DOI: 10.1115/1.4039002

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher’s website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 25. Jan. 2018
This paper for the first time investigates a family of plane-symmetric Bricard linkages studying two generated toroids. By means of their intersection, a set of special Bricard linkages with various branches of reconfiguration are designed. An analysis of the intersection of these two toroids reveals the presence of coincident conical singularities which lead to the design of plane-symmetric linkages that evolve to spherical 4R linkages. By examining the tangents to the curves of intersection at the conical singularities it is found that the linkage can be reconfigured between the two possible branches of spherical 4R motion without disassembling it and without requiring the usual special configuration connecting the branches.

The study of tangent intersections between concentric singular toroids also reveals the presence of isolated points in the intersection which suggests that some linkages satisfying the Bricard plane-symmetry conditions are actually structures with zero finite degrees of freedom but with higher instantaneous mobility. This paper is the second part of a paper submitted in parallel by the authors in which the method is applied to the line-symmetric case.

1 Introduction

Among the reported overconstrained linkages, the Bricard linkages (along with the famous Bennett 4R linkage) are the most studied due to their very special geometry that allow the mobility of these 6R loops. A total of six cases were discovered by Bricard [1][2]: the line-symmetric case, the plane-symmetric case, the trihedral case, the line-symmetric octahedral case, the plane-symmetric octahedral case and the doubly collapsible octahedral case. The geometry of these loops was thoroughly studied [3][4][5][2] in order to explain the mobility of these linkages. However, some other properties of the Bricard linkages are still being studied, including optimization, application, combination of loops in large structures and reconfigurability, which has not been systematically analyzed and whose intuitive presence on the linkages has not been revealed. This paper deals with these issues.

A reconfigurable linkage [6] has a configuration space that includes at least two space components that are connected through singular configurations. Thus, the linkage can work in different motion branches without being disassembled [7]. If these connected components of the configuration space are of different dimensions, then the linkage is able to change its degrees of freedom or local mobility and it is said to be a kinematotropic linkage [8][9]. At the constraint singularity with change of joint functionality or link annexation resulting in configuration space change, a different kind of reconfigurable linkage emerges as the metamorphic linkages [10][11][12][13]. Recent advances in reconfigurable linkages include: a closed chain with 14 states that constitute 28 configurations [14], a reconfigurable platform whose hybrid legs include a 4R diamond [15], a parallel manipulator with 15 motion branch [16], type synthesis of kinematotropic platforms [17], various reconfigurable kinematic
chains with mobility one \[18\], a family of single-loop reconfigurable linkages with an infinity of motion branches \[19\]. Some advances in the study of reconfigurable linkages include: the analysis of the connections between components of the configuration space by means of algebraic geometry \[20\], the study of reconfigurability by means of reciprocity of screws \[21\], the use of morphing systemization to analyze ways of reconfiguration of linkages \[22\], the application of higher order kinematic analysis to prove the local mobility of kinematotropic linkages \[23, 24, 25\] and the application of dual quaternions in the analysis of reconfigurability \[26, 27\].

In regard to Bricard linkages that lead to different motion branches, the following contributions have already been presented: the analysis of reconfiguration of a plane- and line-symmetric Bricard linkage by means of geometric constraints and screw-system variations \[18\], spatial triangle formed joint and variable axis joint are used to obtain a line-symmetric linkage that can behave as a Bennett linkage \[27\], the analysis of a plane- and line-symmetric Bricard linkage with different motion branches in order to avoid singularities \[28\] and a line-symmetric Bricard linkage evolved from a metamorphic 8R linkage \[29\]. In these studies, a theory of the reconfigurability of Bricard loops that can help the design of these linkages has not been studied thoroughly. However, the authors searched for a method that could be used for this study and the method of generated surfaces appeared as a very promising alternative.

The technique of generated surfaces, based on kinematic dyads joined by spherical pairs or any possible reduction \[30, 31, 32\], was formerly applied to prove the mobility of some overconstrained linkages \[33\], design of linkages with dwell motion \[34\], analysis of non-overconstrained linkages \[35\], synthesis of parallel platforms \[36\] and software graphics \[37\]. The method was recently applied to reconfigurable linkages \[38, 19, 39\], taking advantage of the rich knowledge on tangent intersection of surfaces.

In this paper, the method is for the first time applied to the branch reconfiguration of Bricard plane-symmetric linkages, following the previous paper in which the authors study the line-symmetric case. The plane-symmetric case is characterized by the following DH parameters \[5\]:

\[
\begin{align*}
\alpha_{6,1} &= a_{1,2}, a_{2,3} = a_{5,6}, a_{3,4} = a_{4,5}, \\
\alpha_{1,2} + \alpha_{6,1} &= 2\pi, \alpha_{2,3} + \alpha_{6,5} = 2\pi, \alpha_{3,4} + \alpha_{4,5} = 2\pi, \\
d_1 &= a_4 = 0, d_2 = -d_5, d_3 = -d_5.
\end{align*}
\]}

where the positive direction of the \(z_a\) axe1 is given by the screw direction shown in Fig. 1. In this case each member of the linkage is symmetric to another member through a plane \(\pi\) (Fig. 1). Therefore, axes \(S_2\) and \(S_6\) (\(S_3\) and \(S_5\)) intersect in a point lying on \(\pi\) and axes \(S_1\) and \(S_4\) also lie on \(\pi\). Hence, a line containing the points of intersection of pairs of axes \([S_2, S_6]\) and \([S_3, S_5]\) lies on \(\pi\) and, therefore also intersects \(S_1\) and \(S_4\). Such line is the central axis of the linear complex \([40, 41, 42]\) which the six axes belong to. The pitch of such linear complex is zero since the central axis always intersects the six axes.

