may have been interesting to assess, these need three-dimensional ultrasound machines and skills, which are less readily available and require more operator skills. Another limitation is the inclusion of a heterogeneous group of indications for induction of labor. Since the absolute number of each indication was relatively small, it was not possible in the present study to stratify the results by indication. This can be the subject of a future larger study.

Conclusion

In summary, inadequate pelvic floor muscle relaxation as documented by levator ani muscle co-activation in nulliparous women undergoing induction of labor is associated with a longer active second stage of labor. Further studies are needed to investigate the efficacy of antenatal and intrapartum interventions to correct this phenomenon and to assess their potential benefit on labor outcomes.

Acknowledgments: none
References

Table 1. Demographic characteristics and data on labor and delivery for the 138 women included in the study and comparison of findings in women who underwent operative versus spontaneous vaginal delivery.

<table>
<thead>
<tr>
<th>Population characteristics</th>
<th>Total population n=138</th>
<th>Operative delivery (n=46)</th>
<th>Spontaneous delivery (n=92)</th>
<th>P value**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age (weeks)</td>
<td>39.1±1.5</td>
<td>39.2±1.6</td>
<td>39.1±1.4</td>
<td>0.90</td>
</tr>
<tr>
<td>Maternal age (years)</td>
<td>27.7±6.6</td>
<td>29.7±6.5</td>
<td>26.6±6.4</td>
<td>0.009</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>29.8±5.3</td>
<td>32.2±5.8</td>
<td>28.5±4.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Indication for induction of labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postdates</td>
<td>61 (44.2)</td>
<td>16 (34.8)</td>
<td>45 (48.9)</td>
<td>0.15</td>
</tr>
<tr>
<td>Prelabor rupture of membranes</td>
<td>32 (23.2)</td>
<td>12 (26.0)</td>
<td>20 (21.7)</td>
<td>0.67</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>17 (12.3)</td>
<td>9 (19.6)</td>
<td>8 (8.7)</td>
<td>0.10</td>
</tr>
<tr>
<td>Oligohydramnios and / or SGA fetus</td>
<td>17 (12.3)</td>
<td>5 (10.9)</td>
<td>12 (13.0)</td>
<td>0.79</td>
</tr>
<tr>
<td>Hypertensive disease in pregnancy</td>
<td>7 (5.1)</td>
<td>3 (6.5)</td>
<td>4 (4.3)</td>
<td>0.69</td>
</tr>
<tr>
<td>Other</td>
<td>4 (2.9)</td>
<td>1 (2.2)</td>
<td>3 (3.3)</td>
<td>1.0</td>
</tr>
<tr>
<td>Method of induction of labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostaglandins</td>
<td>130 (94.2)</td>
<td>43 (93.5)</td>
<td>87 (94.6)</td>
<td>1.0</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>8 (5.8)</td>
<td>3 (6.5)</td>
<td>5 (5.4)</td>
<td>1.0</td>
</tr>
<tr>
<td>Bishop score</td>
<td>3.9±1.7</td>
<td>3.1±1.6</td>
<td>4.3±1.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Epidural analgesia</td>
<td>29 (21.0)</td>
<td>11 (23.9)</td>
<td>18 (19.5)</td>
<td>0.35</td>
</tr>
<tr>
<td>Induction to delivery interval (min)</td>
<td>1510±720</td>
<td>1754±860</td>
<td>1387±608</td>
<td>0.004</td>
</tr>
<tr>
<td>Duration of second stage (min)*</td>
<td>76±60</td>
<td>141±88</td>
<td>70±57</td>
<td>0.001</td>
</tr>
<tr>
<td>Duration of active second stage (min)*</td>
<td>34±30</td>
<td>94±71</td>
<td>28±13</td>
<td><0.001</td>
</tr>
<tr>
<td>Birthweight (grams)</td>
<td>3251±387</td>
<td>3368±375</td>
<td>3193±381</td>
<td>0.012</td>
</tr>
<tr>
<td>Anteroposterior diameter of the levator hiatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At rest (mm)</td>
<td>54.6±8.5</td>
<td>56.1±9.1</td>
<td>53.8±8.1</td>
<td>0.13</td>
</tr>
<tr>
<td>At Valsalva (mm)</td>
<td>59.9±10.4</td>
<td>60.2±10.9</td>
<td>59.8±10.3</td>
<td>0.80</td>
</tr>
<tr>
<td>Levator ani muscle co-activation</td>
<td>25 (18.1)</td>
<td>10 (21.7)</td>
<td>15 (16.3)</td>
<td>0.49</td>
</tr>
</tbody>
</table>

