Citation for published version (APA):
Neural self-representation in autistic women and association with ‘compensatory camouflaging’

Meng-Chuan Lai, M.D., Ph.D.1,2,3,*, Michael V. Lombardo, Ph.D.2,4,*, Bhismadev Chakrabarti, Ph.D.2,5, Amber N. V. Ruigrok, Ph.D.2, Edward T. Bullmore, M.B.B.S., Ph.D.6,7,8, John Suckling, Ph.D.6, Bonnie Auyeung, Ph.D.2,9, Francesca Happé, Ph.D.10, Peter Szatmari, M.D.1, MRC AIMS Consortium\#, Simon Baron-Cohen, Ph.D.2,7

* Equal first author contributions

Running Title: Self-representation and camouflaging in autism

Affiliations:

1 Centre for Addiction and Mental Health and The Hospital for Sick Children, Department of Psychiatry, University of Toronto, Canada

2 Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom

3 Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan

4 Department of Psychology, University of Cyprus, Cyprus

5 Centre for Autism, School of Psychology and Clinical Language Sciences, University of Reading, United Kingdom

6 Brain Mapping Unit, Department of Psychiatry, University of Cambridge, United Kingdom

7 Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom

8 ImmunoPsychiatry, GlaxoSmithKline Research and Development, Stevenage, United Kingdom
Department of Psychology, School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh, United Kingdom

MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, United Kingdom

Corresponding authors:

Meng-Chuan Lai (mengchuan.lai@utoronto.ca): Tel +1 416 5358501 ext. 34050, Fax +1 416 9794996; 80 Workman Way, Toronto, ON M6J 1H4, Canada; and

Michael V. Lombardo (mvlombardo@gmail.com): Tel +22 892243, Fax +22 895075; 1 Panepistimiou Avenue, 2109 Aglantzia, Nicosia, Cyprus

The Medical Research Council Autism Imaging Multicentre Study Consortium (MRC AIMS Consortium) is a UK collaboration between the Institute of Psychiatry, Psychology and Neuroscience (IoPPN) at King’s College, London, the Autism Research Centre, University of Cambridge, and the Autism Research Group, University of Oxford. The Consortium members are in alphabetical order: Anthony J. Bailey (Oxford), Simon Baron-Cohen (Cambridge), Patrick F. Bolton (IoPPN), Edward T. Bullmore (Cambridge), Sarah Carrington (Oxford), Marco Catani (IoPPN), Bhismadev Chakrabarti (Cambridge), Michael C. Craig (IoPPN), Eileen M. Daly (IoPPN), Sean C. L. Deoni (IoPPN), Christine Ecker (IoPPN), Francesca Happé (IoPPN), Julian Henty (Cambridge), Peter Jezzard (Oxford), Patrick Johnston (IoPPN), Derek K. Jones (IoPPN), Meng-Chuan Lai (Cambridge), Michael V. Lombardo (Cambridge), Anya Madden (IoPPN), Diane Mullins (IoPPN), Clodagh M. Murphy (IoPPN), Declan G. M. Murphy (IoPPN), Greg Pasco (Cambridge), Amber N. V. Ruigrok (Cambridge), Susan A. Sadek (Cambridge), Debbie
Spain (IoPPN), Rose Stewart (Oxford), John Suckling (Cambridge), Sally J. Wheelwright (Cambridge), and Steven C. Williams (IoPPN).

Competing interests: ETB is employed half-time by the University of Cambridge and half-time at GlaxoSmithKline plc (GSK); he holds stock in GSK. PS has received authorship royalty payments from Guilford Press. Other authors report no financial relationships with commercial interests.

Acknowledgements: Part of this work was presented as a poster in the 11th Annual International Meeting for Autism Research (IMFAR) during May 17-19, 2012, Toronto, Canada. The study was conducted in association with the National Institute for Health Research Collaborations for Leadership in Applied Health Research and Care (NIHR CLAHRC) East of England (EoE). We are extremely grateful for all participants of this study.

Ethical standards: The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

Financial support: The project was supported by the UK Medical Research Council (grant number GO 400061) and European Autism Interventions—a Multicentre Study for Developing New Medications (EU-AIMS); EU-AIMS has received support from the Innovative Medicines
Initiative Joint Undertaking under grant agreement n° 115300, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007 - 2013) and EFPIA companies’ in-kind contribution. During the period of this work M-CL was supported by the O’Brien Scholars Program in the Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health (CAMH) and The Hospital for Sick Children, Toronto, the Academic Scholar Award from the Department of Psychiatry, University of Toronto, the Slaight Family Child and Youth Mental Health Innovation Fund, CAMH Foundation, and the Ontario Brain Institute via the Province of Ontario Neurodevelopmental Disorders (POND) Network; MVL was supported by the British Academy, Jesus College Cambridge, Wellcome Trust, and an ERC Starting Grant (ERC-2017-STG; 755816); SB-C was supported by the Autism Research Trust. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health, UK.

Author Contributions: All authors, including the MRC AIMS Consortium, contributed to the conception and design of the study, performed the research, contributed to the collection of data, and provided critical inputs in the writing of the manuscript. M-CL and MVL analyzed the data and drafted the manuscript.
ABSTRACT

Prior work has revealed sex/gender-dependent autistic characteristics across behavioural and neural/biological domains. It remains unclear whether and how neural sex/gender differences are related to behavioural sex/gender differences in autism. Here we examined whether atypical neural responses during mentalizing and self-representation are sex/gender-dependent in autistic adults, and explored whether ‘camouflaging’ (acting as if behaviourally neurotypical) is associated with sex/gender-dependent neural responses. N=119 adults (33 typically-developing [TD] males, 29 autistic males, 29 TD females, and 28 autistic females) participated in task-fMRI paradigms to assess neural activation within right temporo-parietal junction (RTPJ) and ventromedial prefrontal cortex (vMPFC) during mentalizing and self-representation. Camouflaging in autism was quantified as the discrepancy between extrinsic behaviour in social–interpersonal contexts and intrinsic status. Whilst autistic men showed hypoactive RTPJ mentalizing and vMPFC self-representation responses compared to TD men, such neural responses in autistic women were not different from TD women. In autistic women only, increasing camouflaging was associated with heightened vMPFC self-representation response. There is a lack of impaired neural self-representation and mentalizing in autistic women compared to TD women. Camouflaging is heightened in autistic women and may relate to neural self-representation response. These results reveal brain-behaviour relations that help explain sex/gender-heterogeneity in social brain function in autism.

Key words: autism; sex; gender; heterogeneity; self; mentalizing; fMRI; camouflaging; compensation; adult
Introduction

Autism is a neurodevelopmental condition characterized by early-onset social-communication difficulties alongside heightened stereotyped behaviours, narrow interests, insistence on sameness, and idiosyncratic sensory responsivity. The autistic population is highly variable from aetiology to phenotype (Lai, Lombardo, Chakrabarti, & Baron-Cohen, 2013; Lombardo et al., 2015). Due to this vast heterogeneity, atypicality in some individuals may not generalize to others with the same diagnosis. It is imperative to go beyond the clinical label of autism to better identify important stratification variables that can meaningfully parse the heterogeneity (Kapur, Phillips, & Insel, 2012; Loth et al., 2017).