The plane-symmetric Bricard linkage is analyzed in this paper by means of the intersection of two generated toroids, building a complete theory of the reconfigurability of these loops. The design is made by manipulating the construction parameters of two concentric singular toroids. An interesting result is the discovery of spherical 4R linkages evolved from the plane-symmetric linkages that are always able to reconfigure between their two branches without being disassembled and without passing through the special configuration that connects the branches in common 4R linkages.

To the knowledge of the authors, this is the first time that a linkage with such reconfiguration between disjoint spherical 4R branches is presented and studied. However, Bricard 6R linkages that also work as spherical 4R linkages were first presented in \[43\].

This paper is organized as follows: The toroids, its generators and its singular forms are revisited in Section 2. Then, in Section 3, it is found out that some examples of Bricard plane-symmetric linkages can be explained and designed as the intersection of concentric singular toroids. This intersection is analyzed in Section 4. In Section 5 any possibility of tangent intersection is explored. In Section 5 the two branches of spherical 4R motion are studied in order to figure out how to reconfigure the linkage from Bricard branches to spherical 4R branches. Finally, two examples are presented in Section 7. This paper is a continuation of the paper submitted by the authors on the line-symmetric case, \[44\], some theory, notation, and basic concepts used here are introduced in the aforementioned.

2 Singular toroids generated by kinematic RR chains.

In the second section in the paper submitted by the authors on the line-symmetric case, \[44\], a discussion on general toroids generated by RR dyads was presented. Now, the particular case in which the radius of the secondary and base circles are the same, \(l = r\), and there is no secondary offset,

1In \[5\] Baker sets the positive direction in such a way that the parameters \(d_i\) are always positive, obtaining DH parameters slightly different but equivalent to the ones used in this paper, where the directions are simply reflected by plane \(\pi\) in figure 1.
s = 0, is discussed. Such a toroid, \(T_{r,s} \), can be generated by the following parameterization:

\[
\sigma(u,v) = r \left((\cos v + 1) \cos u - \cos \gamma \sin v \sin u, \right.
\]
\[
\cos \gamma \sin v \cos u + (\cos v + 1) \sin u, \sin \gamma \sin v \right) \in \mathbb{R}^3
\]
\[
(2)
\]
and \(T_{r,s} \) is the implicit form \(\sigma(T^2) \). In a similar way, the implicit form \(\phi \in \mathbb{R}[x,y,z] \) is reduced to:

\[
\phi(x,y,z) = (x^2 + y^2 + z^2 - 2r^2)^2 - 4r^2 \left(r^2 - \frac{z^2}{\sin^4 \gamma} \right)
\]
\[
(3)
\]
and \(T_{r,s} \) is the set \(\{ r_E \in \mathbb{R}^3 | \phi(r_E) = 0 \} \). For this case, it is easy to prove that:

\[
\frac{\partial \sigma}{\partial u}|_{(u,v)=(u,\pi)} = 0 \Rightarrow \left(\frac{\partial \sigma}{\partial u} \times \frac{\partial \sigma}{\partial v} \right)|_{(u,v)=(u,\pi)} = 0, \forall u \in \mathbb{T},
\]

Therefore it can be concluded that \((u,\pi) \in \mathbb{T}^2 \) is a conical singularity of \(T_{r,s} \). Hence, we call \(T_{r,s} \) a singular toroid.

In this case the singularity maps to the point \(\sigma(u,\pi) = 0 = O \). Figure 2 shows the toroid with the singularity coincident with the origin. \(\mathcal{B} \) is the intersection of the toroid and any plane containing the Z axis, becomes an 8-shaped curve that is symmetric with respect to the intersection of the XY plane and the plane containing \(\mathcal{B} \). The self-crossing of \(\mathcal{B} \) occurs at \(O \).

\[3\] The concentric singular toroids generated by the plane-symmetric Bricard linkage.

In the plane-symmetric case of Bricard linkage any adjacent pair of revolute joints with skew axes generates a toroid. For a general plane-symmetric linkage, like the one shown in Fig. 1 let \(a_{23} = 0 \). Then the point of intersection of \(S_2 \) and \(S_3 \) describes a toroid with respect to the fixed link between axes \(S_6 \) and \(S_5 \), this is generated by joints with axes \(S_6 \) and \(S_1 \). Furthermore, the same point describes another toroid with respect to the fixed link, this time generated by joints with axes \(S_4 \) and \(S_5 \). Since the same point describes two toroids, such point is confined to move in the intersection of these toroids.

From the restrictions for plane symmetry in Eq. (1), observe that if \(a_{23} = 0 \) then \(a_{56} = 0 \). This implies that both toroids are concentric, as shown in Fig. 3. Furthermore, since \(a_{61} = a_{12} \) and \(a_{14} = a_{45} \), then \(r = l \) for both toroids. Finally, since \(d_1 = d_4 = 0 \) both toroids have secondary offset \(s = 0 \). From these observations it can be concluded that both generated toroids are singular, with the singularity coinciding with the intersection of fixed axes \(S_6 \) and \(S_5 \).