SGA = small for gestational age

Data are given as mean (±SD) or n (%)

*101 women

**Student’s t-test for continuous data and Fischer’s exact test for categorical data
Table 2 Comparison of demographic characteristics and data on labor and delivery between women with and without levator ani muscle co-activation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Co-activation (n=25)</th>
<th>No co-activation (n=113)</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age at induction (weeks)</td>
<td>39.0±1.5</td>
<td>39.2±1.5</td>
<td>0.52</td>
</tr>
<tr>
<td>Maternal age (years)</td>
<td>30.0±7.0</td>
<td>27.2±6.4</td>
<td>0.06</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>29.9±6.5</td>
<td>29.7±5.1</td>
<td>0.90</td>
</tr>
<tr>
<td>Epidural analgesia</td>
<td>8 (32.0)</td>
<td>21 (18.6)</td>
<td>0.17</td>
</tr>
<tr>
<td>Anteroposterior diameter of the levator hiatus At rest (mm)</td>
<td>54.5±8.5</td>
<td>54.7±8.6</td>
<td>0.93</td>
</tr>
<tr>
<td>Anteroposterior diameter of the levator hiatus At Valsalva (mm)</td>
<td>50.1±8.0</td>
<td>62.1±9.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Induction to delivery interval (min)</td>
<td>1368±456</td>
<td>1540±764</td>
<td>0.28</td>
</tr>
<tr>
<td>Duration of second stage (min)**</td>
<td>101±59</td>
<td>71±76</td>
<td>0.07</td>
</tr>
<tr>
<td>Duration of active second stage (min)**</td>
<td>60±56</td>
<td>28±16</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Student’s t-test for continuous data and Fischer’s exact test for categorical data
**101 women

Data are given as mean (±SD) or n (%)
Figure legends:

Figure 1. Technique of transperineal ultrasound.
A: placement of convex transducer in the midsagittal plane
B: ultrasound image
C: illustration of the structures visualized, including pubic symphysis (PB), urinary bladder (UB), fetal head, vagina (V), rectum (R), anus (A) and puborectalis muscle (PR).

Figure 2. Transperineal ultrasound images illustrating the measurement of the antero-posterior diameter of the levator hiatus under resting condition (A) and maximum Valsalva maneuver (B).

Figure 3. Valsalva maneuver associated with appropriate relaxation of the pelvic floor. This can be demonstrated by the increasing antero-posterior diameter of the levator hiatus on 2D ultrasound images from rest (A) to Valsalva (B), increasing hiatal area on 3D ultrasound using Omniview-VCI reconstruction from rest (C) to Valsalva (D) and on graphic illustration (E and F).

Figure 4. Valsalva maneuver associated with levator ani muscle co-activation. This can be demonstrated by a reduction of antero-posterior diameter of the levator hiatus on 2D and 3D ultrasound images using Omniview-VCI reconstruction from rest (A and C) to Valsalva (B and D) and on graphic illustration (E and F).

Figure 5. Plot of the cumulative incidence of delivery from beginning of the active second stage of labor, with respect to levator ani co-activation (-----) versus no co-activation (——) adjusted for epidural analgesia and maternal age.