One important stratifier is sex/gender (Lai, Lerch, et al., 2017; Lai, Lombardo, Auyeung, Chakrabarti, & Baron-Cohen, 2015). For many years, a 4-5:1 male:female ratio of autism prevalence has been consistently reported, particularly in clinical samples (Fombonne, Quirke, & Hagen, 2011). However, meta-analyses of epidemiological studies show that with less biased ascertainment, the ratio is around 3:1 (Loomes, Hull, & Mandy, 2017). There are two important implications from this updated sex/gender ratio. First, autistic females have tended to be under-recognized clinically, unless there are co-existing behavioural, emotional or cognitive difficulties (Duvekot et al., 2017; Dworzynski, Ronald, Bolton, & Happe, 2012). Females may present autistic behavioural characteristics partly differently from males (Lai, Ameis, & Szatmari, 2018; Lai et al., 2015; Mandy, 2017), and gendered sociocultural contexts may further lead to the under-recognition of autistic characteristics in females (Dean, Harwood, & Kasari, 2017; Kreiser & White, 2014). Second, there is still a clear male-preponderance, even after accounting for biased ascertainment. This indicates that variables and mechanisms associated with sex and gender may
be important modulating factors behind the aetiologies and developmental mechanisms of autism (Werling, 2016).

To reduce the under-recognition of autism in females, researchers are starting to clarify the so-called ‘female presentation’ (i.e. behaviours) of autism that are on-average more frequently expressed in females than in males, especially in individuals without intellectual or severe communication disabilities. ‘Camouflaging’¹ (defined as acting as behaviourally neurotypical), as a way of coping in social situations, has been proposed to be more common in cognitively able females, especially in those whose autism is not recognized early in life (Attwood, 2007; Bargiela, Steward, & Mandy, 2016; Wing, 1981).

Qualitatively, camouflaging comprises masking and compensation techniques; these may include suppressing and controlling behaviours associated with autism that were seen as inappropriate in the situation (e.g., reducing repetitive behaviour, ‘stimming’, or responses to sensory over-stimulation), mimicking or ‘performing’ neurotypical peers’ behaviour during social

¹ We should add that the term ‘camouflaging’ is relatively new, and in exploring this phenomenon, our intention is not to ‘reveal’ or ‘out’ autistic people who are otherwise undiagnosed or ‘hidden’, but rather to understand the effortful strategies that some diagnosed autistic people adopt, sometimes at the cost of their own mental health because such strategies leave them feeling that they are not able to ‘be themselves’; see (Cage, Di Monaco, & Newell, 2018; Hull et al., 2017). Camouflaging therefore has important implications for mental wellbeing in autism. Equally, the term ‘compensatory’ is widely used in the field of neuropsychology to refer to how an individual adopts strategies to bypass cognitive deficits. The construct is also being investigated in the psychological studies of autism (Livingston, Colvert, Social Relationships Study, Bolton, & Happe, 2018; Livingston & Happe, 2017). In this study, we do not use the term ‘compensatory’ with any implication that autistic behaviour is in some way ‘lesser’ or inferior to neurotypical behaviour, but regard autistic behaviour as different, as understood by the neurodiversity framework (Silberman, 2015). We hope autistic people can help us refine the new terminology in this field.
interaction, forcing oneself to maintain eye contact and other non-verbal communication skills (e.g., displaying facial expressions of emotion or interest), or deriving rules/guidelines and scripting conversation with others accordingly to get through small talk or to make social chats more enjoyable for their social partners (Hull et al., 2017).

Quantitatively, camouflaging can be operationalized as the discrepancy between (a) behaviours measured using interaction-based clinical instruments and (b) self-reported autistic characteristics and performance using objective tests of social-cognitive ability (Lai, Lombardo, et al., 2017). Using this operationalized definition, we previously found that autistic females show greater camouflaging than age- and IQ-matched autistic males, and that increasing camouflaging is associated with better cognitive control in autistic females (Lai, Lombardo, et al., 2017). Qualitative studies additionally suggest that camouflaging in autistic individuals may be partly different from the ordinary ‘reputation/impression management’ in neurotypical individuals, owing to the extremely effortful and compensatory nature (Bargiela et al., 2016; Hull et al., 2017). Although much of the cognitive and neural bases behind camouflaging/compensation in autism remain unclear (Livingston & Happe, 2017), it has been shown that autistic adolescents (mostly male) who show good socio-interpersonal skills, despite having poor attribution of mental states, have higher IQ and demonstrate better executive function abilities, but also higher anxiety, than those with poor socio-interpersonal skills and similarly poor attribution of mental states (Livingston et al., 2018).

To understand how sex/gender contributes to the heterogeneity of autism, factorial experimental designs with sex/gender and diagnosis as factors should be utilized to examine sex/gender-similarities and/or differences in autism in contrast to same-sex/gender neurotypical (control) populations (Lai et al., 2015). Under this framework, recent neuroimaging studies
predominantly examining brain structure and the functional connectome in cognitively able individuals have revealed that several brain characteristics of autism are likely to be qualitatively different between males and females, e.g., cortical folding and white matter organization associated with the orbitofrontal cortex (Lai, Lerch, et al., 2017). This means that atypical features of autism present in one sex/gender may not be present in another sex/gender, evidenced by significant diagnosis-by-sex/gender interactions revealed in factorial designs. This implicates potential sex/gender-dependent neurodevelopmental pathways for autism, and may further explain behavioural sex/gender differences that underlie the ‘female presentation’ of autism.

Although some neural features of autism appear to be sex/gender-dependent, their association with behavioural-cognitive phenotypes remains unclear. Investigations into sex/gender-dependent brain function are particularly lacking. To date there are only four published small-scale (largest autistic female sample N=16) task-related fMRI studies. Each study probes different tasks but all find sex/gender-dependent functional atypicalities in autism (Beacher et al., 2012; Holt et al., 2014; Kirkovski, Enticott, Hughes, Rossell, & Fitzgerald, 2016; Schneider et al., 2013), suggesting that atypical neural function in autism may be sex/gender-dependent across several cognitive domains. Although there are rich theoretical premises and empirical studies suggesting atypical ‘social brain’ function in autism, such as a hypoactive mentalizing network (Happe & Frith, 2014; Pelphrey, Shultz, Hudac, & Vander Wyk, 2011), the literature on this topic has an overwhelming male-bias (Philip et al., 2012). This leaves open the possibility that our understanding of social brain development in autism is ‘over-fitted’ to atypicalities present within males and may not generalize well to females. Furthermore, if social brain function in autism is sex/gender-dependent, it will be informative to examine whether such sex/gender-dependency is associated with sex/gender-differences in behavioural phenomena such as enhanced camouflaging
in females, because camouflaging is a social coping strategy that may involve several compensating/masking mechanisms (e.g., self-monitoring and imitation) (Livingston & Happe, 2017).