Summarizing, in addition to the restrictions on the DH parameters of the plane-symmetric linkage in Eq. (1), the following conditions are required to analyze and design these linkages using the intersection of two toroids:

\[\bullet \quad d_i = 0, \quad i = 1, \ldots, 6 \]
\[\bullet \quad a_{23} = a_{56} = 0 \]
\[(4) \]

Fig. 3b shows an example of plane-symmetric Bricard linkage that generates two singular toroids. For the sake of identifying the construction parameters of each toroid, the joints have been renamed with respect to Fig. 1: \(S_{A1} = S_6 \), \(S_{A2} = S_1 \), \(S_{A3} = S_2 \), \(S_{B3} = S_3 \), \(S_{B2} = S_4 \) and \(S_{B1} = S_5 \). In such case, a singular toroid \(T_{r,s,0}^i \) is generated by the joints with axes \(S_{A1} \) and \(S_{A2} \) and is referred to coordinate systems \(i \), \(i = A, B \). The point that describes the intersection \(C := T_{r,s,0}^A \cap T_{r,s,0}^B \) is the intersection of axes \(S_{B1} \) and \(S_{B3} \) and is called \(E \). The point where \(S_{A1} \) and \(S_{B1} \) intersect is called \(O \).

For each toroid \(T_{r,s,0}^i := \{ E_i(q_i) | q_i \in \mathbb{T}^2 \} \), \(i = A, B \), the joint variables vector is given by the variables of the parameterization in Eq. (2), so that \(q_i = (u_i, v_i) \in \mathbb{T}^2 \). Once the link \(D \) joins axes \(S_{A3} \) and \(S_{B3} \), \(E_A(q_{0A}) = E_B(q_{0B}) = E(q) \), where \(q := (u_A, v_A, q_{A3}, q_{B3}, v_{2A}, u_{2B}) \in V \subset \mathbb{T}^6 \), where \(V \) is the configuration space of the linkage whose elements have to fulfill the closure equation of the loop. Observe that, due to symmetry, \(q_{A3} \) and \(q_{B3} \) are in linear correspondence with \(u_A \) and \(u_B \), respectively. Hence, finding the intersection \(C \) completely describes the behavior of the linkage. In fact, finding a parameterization of \(C \) in terms of any of the four variables of the toroids would be equivalent to solve the position analysis of the linkage.

\(C \) may be composed of several components such that \(C = \bigcup_{i=1}^n C_i \), where dim \((C_i) \leq 2 \) and \(n \in \mathbb{Z}^+ \). Each component of \(C \) is related to a component of the configuration space \(V \). When \(C \) is a curve \(C \subset C \), dim \((V) = 1 \), where \(V \) is

\(^2\)Conical singularities also appear when \(r = \pi/2 \) and \(r > 1 \). This is a singular right torus, two conical singularities appear symmetrically disposed in the Z axis. This class of torus never appear in plane-symmetric linkages and thus they are not considered in this paper.
the corresponding component of \(V \), and the linkage has 1 D.O.F. when assembled in this mode, this leads to the typical overconstrained behavior of the linkage. On the other hand, if \(C \) is an isolated point and \(\dim(V_i) = 0 \). In such component of \(V \), the linkage can be assembled as a structure.

An important phenomenon occurs when two conical singularities coincide. We call this coincidence the double singularity. The arrangement of singular toroids for plane-symmetric linkages includes a double singularity since both \(C \) overconstrained behavior of the linkage. On the other hand, both axes belong to \(\pi \) and therefore they either intersect or are parallel. This ensures that the symmetry condition is always present while \(E \) moves through all the components of \(C \).

4 Concentric singular toroid-toroid intersection.

To analyze the intersection of toroids in the plane-symmetric case, \(C = T^A_{\gamma_1 \gamma_2 \gamma_3 \gamma_4} \cap T^B_{\gamma_1 \gamma_2 \gamma_3 \gamma_4} \), let the relationship between coordinate systems \(A \) and \(B \) be given by \(\frac{1}{2} T = T'(R(0,J), 0) \), so that the toroids are concentric and the axis of \(B \) is obtained by rotating the axis of \(A \) \(\theta \) radians about the \(Y := Y_A = Y_B \) axis.

The parameterizations of both surfaces referred to coordinate system \(A \) are:

\[
A_{\sigma_a}(u_A, v_A) = \left(r_A (\cos v_A + 1) \cos u_A - \gamma_A \sin v_A \sin u_A),
\right.
\[
\left. d_A (\cos \gamma_A \sin v_A \cos u_A + \sin u_A \cos v_A + \sin u_A),
\right.
\]
\[
\sin \gamma_A d_A \sin v_A \right)
\]
\[
A_{\sigma_b}(u_B, v_B) = \left((\cos v_B + 1) \cos u_B - \gamma_B \sin v_B \sin u_B) \cos \theta
\right.
\[
+ \sin \theta \sin \gamma_B \sin v_B) d_B, d_B (\cos \gamma_B \sin v_B \cos u_B + \sin u_B \cos v_B + \sin u_B),
\]
\[
d_B (\cos \gamma_B \sin v_B) \sin \theta + \cos \theta \sin \gamma_B \sin v_B \right)
\]
\[
(5)
\]
and the implicit forms are given by:

\[\lambda_\phi(x, y, z) = \left(z^2 + x^2 + y^2 - r_1^2 - r_2^2 \right)^2 - 4 r_2^2 \left(r_2^2 - \frac{z^2}{\sin^2 \gamma} \right) \]

\[\lambda_\psi(x, y, z) = \frac{1}{\sin \gamma B} \left(-(x^2 + y^2 + z^2)(x^2 + y^2 + z^2 - 4 r_2^2) \cos^2 \gamma B
+ (-4 x^2 r_2^2 + 4 z^2 r_2^2) \cos \theta + 8 \cos \theta \sin \theta \chi \zeta B^2 + z^4
+ (2 x^2 + 2 y^2 - 4 r_2^2) z^2 + x^4 + 2 x^2 y^2 + y^4 - 4 y^2 r_2^2 \right) \]

(6)

A direct way to find \(C \) is to solve \(\lambda_A - \lambda_B = f(u_A, v_A, u_B, v_B) = 0 \). However, in this case it turns out to be more complicated. An alternative technique, taken from [45], is applied instead: Since, for any of both implicit forms referred to coordinate system \(A \), \((x, y, z) = \lambda_\psi(u_A, v_A) = \lambda_\phi(u_B, v_B) \), then \(\lambda_\psi(\lambda_A(u_A, v_A)) = 0 \) is a scalar equation with two variables from which the restrictions \(u_A(v_A) \) or \(v_A(u_A) \) can be obtained. This restriction fully defines \(C \) since it can be replaced in \(\lambda_A \) to obtain the whole parameterization of the intersection, for example using the restriction \(u_A(v_A) \): \(\lambda_C = \{ \lambda_A(u_A(v_A), v_A) \mid v_A \in W < \mathbb{R} \} \). Consider the parameterization of \(A \) being substituted in the implicit form of \(B \):

\[\lambda_\phi(\lambda_A(u_A, v_A)) = - \frac{4 r_2^2}{\sin \gamma B} (\cos v_A + 1) \left[r_2^2 \cos^2 \gamma_A (\cos v_A
- 1) (\sin^2 u_A + (\cos^2 u_A - 2) \cos^2 \theta) - r_2^2 (\cos v_A + 1) \cos^2 u_A
- 2 r_2^2 \sin u_A \cos \gamma_A (\sin \gamma_A \sin \theta \cos \theta v_A - 1)
- \cos u_A \sin v_A \sin^2 \theta) + r_2^2 \cos^2 \theta (\cos v_A + 1) \cos^2 u_A + \cos v_A - 1
- 2 r_2^2 \sin \gamma_A \cos \theta \sin \theta \sin v_A \cos u_A - \sin^2 \gamma_A (\cos v_A + 1) (r_2^2 (1
+ \cos v_A) - 2 r_2^2) \right] = 0 \]

(7)

An immediate first possibility is observed: \(v_A = \pi \). This solution leads to the double singularity in which \(E(\mathbf{q}) = \{ v_A = \pi \} \), where \(V_1 \) is the spherical \(4R \) component of \(V \) related to the double singularity. Since making 0 the first factor in Equation (7) would compromise the construction parameters of the toroids, the only remaining possibility is solving the third factor. This factor is solved to obtain the restriction \(u_A(v_A) \), two solutions are found which are not presented here due to reasons of space since these are quite long expressions. In a similar manner, two solutions for the restriction \(v_A(u_A) \) are obtained. Therefore, \(C \) may feature a maximum of two curves. Expressions for a parameterization of these components can be computed as explained in the previous paragraph, however, due to the length of the terms involved in the restriction \(u_A(v_A) \), these are not presented here.

5 Tangent intersections of concentric singular toroids.

If in the concentric toroid-toroid intersection \(\exists \), \(j \geq C_i \cap C_j \neq \emptyset \) the linkage is reconfigurable with at least 2 motion branches, which are connected through at least one configuration \(\mathbf{q}_{ij} \in V_i \cap V_j \). It can be proved [38] that for the 1-dimensional components of \(V \), the toroids are tangent to each other at \(E(\mathbf{q}_{ij}) \). The intersection is non-transverse in \(E(\mathbf{q}_{ij}) \). Therefore, \(V \phi \times \phi (x, y, z) = \emptyset \), where \((x^p, y^p, z^p) = E(\mathbf{q}_{ij}) \). The points in \(V \) that map to points of tangency may be bifurcation configurations of the linkage. These points in \(V \) may represent the intersection of two components of \(V \), or may be the self-crossing of the same component. The surfaces are also tangent to each other when they touch in one point, which would lead to an isolated point in \(V \). In addition, if a continuum of points of tangency is found, the surfaces are touching in a curve that is a component of \(C \).