Here we aimed to (1) examine whether atypical neural mentalizing and self-representation responses in autism are sex/gender-dependent, and (2) test if enhanced camouflaging is associated with compensatory sex/gender-dependent patterns of social brain function. In typically developing (TD) individuals, right temporo-parietal junction (RTPJ) develops into adulthood with an increasing specialization for mentalizing compared to physical judgements about people (Gweon, Dodell-Feder, Bedny, & Saxe, 2012; Saxe, Whitfield-Gabrieli, Scholz, & Pelphrey, 2009), and ventromedial prefrontal cortex (vMPFC) makes a neural self-other distinction with enhanced responses to self-referential than other-referential processing (Kelley et al., 2002; Moran, Macrae, Heatherton, Wyland, & Kelley, 2006). We have previously reported that autistic men show reduced vMPFC self-representation and RTPJ mentalizing responses compared to TD men (Lombardo, Chakrabarti, Bullmore, & Baron-Cohen, 2011; Lombardo et al., 2010). Building on these prior findings, in this study we took a region-of-interest approach and focused on RTPJ and vMPFC to investigate sex/gender-dependency of neural processing in autism.

The present work is based on newly acquired neuroimaging (task-fMRI) data of TD and autistic females (N=57), matched in age and IQ with the previously published TD and autistic male data (N=62), using the same neuroimaging and behaviour testing paradigms and platforms. Task-fMRI data of males (Lombardo et al., 2011; Lombardo et al., 2010) and behavioural camouflaging data across sexes/genders (Lai, Lombardo, et al., 2017) have been previously published and serve as the building blocks for this new investigation. Based on literature showing sex/gender-dependency of atypical neural features in autism, we predicted that social brain function in autistic
females may be different compared with the known hypoactive responses in autistic males. Furthermore, because autistic females may be more likely to invoke compensatory camouflaging strategies/mechanisms than autistic males of similar intellectual abilities (Lai, Lombardo, et al., 2017), it could be that the hypothesized different social brain functioning would be associated with enhanced behavioural camouflaging.

Methods

Participants

All participants (N=119) were adult native English speakers with normal/corrected-to-normal vision: 33 TD males, 29 autistic males, 29 TD females, and 28 autistic females (Table 1). They all reported cis-gender identity based on a single item inquiring their sex and another on their identified gender. Groups were not statistically different on age or full-scale IQ (FIQ) on the Wechsler Abbreviated Scales of Intelligence (WASI) (Table 1). Exclusion criteria for all participants included a history of or current psychotic disorders, substance-use disorders, severe head injury, genetic disorders associated with autism (e.g., fragile X syndrome, tuberous sclerosis), intellectual disability (i.e. FIQ<70), or other medical conditions significantly affecting brain function (e.g., epilepsy).

The inclusion criterion for both male and female autistic participants was a formal clinical diagnosis of ICD-10 childhood autism or Asperger’s syndrome, or DSM-IV-TR autistic disorder or Asperger’s disorder, as assessed by a psychiatrist or clinical psychologist in the National Health Service, United Kingdom. Since all participants were adults, we further considered available information of developmental history to include only those with clinically evident childhood
autistic symptoms, e.g., from information collected using the Autism Diagnostic Interview-Revised (ADI-R) (Lord, Rutter, & Le Couteur, 1994) where possible, or from the participants’ clinical diagnosis letters shared with the research team to determine eligibility. We used this clinically based criterion for inclusion for the purpose of sampling autistic individuals currently diagnosed by specialists in mental health services in the daily practice, and to align with best clinical practice as recommended by the UK National Institute for Health and Clinical Excellence (NICE) guideline (Pilling, Baron-Cohen, Megnin-Viggars, Lee, & Taylor, 2012); see further details in Supplementary Material. For assessing levels of autism characteristics, we administered the Autism Spectrum Quotient (AQ) (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001), module 4 of the Autism Diagnostic Observation Schedule (ADOS) (Lord et al., 2000), and ADI-R (Lord et al., 1994) where possible, before the fMRI session. Autistic male and female groups were not different on ADI-R Reciprocal-Social-Interaction scores or Reading the Mind in the Eyes Test (RMET) performance (Table 1). Participants’ informed consent was obtained in accord with procedures approved by the Suffolk Local Research Ethics Committee.

fMRI Task Design and Data Acquisition

This was a 2x2 within-subjects factorial block design where participants were asked to make either reflective ‘Mentalizing’ or ‘Physical’ judgements about two target individuals: the ‘Self’ or a familiar non-close ‘Other’ (the British Queen) (Lombardo et al., 2011; Lombardo et al., 2010). For self-mentalizing (SM) blocks, participants judged on a scale from 1 to 4 (where 1=‘not at all likely’ and 4=‘very likely’) how likely they themselves would be to agree with opinion questions that focused on mental characteristics (e.g., ‘How likely are you to think that keeping a diary is important?’). On other-mentalizing (OM) blocks, the same mentalizing judgements were made, except this time in reference to how likely the British Queen would be to agree with the opinion
questions (e.g., ‘How likely is the Queen to think that keeping a diary is important?’). During self-physical (SP) blocks, participants judged how likely they would be to have specific physical characteristics (e.g., ‘How likely are you to have bony elbows?’). Conversely, the same physical judgements were made during other-physical (OP) blocks, except that participants rated these questions with the Queen as the target person (e.g., ‘How likely is the Queen to have bony elbows?’). This fMRI task was designed in a way that there was no correct or incorrect answer indicating objective social cognitive performance behaviourally. All opinion questions were acquired from Jason Mitchell’s lab and have been used in previous studies on reflective mentalizing judgements of the self and others that reliably elicit robust and consistent activity in mentalizing and self-referential neural circuits (Jenkins, Macrae, & Mitchell, 2008; Mitchell, Macrae, & Banaji, 2006). Stimuli did not differ per condition in the number of characters, syllables, frequency or valence.

All participants completed one scanning session with one fMRI run. Within this run there were 20 trials within each condition and five blocks per condition. Each trial type was presented in blocks of four trials and the trial-duration was 4 seconds each (16 seconds per block). After each block, there was a rest period of 16 seconds where participants fixated on a cross on the screen. All trials within blocks and all blocks throughout the functional run were presented in pseudorandom order. Stimulus presentation was implemented with DMDX software on a computer synchronized with the onset of the functional run to ensure accuracy of event timing.