To find the points where the intersection may become non-transverse, the real points \((x, y, z) \in \mathbb{R}^3 \) that make \(V \phi_1 (x, y, z) = 0 \) and also satisfy \(\phi_A(x, y, z) = \phi_B(x, y, z) = 0 \) are explored. Two points in the \(y \) axis are found, however, they imply \(r_A = r_B \), so that the points are \((0, r_A, 0) = (0, r_B, 0) \) and \((0, -r_A, 0) = (0, -r_B, 0) \). This case leads to a linkage that is both line- and plane-symmetric. This example was analyzed before in [28] and the line-symmetric case was investigated by the authors of this paper in another work yet to be published. The other solutions that do not degenerate the toroids imply \(y = 0 \). Therefore, any point of tangency must lie in the \(X_AZ_A \) plane if the linkage is not the plane- and line-symmetric case. The solutions in the \(X_AZ_A \) plane are large expressions that involve not only...
the construction parameters of the toroids, but also the angle θ. Considering the singular curves \mathcal{B}_A and \mathcal{B}_B obtained by $\mathcal{B}_i = \{(x, y) \in \mathbb{R}^2; \phi_i(x, 0, y) = 0\}$ (figure 5), it is found that the curves become tangent to each other if:

$$\cos \theta = \pm \sqrt{(r_A^2 \cos^2 \gamma_0 + r_A^2 \sin^2 \gamma_0)(r_B^2 \cos^2 \gamma_0 + r_B^2 \sin^2 \gamma_0)} / r_{AB}$$

(8)

Each possibility leads to two solutions, therefore there are in total 4 values of θ that make the surfaces tangant to each other in the $X_A Y_A$ plane. Note that the argument of the square root is always positive, however, to obtain real values of θ, it is necessary that $(r_A^2 \cos^2 \gamma_0 + r_A^2 \sin^2 \gamma_0)(r_B^2 \cos^2 \gamma_0 + r_B^2 \sin^2 \gamma_0) \leq r_A^2 r_B^2$, since $\cos \theta \in [-1, 1]$. After some algebra it is concluded that if $r_A > r_B$ then $|\sin \gamma_B| > |\sin \gamma_A| \Rightarrow \sin \gamma_B > \sin \gamma_A$ and if $r_A < r_B$ then $|\sin \gamma_A| > |\sin \gamma_B| \Rightarrow \sin \gamma_A > \sin \gamma_B$. W.l.o.g. Fig. 5 shows the case in which $r_A > r_B \Rightarrow \sin \gamma_A > \sin \gamma_B$. This makes toroid B looking more flattened than toroid A.

6 Isolated points of tangency and Bricard structures.

The nature of the intersection when the two concentric singular toroids are tangent to each other in the $X_A Y_A$ plane is now investigated. For this aim, consider the following proposition:

Proposition 6.1: The intersection of two concentric singular toroids with different radius contains only two isolated points if the toroids are tangent to each other at some point.

Proof: Let the two singular toroids to be intersected be $T_A^{x_1 y_1 z_1 0}$ and $T_B^{x_2 y_2 z_2 0}$, where $r_A \neq r_B$, thus the only possibility for tangent intersection is that the surfaces are tangent to each other in the $X_A Y_A$ plane. Replacing the values of θ from Eq. (8) in the parameterizations of the surfaces and trying to find C would lead to quite complicated expressions. A simpler way to proceed is to analyze the normal curvatures of the toroids in one of the points where the surfaces are tangent. The normal curvatures of both surfaces must be the same in the direction that is tangent to the intersection curve. If there is no intersection curve and the surfaces are only touching in such point, the curvatures are always different for both surfaces in any direction. Since normal curvature is invariant to frame transformations both toroids can be analyzed in their own coordinate systems. According to Euler’s formula, the normal curvature is given by: $\kappa(\psi) = \kappa_1 \cos^2 \psi + \kappa_2 \sin^2 \psi$, where κ_1 and κ_2 are the curvatures in the principal directions \hat{e}_1 and \hat{e}_2 and ψ is the angle that defines the direction of the normal curvature with respect to one of the principal directions.

The singular toroids are surfaces of revolution with \mathcal{B} being rotated about the Z axis. It is known (see for example [45]) that in surfaces of revolution the principal curvatures are the tangents to the meridian and parallel crossing the point in analysis. Hence, for the arrangement shown in Fig. 5 $\hat{e}_1 = \hat{j}$ and $\hat{e}_2 = \hat{i}$, where \hat{i} is the mutual tangent vector to \mathcal{B}_A and \mathcal{B}_B at P_1. If the intersection includes a curve crossing P_1, it should be possible to find an angle $\psi \in \mathbb{T}$, such that:

$$\kappa_{1A} \cos^2 \psi + \kappa_{2A} \sin^2 \psi = \kappa_{1B} \cos^2 \psi + \kappa_{2B} \sin^2 \psi$$

$$\Leftrightarrow \frac{\kappa_{1A} - \kappa_{1B}}{\kappa_{2B} - \kappa_{2A}} = \tan^2 \psi \geq 0$$

(9)

where κ_A and κ_B, $i = 1, 2$, are the principal curvatures at P_i of toroids A and B, respectively. From Fig. 5 Note that κ_{2J}, $j = A, B$, are the curvatures of plane curves \mathcal{B}_j, while κ_j are the curvatures of plane curves \mathcal{B}_j obtained by intersecting the toroids with the plane that contains P_1 and is spanned by $\hat{e}_1 = \hat{j}$ and \hat{u}. If, w.l.o.g. $r_A > r_B$ as shown in Fig. 5, it is clear that $\kappa_{2B} > \kappa_{2A}$ and $\kappa_{2A} - \kappa_{2B} > 0$. Hence, in order to have a real solution of Eq. (9), it is necessary that $\kappa_{1A} - \kappa_{1B} > 0$. These curvatures can be computed using the following expression [47]:

$$\kappa_{ij} := \kappa(\phi_j, \hat{j})(P_1) = \frac{\text{Hess}(\phi_j(x, y, z))\hat{j}}{|\nabla \phi_j(x, y, z)|}|_{(x, y) = P_1}$$

where, Hess : $\mathbb{R}[x, y, z] \rightarrow M^{3 \times 3}(\mathbb{R})$ is the Hessian matrix of the given implicit form. Upon calculations it is concluded that:

$$\kappa_{ij} = \frac{|\sin \gamma_j|(|r_P|^2 - 2 \hat{j}^2)}{2 |r_P| |r_j| \sqrt{|r_P|^2 - 2(|r_P|^2 - 2 \hat{j}^2) \cos^2 \gamma_j}}$$

(10)

where $|r_P|$ is the magnitude of the position vector of P_1, which is the same value for both toroids and is invariant to frame transformations. $|r_P|$ is calculated using the value of θ in Eq. (6), leading to:

$$|r_P| = \sqrt{\frac{r_A^2 \sin^2 \gamma_A \cos^2 \gamma_B - r_A^2 \sin^2 \gamma_B \cos^2 \gamma_A + (r_A^2 - r_B^2) \sin^2 \gamma_A \sin^2 \gamma_B}{r_B^2 \sin^2 \gamma_A \cos^2 \gamma_B - r_B^2 \sin^2 \gamma_B \cos^2 \gamma_A + (r_A^2 - r_B^2) \sin^2 \gamma_A \sin^2 \gamma_B}}$$

Replacing this value in Eq. (10) and carrying out simplifications it can be concluded that, $\kappa_{1A} - \kappa_{1B}$ has the same sign as $r_B - r_A$. Therefore, if $r_A > r_B$ (as first supposed for this proof), $\kappa_{1A} - \kappa_{1B} < 0$, $\tan^2 \psi < 0 \Rightarrow \psi \notin \mathbb{T}$ and there is no real solution for Eq. (9). Hence, both toroids are touching each other in P_1 and P_2 but these are isolated points in $C = \{P_1, P_2, O\}$.

Two important conclusions can be drawn from the previous proposition: First, a Bricard linkage fulfilling the plane symmetry conditions can be a 0-DOF structure which can be assembled in two different configurations. However, if the linkage is assembled in $E_{\phi} = 0$ the same linkage has 1 DOF and works as a spherical 4R linkage. In such case, V is composed of 3 regions: 2 isolated points and a 1-dimensional curve in \mathbb{T}^6. And second, there is no way to reconfigure these
linkages directly from one curve to another at least the linkage is also line-symmetric.

As an example of this situation, consider the plane-symmetric linkage with the following DH parameters:

\[
\begin{align*}
\alpha_{A1,A2} &= \frac{\pi}{4}, & \alpha_{B2,B1} &= \frac{3\pi}{4}, & \alpha_{B1,A1} &= \arccos\left(\frac{247}{280}\right), \\
\alpha_{A1,A3} &= 10, & \alpha_{B2,B1} &= 7, & \alpha_{B1,A1} &= 0, \\
\alpha_{A2,A3} &= \frac{3\pi}{2}, & \alpha_{B3,B2} &= \frac{7\pi}{8}, & \alpha_{B3,B3} &= -\arccos\left(\frac{247}{280}\right), \\
\alpha_{A2,A3} &= 10, & \alpha_{B3,B2} &= 7, & \alpha_{B3,B3} &= 0
\end{align*}
\]

and \(d_i = 0\) for all joints. These parameters satisfy the conditions in Eqs. (1) and (3) and, therefore, the linkage is plane-symmetric and it generates the intersection of two concentric singular toroids. From these parameters it can be seen that \(\gamma_A = \frac{\pi}{4}\), \(r_A = 10\), \(\gamma_B = \frac{3\pi}{4}\), \(r_B = 7\) and \(\theta = \arccos\left(\frac{247}{280}\right)\), which turns out to be one of the 8 values that can be obtained from Eq. (8). Thus, the Bricard linkage must be a structure with 0 DOF if assembled in any of the two isolated points. If assembled with \(E = 0\) the linkage should behave as a spherical 4-bar linkage, however, observe that such spherical linkage would have twist angles \(2\gamma_A = \frac{\pi}{2}\), \(2\gamma_B = \frac{\pi}{2}\) and two links with angles \(\arccos\left(\frac{247}{280}\right)\), the largest angle is \(\frac{3\pi}{4}\) but \(\frac{3\pi}{4} > \frac{\pi}{2} + 2\arccos\left(\frac{247}{280}\right)\), therefore the spherical linkage cannot be assembled. The only two possible assembly modes are those for which the linkage is a structure, namely \(E(q_1) = P_1\) and \(E(q_2) = P_2\), these are presented in figure 6.

Consider the linkage assembled in an isolated point \(E(q_1) = P_1\) in figure 8, some interesting results regarding the reciprocal system of the screw system of the linkage are now obtained: First, the plane of symmetry is perpendicular to and bisects the segment \(OE\), which lies on the \(X_AZ_A\) plane, thus the plane of symmetry is perpendicular to the \(X_AZ_A\) plane. As a consequence of this, \(S_{A3}\) and \(S_{B3}\) lie on the plane \(X_AZ_A\), since their symmetric members, \(S_{A1}\) and \(S_{B1}\) lie on \(X_AZ_A\), which is perpendicular to the plane of symmetry. Then, the axis of the special linear complex is the intersection of the plane of symmetry and the \(X_AZ_A\) plane as expected from Section 2.