Imaging was performed on a 3T GE Signa Scanner at the Cambridge Magnetic Resonance Imaging and Spectroscopy Unit. The fMRI run consisted of 325 whole-brain T2*-weighted echoplanar images (slice thickness, 3mm; 0.8mm skip; 33 axial slices; repetition time, 2000ms; echo time, 30ms; flip-angle, 90 degrees; matrix, 64x64; field-of-view, 240mm, sequential slice
acquisition). The first five time-points were discarded to allow for T2-stabilization. A high-resolution spoiled gradient anatomical image was acquired for each subject for registration purposes.

fMRI Data Analysis

fMRI data pre-processing and individual-subject general linear model (GLM) analyses were implemented using SPM5 (http://www.fil.ion.ucl.ac.uk/spm). The pre-processing steps included slice-timing correction, realignment to the mean functional image, co-registration of the functional images with structural image, segmentation of the structural image, normalization into standard MNI space by applying the transformations estimated from segmentation, and spatial smoothing with an 8mm full-width-half-maximum Gaussian kernel. Data were evaluated for in-scanner motion effects across groups using mean frame-wise displacement (FD), mean DVARS and maximal DVARS (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012); there were no significant diagnosis-by-sex/gender interactions for any of them, nor were there any main effects of sex/gender or diagnosis (Table 1). Descriptively, head motion was minimal with all groups having mean FD<0.14mm. The FD range was 0-4.19mm across all subjects. No group differences exist on minimal FD or maximal FD (all p>0.104).

Individual-subject general linear modelling in SPM used a canonical hemodynamic response function convolved to each trial. High-pass temporal filtering with a cut-off of 128 seconds was applied to remove low frequency drift and global changes were removed by proportional linear scaling. Serial autocorrelations were estimated with a restricted maximum likelihood algorithm with an autoregressive model of order 1. Second-level group analyses were conducted with region-of-interest (ROI) analyses, implemented within R (https://www.r-project.org). Because we focused on vMPFC and RTPJ responses congruent with past work
(Lombardo et al., 2011; Lombardo et al., 2010), we used the same meta-analytically defined independent ROIs from these past papers, which included studies on both male and female individuals. These ROIs therefore could be considered sex/gender-common brain regions associated with self-representation and mentalizing. Percent-signal-change was computed for all voxels then averaged within the ROI. We then computed contrast values for the two main effects of interest: ‘Self>Other’ and ‘Mentalizing>Physical’. These contrast values were assessed for the predicted diagnosis-by-sex/gender interactions with a linear model including sex/gender, diagnosis, diagnosis*sex/gender and additional nuisance covariates of age and FIQ. Age and FIQ were included because the ranges were substantial, and we wanted to guard against this confounding variability. Significant diagnosis-by-sex/gender interactions were evaluated based on a conventional alpha-level of 0.05.

Behavioural Index of Camouflaging

As camouflaging could be defined as (consciously or unconsciously) compensating for and/or masking difficulties in social-interpersonal situations, we used the same operationalized definition from past work (Lai, Lombardo, et al., 2017): the discrepancy between extrinsic behavioural presentation in social–interpersonal contexts and the person’s intrinsic status. We used both the AQ score and RMET correct score as reflecting intrinsic status (i.e. self-rated dispositional traits and performance-based socio-cognitive/mentalizing capability). We used the updated algorithm Social Affect (SA) domain score of the ADOS module 4 (Hus & Lord, 2014) to reflect extrinsic presentation. The three scores were first standardized (SADOS, SAQ, SRMET) within the present sample of autistic men and women by mean-centring (to the whole autism sample in this study) and scaling (i.e. divided by the maximum possible score of each) to generate uniformly scaled measures that can be arithmetically manipulated. A first estimate of camouflaging was
quantified as the difference between self-rated autistic traits and extrinsic behaviours (CF1 = S_{AQ} - S_{ADOS}), and a second estimate between mentalizing ability and extrinsic behaviours (CF2 = -S_{RMET} - S_{ADOS}). Finally, using principal component analysis, the first principal component score of CF1 and CF2 (accounting for 88% of the variance) was taken as a single, parsimonious measure of camouflaging for all further analyses. This measure should be interpreted by relative values (i.e. higher scores indicate more camouflaging) rather than absolute values (e.g., a score of 0 simply means it is smaller than 1 and bigger than -1, but does not indicate ‘no camouflaging’). This operationalization only allows for estimating camouflaging in autistic individuals, as it partly derives from the ADOS score which was not available in TD participants. It is our view that this approach remains informative, as qualitative studies have suggested that camouflaging in autism may be partly different from similar phenomenon in neurotypical individuals (Bargiela et al., 2016; Hull et al., 2017). Lastly, all analyses related to the camouflaging index were repeated to check consistency of findings by using two other different versions of ADOS score: the Western Psychological Services, WPS-published ‘diagnostic algorithm’ Communication + Social Interaction Total score (Lord et al., 2000) as per our previous publication (Lai, Lombardo, et al., 2017), and a broader conceptualization of camouflaging using the updated algorithm SA+RRB score (Hus & Lord, 2014).

Neural Activation-Camouflaging Relationship Analysis

We assessed the relationship between neural activation and camouflaging scores with partial correlations computed with *robust regression*, a form of regression that is robust to the impact of bivariate outliers (Wager, Keller, Lacey, & Jonides, 2005), and co-varying for age and FIQ, separately for autistic males and females. We further tested for a difference in the strength of activation-camouflaging correlations between the sexes/genders. This was achieved by converting
correlations to z-scores with Fisher’s r-to-z transform and then finding the z statistic for the difference between the two independent correlations, using the `paired.r` function within the `psych` library in R.

Results

fMRI Task Behavioural Results

Repeated measures ANOVA with mean reaction time (RT) during the fMRI task as the dependent variable and 2 between-subjects factors (Sex/Gender, Diagnosis) and 2 within-subjects factors (Target [Self, Other], Judgment [Mentalizing, Physical]) revealed no significant 4-way or 3-way interactions \((F<2, p>0.15)\) including between-subjects factors of Sex/Gender and Diagnosis, and no 2-way Sex/Gender*Diagnosis interaction \((F(1,115)=1.03, p=0.31)\). There was a main effect of Sex/Gender \((F(1,115)=9.54, p=0.003)\) driven by faster RT in females than males. Thus, the evidence here suggests that there is no clear pattern of behavioural difference in how the 4 groups perform the task, other than females as a whole responding faster than males.

All other effects reaching significance have been reported previously in a paper on just the males from this dataset (Lombardo et al., 2010) and therefore do not represent novel findings. For example, amongst 2-way interactions, there was a Target*Diagnosis interaction \((F(1,115)=5.25, p=0.02)\) driven by faster RT for Self compared to Other in the TD group, but little of this effect in the autism group. Amongst the within-subjects factors there was also a general Target*Judgment interaction \((F(1,115)=27.83, p=6.31e-7)\) which was driven primarily by faster mean RT during the self-mentalizing condition compared to all other conditions. Amongst main effects, there was a main effect of Judgment \((F(1,115)=12.96, p=0.0005;\) faster RT for Mentalizing), Target
(F(1,115)=26.84, p=9.55e-07; faster RT for Self), but no main effect of Diagnosis (F(1,115)=1.96, p=0.16). See Figure 1 and Table 2 for summary of fMRI task mean RT data.