Knowing the value of \(\theta\), it is possible to calculate both \(u_A\) and \(u_B\) for any of the two configurations in which the linkage can be assembled without using the double singularity and making it a spherical 4R linkage. With \(u_A\) and \(u_B\), the following Plücker coordinates are obtained for the screws \(A2\) and \(B2\), respectively:

\[
\begin{align*}
\delta S_{A2}(q_1) &= \begin{pmatrix} 3\sqrt{17391} & \sqrt{48081} & 1 & 15\sqrt{5797} \\ 6820 & 341 & \frac{1}{2} & 341 \end{pmatrix}, \\
\delta S_{B2}(q_1) &= \begin{pmatrix} 63\sqrt{5797} & 15\sqrt{17391} & 7\sqrt{3} & 5\sqrt{17391} \\ 6820 & 341 & \frac{20}{3} & 341 \end{pmatrix}.
\end{align*}
\]

If assembled with \(E = 0\) the linkage should behave as a spherical 4-bar linkage, however, observe that such spherical linkage would have twist angles \(2\gamma_A = \frac{\pi}{2}\), \(2\gamma_B = \frac{\pi}{2}\) and two links with angles \(\arccos\left(\frac{247}{280}\right)\), the largest angle is \(\frac{3\pi}{4}\) but \(\frac{3\pi}{4} > \frac{\pi}{2} + 2\arccos\left(\frac{247}{280}\right)\), therefore the spherical linkage cannot be assembled. The only two possible assembly modes are those for which the linkage is a structure, namely \(E(q_1) = P_1\) and \(E(q_2) = P_2\), these are presented in figure 6.

Consider the linkage assembled in an isolated point \(E(q_1) = P_1\) in figure 8, some interesting results regarding the reciprocal system of the screw system of the linkage are now obtained: First, the plane of symmetry is perpendicular to and bisects the segment \(OE\), which lies on the \(X_AZ_A\) plane, thus the plane of symmetry is perpendicular to the \(X_AZ_A\) plane. As a consequence of this, \(S_{A3}\) and \(S_{B3}\) lie on the plane \(X_AZ_A\), since their symmetric members, \(S_{A1}\) and \(S_{B1}\) lie on \(X_AZ_A\), which is perpendicular to the plane of symmetry. Then, the axis of the special linear complex is the intersection of the plane of symmetry and the \(X_AZ_A\) plane as expected from Section 2.

Knowing the value of \(\theta\), it is possible to calculate both \(u_A\) and \(u_B\) for any of the two configurations in which the linkage can be assembled without using the double singularity and making it a spherical 4R linkage. With \(u_A\) and \(u_B\), the following Plücker coordinates are obtained for the screws \(A2\) and \(B2\), respectively:

\[
\begin{align*}
\delta S_{A2}(q_1) &= \begin{pmatrix} 3\sqrt{17391} & \sqrt{48081} & 1 & 15\sqrt{5797} \\ 6820 & 341 & \frac{1}{2} & 341 \end{pmatrix}, \\
\delta S_{B2}(q_1) &= \begin{pmatrix} 63\sqrt{5797} & 15\sqrt{17391} & 7\sqrt{3} & 5\sqrt{17391} \\ 6820 & 341 & \frac{20}{3} & 341 \end{pmatrix}.
\end{align*}
\]

Previously, it was proved that \(S_{A2}\) and \(S_{B2}\) always intersect. If the screws are defined by \(S_i = (\hat{s}_i; m_i), i = A2, B2\), such intersection point is given by \(P = (\hat{s}_{A2} \cdot m_{B2})^{-1}m_{A2} \times m_{B2}\). However, it turns out that for this example \((\hat{s}_{A2} \cdot m_{B2}) \cdot \hat{A}j = 0\), which means that \(P\) lies on the \(X_AZ_A\) plane. This implies that a pencil of lines in the \(X_AZ_A\) plane can be
7 Motion branch reconfiguration through the double singularity.

Reconfiguration of motion branches can be achieved using the double singularity of the concentric toroids if there are curves crossing it. Due to the symmetry of the intersection, and since there are no points of tangency (excluding the known exceptions), it can be concluded that the intersection will have any of the following forms:

1. Two regular disjoint curves and the double singularity point
2. One singular 8-shaped curve with its self-crossing coincident with the double singularity.
3. Two singular 8-shaped curves that share the same self-crossing point which is coincident with the double singularity.

The first case is generated by non-reconfigurable linkages since there is no way to migrate from one curve to another or to visit the double singularity. The second case is reconfigurable with two motion branches: a Bricard 6R operation mode and a spherical 4R linkage mode. The third case is the most interesting since the configuration space includes two Bricard branches which can be visited by the linkage without disassembling it and, in addition, the linkage can undergo spherical 4R motion branches.