In short, analysis of behavioural data from the fMRI task indicated no significant interactions including between-subjects factors of sex/gender or diagnosis, indicating that the behavioural patterns of performance were similar across autistic men and women in our sample.

Neural Diagnosis-by-Sex/Gender Interactions

At the level of neural responses, we tested for the predicted diagnosis-by-sex/gender interactions in vMPFC and RTPJ activation. For the Self>Other contrast, vMPFC showed the predicted diagnosis-by-sex/gender interaction (F(1,113)=4.89, p=0.029, partial η²=0.047). This interaction was driven by evident hypoactivation of vMPFC in autistic males compared to TD males (Cohen’s d=0.44), but a nominal effect in the opposite direction for autistic females versus TD females (Cohen’s d=-0.38) (Figure 2A-B). The RTPJ Mentalizing>Physical contrast showed a nominally significant diagnosis-by-sex/gender interaction (F(1,113)=4.11, p=0.045, partial η²=0.035). Descriptively, this interaction was driven by an evident TD>Autism effect in males (Cohen’s d=0.52), but a nominal effect in the opposite direction for females (Cohen’s d=-0.20) (Figure 2C-D).

Sex/Gender-Specific vMPFC Activation-Camouflaging Relationship

As reported in our previous work using a largely overlapping sample (Lai, Lombardo, et al., 2017), autistic women on-average scored higher on camouflaging (calculated using the ADOS updated algorithm SA domain score) compared with autistic men, indicating enhanced camouflaging (F(1,55)=13.91, p=4.56e-4, Cohen’s d=0.99). Camouflaging was not significantly correlated with age, VIQ or PIQ in either group.
Confirming our prediction, there was a significant positive correlation between vMPFC Self>Other activation and camouflaging scores in autistic females ($r=0.54, p=0.019$), but there was no significant association in autistic males ($r=-0.04, p=0.86$). The difference between the two correlations was significant ($z=2.3, p=0.02$) (Figure 3). In contrast to vMPFC, when considering RTPJ Mentalizing>Physical activation, there was no significant correlation present in either females ($r=0.19, p=0.41$) or males ($r=0.15, p=0.55$), and no significant difference between the correlations ($z=0.15, p=0.88$).

All these findings hold when camouflaging was calculated via using the ADOS updated algorithm SA+RRB score or the WPS-published ‘diagnostic algorithm’ score; see Supplementary Material for details.

Discussion

We examined whether atypical neural self-representation and mentalizing responses within vMPFC and RTPJ are sex/gender-dependent in autism, and whether camouflaging, as we provisionally operationalized, is associated with such social brain function. We identified sex/gender-dependent neural activation patterns: Whereas autistic men showed reduced vMPFC self-representation and RTPJ mentalizing responses compared with TD men, autistic women showed no significant differences from TD women (although, descriptively, with a small effect in the opposite direction). In addition, enhanced camouflaging in autistic women, but not men, was related to greater vMPFC neural self-representation response; such findings remained the same irrespective of the version of ADOS algorithm scores used for estimating camouflaging. We do not consider the nominal mean differences of PIQ and VIQ across diagnostic and sex groups to be
confounds since neither was significantly correlated with the outcome measures of camouflaging or level of neural activation, and variance associated with IQ was accounted for in the statistical models. In brief, the present findings highlight plausible sex/gender-dependency in social brain function in autism and point to a link between neural self-representation and a social coping phenomenon, camouflaging, that is heightened in autistic women.

Sex/gender-dependency in aspects of atypical brain structure in autism has been noted across several studies (Lai, Lerch, et al., 2017). Sex/gender-dependency in brain function has also been reported in small-scale task-fMRI studies examining empathy, emotion recognition, spontaneous mental-state attribution (Holt et al., 2014; Kirkovski et al., 2016; Schneider et al., 2013), and mental rotation (Beacher et al., 2012). With a sample twice as large as these previous task-fMRI studies, we found sex/gender-dependency in the domains of self-referential cognition and, to a lesser extent, mentalizing. Such evidence supporting aspects of qualitative sex/gender differences in the autistic brain implies it is important to consider sex/gender-differential effects as they may play considerable modulating roles and alter the interpretations of past literature (Lai, Lerch, et al., 2017). For example, a key caveat of claiming ‘atypical (hypoactive) social brain function’ in autism (Dichter, 2012; Pelphrey et al., 2011) is that the inferences are largely drawn from heavily male-biased samples (Di Martino et al., 2009; Philip et al., 2012). Actually, the atypicality, if any, may be quite different in autistic women versus men.

Whether social brain function in autism develops in a sex/gender-differential manner from early in life has yet to be tested. Longitudinal work from infancy will be the key to answering this question (Johnson, 2017; Lombardo et al., 2015; Szatmari et al., 2016). The observed sex/gender differences in autistic social brain functioning could be the product of sex-related biological factors inherent in biology from or before birth, and/or gender-related experiences after birth. Given the
notion from past work that brain activation patterns in autism can be affected by simple behavioural manipulations/instructions (Wang, Lee, Sigman, & Dapretto, 2007), it could be that the sociocultural environment has gender-differential impacts and may influence social brain function over the lifespan. The sociocultural environment for autistic females may, on average, impose higher demands relative to males for social-communication and interaction, owing to the typically gendered behaviour and role expectations (Kreiser & White, 2014). Because autistic females (especially those showing mild characteristics earlier in life) may be more pressed to modify their behaviours for camouflaging/compensation (Attwood, 2007; Bargiela et al., 2016; Livingston & Happe, 2017) based on gendered expectations (Kanfiszer, Davies, & Collins, 2017; Kreiser & White, 2014; Lai et al., 2015), such influence may engage different experience-dependent mechanisms in the brain that may explain ‘normal’ levels of vMPFC self-representation and RTPJ mentalizing responses.

How autistic individuals camouflage or compensate for their difficulties as they get older, via genetically driven or experience-dependent mechanisms, is an important research horizon that we know very little about. Two types of compensation may point towards different mechanisms (Livingston & Happe, 2017). ‘Shallow compensation’ refers to superficial, inflexible, and fragile means for navigating the complex social world (e.g., through use of behavioural rules). An example of this might be ‘keep talking’ which keeps one connected to a listener but may not be sensitive to the context and may result in excessive faux pas (Baron-Cohen, O'Riordan, Stone, Jones, & Plaisted, 1999; Thiebaut et al., 2016). ‘Deep compensation’ is more flexible, sophisticated, and adaptable (e.g., through attribution of mental states, albeit via non-typical routes). Deep compensation may thus be reflected in neural activation patterns distinct from those used for shallow compensation (Livingston & Happe, 2017).
Hence, one plausible interpretation for the present findings is that autistic women, on average, may engage more ‘deep compensation’ than autistic men. In this respect, the fact that the association with camouflaging was found only with vMPFC and not RTPJ is also noteworthy. Speculatively, this may suggest that for autistic women, compensation via enhanced self-reflection is more critical than mentalizing. To camouflage successfully, autistic women may engage substantial insight about their own behaviours in interpersonal and social contexts – specifically, how their behaviours impact others, gauging and managing the impressions they make on others, updating the differences between their natural versus camouflaged behaviours, and how such behaviours will achieve the desired goal of being perceived as neurotypical (Hull et al., 2017). A main ingredient in these processes is an ability to represent similarities and differences between oneself and others – a function in which vMPFC plays critical roles (Kelley et al., 2002; Mitchell et al., 2006; Moran et al., 2006; Nicolle et al., 2012). While this link between vMPFC neural self-representation and camouflaging is an intriguing first step, the results do not lend themselves to causal statements. We cannot conclude that a normal level of vMPFC neural self-representation leads to enhanced camouflaging, or that enhanced camouflaging leads to normalization of vMPFC neural responses. Disentangling this relationship (through longitudinal or intervention studies) will be an important translational goal. Finally, the present findings do not exclude the possibility that camouflaging in autistic women is associated with other cognitive functions that also involve vMPFC (e.g., emotion regulation, reward processing, decision making) or beyond. Our fMRI task does not tackle these domains, so no inference can be made about these aspects accordingly.

Overall, our findings are particularly relevant to the bigger issue of heterogeneity in autism. Sex, gender, and related variables may form important dimensions for stratifying neuropsychiatric conditions with sex/gender-biases (Joel & McCarthy, 2017), including autism (Lai et al., 2015).
Through stratification by sex- and gender-related variables, the deeper translational research goal will be to understand better how specific aetiological and developmental mechanisms of autism diverge amongst sexes/genders, and contribute to the sex/gender-differential vulnerability (Lai, Lerch, et al., 2017; Lai et al., 2015; Werling, 2016). Many important empirical questions arise: What drives these diagnosis-by-sex/gender interactions in social brain function and differences in propensity to engage in camouflaging? Are such mechanisms rooted in biological or experiential mechanisms, or their interplay? Are such mechanisms divergent among the sexes and genders across the lifespan? Clarifying these ‘nature versus nurture’ mechanisms associated with sex and gender is key to tracing back the sources of heterogeneity, leading to novel sex- and gender-informed identification and support for autism.

There are important limitations to be considered. First, although the sample size is much larger than all existing task-fMRI studies on the topic (the largest sample reported to date as far as we know), it is still modest and likely under-powered to detect small effect sizes. This means that the lack of group differences in neural activation reported here cannot be unambiguously taken as evidence for claiming the same or ‘intact’ patterns of neural activation during self-representation and mentalizing in women with versus without autism. Much larger samples are needed to validate these findings. Related to sample size is the issue that other aspects of heterogeneity could be present and have important effects on sample variation. Most task-fMRI studies of autism, including ours, are on verbal and intellectually able youth or adults (Jack & Pelphrey, 2017). Whether similarly atypical social brain functions are seen in younger, minimally verbal or intellectually disabled individuals, and whether a sex/gender-dependent pattern is also present in these subgroups, remain unclear until more studies are done using paradigms better tailored to their special characteristics (e.g., passive viewing). Similarly, it is still an open question with
regard to how cultural, ethnic, linguistic and socio-economic heterogeneity may impact the present findings.

Second, the moderate sample size also limits our ability to take a hypothesis-free, discovery approach, since statistical power declines with more statistical comparisons. Considering this issue and given our already a priori goals motivated by earlier work on males, we took a conservative approach to focus on two regions most relevant to mentalizing and self-referential processing. One may question whether the findings of no differences between autistic and TD women stem from any normative sex/gender differences in regional specialization of social processing. Nevertheless, the two ROIs we examined (RTPJ and vMPFC) were derived from meta-analyses that included both male and female individuals. In addition, there is a lack of evidence so far demonstrating sex/gender-specific ‘social brain’ organization in the human neuroscience literature (Pavlova, 2017). Finally, it is still possible that autistic women utilize different brain regions for mentalizing and self-referential cognition compared with TD women, therefore differences from TD women cannot be revealed by solely examining RTPJ and vMPFC. A hypothesis-free, discovery approach is needed to explore this, yet our dataset is not well-powered for this sort of investigation. Future research using much larger samples is required to answer this question.

Third, investigating sex/gender differences in autism is inevitably complicated by the still-unresolved challenges related to ascertainment and clinical measurement. Interpretation of findings depends on study-specific sample ascertainment and characteristics (see (Lai et al., 2015) for detailed discussion). Our inclusion rationale aimed at sampling autistic adults identified by current standard clinical practice in the UK. The study was not designed to match males and females with autism on their scores of ADOS or ADI-R, but primarily matching them on age and IQ. In fact, our study was motivated by recent reports that cognitively able females with autism
may appear to be less affected on these ‘gold standard’ diagnostic instruments (Hiller, Young, & Weber, 2014; Lai et al., 2011; Langmann, Becker, Poustka, Becker, & Kamp-Becker, 2017; Rynkiewicz et al., 2016). It may be that measured ‘classical’ autism characteristics and compensatory mechanisms are intertwined in an important way; for example, less severe ADOS scores could be a result of autistic women engaging in compensation strategies, hiding their atypical social-communication features in an observational setting like the ADOS (Lai et al., 2011; Langmann et al., 2017; Livingston & Happe, 2017; Rynkiewicz et al., 2016). It is still unknown whether a similar pattern of findings would be replicated in female individuals who may be considered more ‘classically autistic’ or ‘severe’ (e.g., being diagnosed early in life, or with high ADOS scores).

Fourth, the age-range examined (18-45 years) is quite broad. It will be important to follow up with targeted studies at different life stages, considering the plausible roles of experiential effects and sex/gender-related plasticity in social brain and social-communication development. Specifically, as we do not have data of the age of autism diagnosis, previous exposure to autism-related intervention/support, and the extent of social experiences, it is difficult to infer how these experiential factors are causally linked to the present findings. Variations of the opportunities of social experiences and developing social coping mechanisms are likely associated with behavioural and neural compensation in autistic people. Prospective studies on compensation and camouflaging in autism will benefit from better quantification of such experiential factors.

Fifth, as a common issue in studies involving human adults, it is important to acknowledge that processes related to both sex and gender intertwine throughout development, therefore in many scenarios it is difficult to delineate effects of sex from those of gender. Furthermore, we did not measure the different factors underlying sex and gender, respectively (Joel & McCarthy, 2017),
that can be used to explore their unique impacts. Future studies would benefit from more comprehensive characterization of the multiple components of sex and gender, and an environmentally and developmentally sensitive lens, to disentangle their respective contributions.

Finally, although camouflaging has been described in the clinical and autobiographical literature of autism for some time (Lai, Lombardo, et al., 2017), it is still a relatively new construct in empirical research. It remains unclear the extent to which camouflaging is associated with more well-established psychological constructs (e.g., imitation, introspection, social anxiety) or similar phenomena that have been described in neurotypical individuals (e.g., impression management, or ‘performance’ as described by the sociologist Erving Goffman). The way we operationalize camouflaging (only in autistic individuals), as well as the efforts to identify neural correlates, should still be considered exploratory. More refined measurements for camouflaging and associated latent constructs are still being developed (Dean et al., 2017; Hull et al., 2017; Lai, Lombardo, et al., 2017; Livingston et al., 2018; Livingston & Happe, 2017; Parish-Morris et al., 2017; Rynkiewicz et al., 2016), and more studies are required to examine the extent to which camouflaging in autism is like that in non-autistic individuals. We consider the present work being part of this effort towards obtaining more clarity about what ingredients are involved.

In conclusion, inferences about social brain function in autism appear to depend on sex/gender. Whereas intellectually able autistic men showed reduced vMPFC self-representation and RTPJ mentalizing responses compared to TD men, intellectually able autistic women showed a lack of differences in neural responses compared to TD women. Heightened vMPFC self-representation responses were associated with enhanced camouflaging, but only in autistic women. These insights may lead to new investigations into how sex/gender-related heterogeneity is linked
to compensatory mechanisms in autism, and provide translational potential for developing novel support of social coping for autistic individuals.
References

10.1016/j.biopsych.2008.09.022

PONE-D-11-03038 [pii]

10.1016/j.neuroimage.2011.02.067

10.1093/brain/awp306

Tables

Table 1: Descriptive characteristics across all groups. The columns show descriptive statistics for all 4 groups and indicated statistics from ANOVAs conducted across the groups regarding the effects of Sex/Gender, Diagnosis, and Sex/Gender*Diagnosis interaction.

<table>
<thead>
<tr>
<th>TD Male (N=33)</th>
<th>Autistic Male (N=29)</th>
<th>TD Female (N=29)</th>
<th>Autistic Female (N=28)</th>
<th>Sex/Gender</th>
<th>Diagnosis</th>
<th>Sex/Gender *Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td>F-statistic (p-value)</td>
<td>F-statistic (p-value)</td>
<td>F-statistic (p-value)</td>
</tr>
<tr>
<td>Age</td>
<td>27.94 (6.08)</td>
<td>26.59 (7.04)</td>
<td>27.63 (6.40)</td>
<td>28.19 (7.23)</td>
<td>0.24 (0.62)</td>
<td>0.12 (0.73)</td>
</tr>
<tr>
<td>Age range (year)</td>
<td>18-42</td>
<td>18-41</td>
<td>18-45</td>
<td>18-45</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VIQ</td>
<td>110.79 (12.03)</td>
<td>112.93 (15.56)</td>
<td>119.45 (9.03)</td>
<td>114.75 (12.29)</td>
<td>5.55 (0.02)</td>
<td>0.20 (0.66)</td>
</tr>
<tr>
<td>VIQ range</td>
<td>71 - 137</td>
<td>79 - 136</td>
<td>99 - 135</td>
<td>76 - 137</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PIQ</td>
<td>118.52 (11.37)</td>
<td>112.31 (16.90)</td>
<td>116.52 (8.36)</td>
<td>110.75 (17.35)</td>
<td>0.49 (0.48)</td>
<td>5.60 (0.02)</td>
</tr>
<tr>
<td>PIQ range</td>
<td>93 - 135</td>
<td>75 - 137</td>
<td>96 - 128</td>
<td>67 - 137</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FIQ</td>
<td>116.27 (11.63)</td>
<td>114.14 (16.42)</td>
<td>120.45 (6.79)</td>
<td>114.46 (13.56)</td>
<td>1.02 (0.31)</td>
<td>2.91 (0.09)</td>
</tr>
<tr>
<td>FIQ range</td>
<td>86 - 137</td>
<td>75 - 135</td>
<td>106 - 133</td>
<td>84 - 130</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ADI-R: Reciprocal-Social</td>
<td>18.07 (5.07)</td>
<td>-</td>
<td>16.12 (4.75)</td>
<td>2.16 (0.15)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interaction</td>
<td>ADI-R: Communication</td>
<td>ADI-R: RRB</td>
<td>ADOS: SA (updated algorithm)</td>
<td>ADOS: SA+RRB (updated algorithm)</td>
<td>ADOS: Communication + Social Total (WPS-published algorithm)</td>
<td>AQ</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>15.17 (4.24)</td>
<td>-</td>
<td>12.65 (4.34)</td>
<td>4.73 (0.03)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>5.97 (2.76)</td>
<td>-</td>
<td>4.08 (1.79)</td>
<td>8.85 (0.004)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>7.52 (4.63)</td>
<td>-</td>
<td>3.71 (3.60)</td>
<td>11.92 (0.001)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>9.55 (5.60)</td>
<td>-</td>
<td>4.18 (3.80)</td>
<td>17.82 (9.17e-5)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>7.86 (4.60)</td>
<td>-</td>
<td>3.93 (3.28)</td>
<td>13.72 (4.93e-4)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>15.24 (6.89)</td>
<td>32.59 (8.20)</td>
<td>11.24 (4.41)</td>
<td>39 (6.19)</td>
<td>0.68 (0.41)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>27.27 (3.69)</td>
<td>21.66 (6.29)</td>
<td>28.79 (2.38)</td>
<td>22.43 (6.53)</td>
<td>1.62 (0.21)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-0.17 (0.38)</td>
<td>-</td>
<td>0.18 (0.33)</td>
<td>13.91 (4.56e-4)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0.10 (0.06)</td>
<td>0.13 (0.06)</td>
<td>0.12 (0.10)</td>
<td>0.13 (0.06)</td>
<td>0.32 (0.57)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>12.46 (4.11)</td>
<td>13.51 (4.99)</td>
<td>14.58 (9.58)</td>
<td>12.76 (3.70)</td>
<td>0.45 (0.50)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>39.33 (28.82)</td>
<td>55.21 (44.42)</td>
<td>57.98 (66.21)</td>
<td>47.29 (27.69)</td>
<td>0.53 (0.47)</td>
</tr>
</tbody>
</table>
Table 2: Summary descriptive statistics for fMRI task behavioural data (mean reaction time, RT). Each cell shows the mean and standard deviation (in parenthesis) for each group and condition. SM, self-mentalizing; SP, self-physical; OM, other-mentalizing; OP, other-physical.

<table>
<thead>
<tr>
<th></th>
<th>TD Male</th>
<th>Autistic Male</th>
<th>TD Female</th>
<th>Autistic Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>2413.65 (325.83)</td>
<td>2603.76 (389.61)</td>
<td>2258.86 (316.61)</td>
<td>2322.34 (338.24)</td>
</tr>
<tr>
<td>SP</td>
<td>2523.14 (300.49)</td>
<td>2724.70 (392.13)</td>
<td>2380.90 (324.18)</td>
<td>2403.01 (464.82)</td>
</tr>
<tr>
<td>OM</td>
<td>2564.49 (338.17)</td>
<td>2671.83 (366.28)</td>
<td>2430.40 (306.97)</td>
<td>2482.90 (418.81)</td>
</tr>
<tr>
<td>OP</td>
<td>2565.45 (331.05)</td>
<td>2665.93 (388.93)</td>
<td>2455.63 (355.09)</td>
<td>2404.06 (470.09)</td>
</tr>
</tbody>
</table>
Figures

Figure 1: fMRI task behavioural data (mean reaction time, RT).

Bars depict the mean. Error bars indicate ± 1 standard error of the mean. SM, self-mentalizing; SP, self-physical; OM, other-mentalizing; OP, other-physical.
Figure 2: Diagnosis-by-sex/gender interaction effects for vMPFC Self>Other activation (A-B) and RTPJ Mentalizing>Physical activation (C-D).

Higher values on the y-axis indicate greater activation. Bars depict the mean. Error bars indicate ± 1 standard error of the mean.
Figure 3: Activation-camouflaging relations for the Self>Other contrast at vMPFC.

Plotted activation (Contrast Values) and camouflaging scores (calculated via using the ADOS updated algorithm SA domain score) are standardized within each sex/gender. Correlations are computed with a robust regression model to be insensitive to outliers and co-varies for age and FIQ. The plotted best fit line and 95% confidence band are fit using robust regression.
Supplementary Material

Methods: Participants

Based on our inclusion rationale of ascertaining clinically diagnosed autistic individuals, we acknowledged that the participants might not all score above the conventional research thresholds on the ADI-R and ADOS ‘diagnostic algorithm’. The same scenario has also been shown in the latest large-scale autism research in Europe, in which the ascertainment attempts to capture the wide heterogeneity of the autism spectrum (Charman et al., 2017). In our sample, all but 2 autistic males reached the diagnostic algorithm cut-offs of ‘autism’ on the ADI-R (which corresponded to the DSM-IV ‘autistic disorder’), with these 2 males being one point below the cut-off on the restricted/repetitive behaviour (RRB) domain. Two autistic females were included but ADI-R was unavailable due to childhood caregivers being unable to be interviewed: one scored above the cut-off for ADOS ‘autism spectrum’ and the other was positive for a diagnosis on the Adult Asperger Assessment (AAA) which incorporates caregiver reports of childhood behaviours (Baron-Cohen, Wheelwright, Robinson, & Woodbury-Smith, 2005). Two other autistic females were included who fell short of the ADI-R diagnostic algorithm thresholds in up to two domains by 1-3 points, but both have a confirmed ICD-10 diagnosis of Asperger’s syndrome by expert clinicians, with evident and clinically significant childhood autistic symptoms documented in their diagnosis letters. The rationale of this inclusion strategy was to allow for possible under-estimation of early developmentally atypical behaviours in caregivers’ recall on the ADI-R, and also to account for RRB symptoms now considered central in DSM-5 (e.g., adherence to routine, idiosyncratic sensory responses) but not included in the DSM-IV-based ‘diagnostic algorithm’ of ADI-R.
In terms of socio-demographic characteristics, our sample was composed of long-term UK residents with English as their first language (except for one autistic woman who also spoke another native language), Caucasian by descent (with one neurotypical man and one autistic woman with mixed Caucasian and other ethnic background). We did not measure other socio-economic status.

Behavioural-cognitive and neuroanatomical characterizations including and beyond this sample have been reported in previous MRC-AIMS studies (Lai et al., 2011; Lai et al., 2017; Lai et al., 2012; Lai et al., 2013; Zeestraten et al., 2017), along with detailed project and recruitment information. The sample included here overlaps with the autism groups reported in a previous structural MRI study (Lai et al., 2013) and a behavioural study operationalizing camouflaging (Lai et al., 2017); the male data are the same from published task-fMRI studies (Lombardo, Chakrabarti, Bullmore, & Baron-Cohen, 2011; Lombardo et al., 2010). However, task-fMRI data of females constitute new data not reported in any prior publication and are the focus of the present paper.

Results: Sex/Gender-Specific vMPFC Activation-Camouflaging Relationship (full results with camouflaging calculated via using 3 different versions of ADOS score)

As reported in our previous work using a largely overlapping sample (Lai et al., 2017), autistic women on-average scored higher on camouflaging (calculated using the ADOS updated algorithm SA domain score) compared with autistic men, indicating enhanced camouflaging ($F(1,55)=13.91, p=4.56e^{-4}, \text{Cohen's } d=0.99$); the pattern was consistent when camouflaging was calculated via using the ADOS updated algorithm SA+RRB score ($F(1,55)=18.76, p=6.34e^{-5}$);
Cohen’s $d=1.15$) or the WPS-published algorithm score ($F(1,55)=14.72$, $p=3.23e^{-4}$, Cohen’s $d=1.01$). Camouflaging was not significantly correlated with age, VIQ or PIQ in either group.

Confirming our prediction, there was a significant positive correlation between vMPFC Self>Other activation and camouflaging scores in autistic females ($r=0.54$, $p=0.019$; findings were consistent when using ADOS updated algorithm SA+RRB score, $r=0.50$, $p=0.026$, or WPS-published algorithm score, $r=0.48$, $p=0.03$), but there was no significant association in autistic males ($r=-0.04$, $p=0.86$; findings were consistent when using ADOS updated algorithm SA+RRB score, $r=-0.04$, $p=0.87$, or WPS-published algorithm score, $r=-0.10$, $p=0.64$). The difference between the two correlations was significant ($z=2.3$, $p=0.02$; findings were consistent when using ADOS updated algorithm SA+RRB score, $z=2.1$, $p=0.04$, or WPS-published algorithm score, $z=2.23$, $p=0.03$) (Figure 3). In contrast to vMPFC, when considering RTPJ Mentalizing>Physical activation, there was no significant correlation present in either females ($r=0.19$, $p=0.41$; $r=0.16$, $p=0.48$ when using ADOS SA+RRB score, and $r=0.28$, $p=0.21$ when using WPS-algorithm score) or males ($r=0.15$, $p=0.55$; $r=0.07$, $p=0.77$ when using ADOS SA+RRB score, and $r=0.02$, $p=0.90$ when using WPS-algorithm score), and no significant difference between the correlations ($z=0.15$, $p=0.88$; $z=0.33$, $p=0.74$ when using ADOS SA+RRB score, and $z=0.96$, $p=0.34$ when using WPS-algorithm score).

References for Supplementary Material

10.1016/j.neuroimage.2011.02.067

10.1093/brain/awp306

42