In figure 8a, note that if in the X_AZ_A plane $B_A \cap B_B = \{O\}$ the intersection of the toroids includes two singular curves as in the third case of intersection. Since the toroids are symmetric with the X_AZ_A plane, if B_B crosses B_A in four points, the intersection curve never includes O, as in the first case of intersection. If B_B crosses B_A in two points, the intersection curve crosses O and then intersects the X_AZ_A plane in the two points where B_B crosses B_A, the intersection of toroids is then a sole singular curve, as in the second case of intersection. Now imagine that the two points where the intersection crosses the X_AZ_A move through B_A approaching O, since the intersection is symmetric with the X_AZ_A plane, the curve starts to sharpen in such points until they reach O and the intersection becomes two singular curves. Refer to figure 8b, it is easy to prove that the tangent to B_i, $i = A, B$ makes an angle γ_i with the x_i axis. Then the conditions that make B_B intersect B_A only in O are the following:

$$
\gamma_A + \gamma_B < \frac{\pi}{2}
$$

$$
\gamma_A + \gamma_B < \theta < \pi - \gamma_A - \gamma_B
$$

(12)

In the remaining part of the paper we focus exclusively in linkages whose generated toroids fulfill conditions (12) since these are the most complicated cases.

8 Bricard branches as a link between crank-rocker spherical 4R branches.

Let $C = C_1 \cup C_2$, like in the third case of intersection, then $C_1 \cap C_2 = \{O\}$. It has to be considered that, even though the two curves intersect in one point, if V_i is the component of V related to C_i, then $V_1 \cap V_2 = \emptyset$, which means that the linkage cannot reconfigure from V_1 to V_2 directly. This is a consequence of the double-singularity O. In any regular point in a surface all curves intersecting the point do it with the same values of $(u, v) \in U$, as σ is a bijection from U to $S \setminus \text{sing}(S)$. But since in the conic singularity of the singular toroids $\partial \sigma / \partial u = \mathbf{0}$ there are an infinity of pairs (u, v) that map to O and the only way to escape from the singularity is moving in the direction of the isoparametric curve of v, since $\partial \sigma / \partial v \neq \mathbf{0}$ is such point. These isoparametric curves are the secondary circles, their tangent vectors in the singularity generate a cone that is tangent to the toroid in the singularity. Any two curves on the toroid crossing the singularity with non-parallel tangent vectors at O will have different values $(u(t), v(t))$ at O, since they reached the point in different secondary circles.
The previous paragraph implies that in general the linkage cannot move from \(V_1 \) to \(V_2 \) since \(E \) reaches \(O \) in different configurations. In fact, in the self-crossing of each singular curve in \(C \), the linkage is unable to choose between the two segments in the neighborhood of \(O \). \(E \) smoothly passes the double singularity and \(V_1 \) and \(V_2 \) are free of singularities even though they are related to singular curves \(\mathcal{C}_1 \) and \(\mathcal{C}_2 \). Despite \(V_1 \) and \(V_2 \) are disjoint, they are connected through the spherical 4R motion branch related to the double singularity. For the evolved spherical 4R linkage two opposite links have the same twist angle, \(\theta \), while the other two links have twist angles \(2|\gamma_1| \) and \(2|\gamma_0| \).

Suppose \(E \) lies on \(\mathcal{C}_1 \) and approaches \(O \), once the linkage starts working in the spherical 4R branch axes \(S_{A2} \) and \(S_{B2} \) can move until the secondary circles are both tangent to \(\mathcal{C}_2 \) and \(E \) can escape from the double singularity allowing the linkage to enter the \(V_2 \) branch. Since there are two singular curves crossing \(O \), there are in total four different directions in which \(E \) can move to escape from \(O \). Two of these will reconfigure a spherical 4R branch into the same plane-symmetric Bricard branch related to \(\mathcal{C}_1 \), while the other two will reconfigure to the branch related to \(\mathcal{C}_2 \). In each of these configurations the evolved spherical 4R linkage must be in a plane-symmetric configuration since such configuration also belongs to a Bricard branch. Fig. 9 shows a plane-symmetric linkage in a spherical 4R branch with \(E = O \), the linkage is about to escape to \(V_1 \) since the secondary circles \(C_{2A} \) and \(C_{2B} \) are both tangent to \(\mathcal{C}_1 \) at \(O \).

However, it is known that the configuration space of the spherical 4R linkages may include two branches which may or may not intersect. It is possible that the two configurations that allow to escape to \(V_1 \) (\(E \) escaping from \(O \) to \(\mathcal{C}_1 \)) belong to the same branch of the 4R linkage, while the other two configurations to escape to \(V_2 \) (\(E \) escaping from \(O \) to \(\mathcal{C}_2 \)) belong to the other branch of the 4R linkage. In such case, in order to reconfigure the linkage from \(V_1 \) to \(V_2 \) it is necessary to disassemble it if the two spherical 4R branches are disjoint. Therefore, the following paragraphs investigate the two spherical 4R branches and the four reconfiguration in order to establish the restrictions that ensure that the linkage can reconfigure through all of its branches. We begin by analyzing the rotatability of the evolved spherical 4R linkages since branch identification is different depending on the rotatability of the links. However, we restrict this analysis to the cases in which the toroid generators are built using \(|\gamma| = \gamma^* \).

Proposition 6.1: The spherical 4R linkages obtained as a behavior of Bricard plane-symmetric linkages that generate two concentric toroids intersecting in two curves are either crank-rocker or change-point.

Proof: Let the twist angles of the spherical four-bar linkage evolved from the Bricard plane-symmetric linkage be \(\alpha_{A1,A3} = 2|\gamma_1| \), \(\alpha_{A3,B3} = \alpha_{B1,A1} = \theta \) and \(\alpha_{B3,B1} = 2|\gamma_0| \) (Fig. 10). From the second condition in Eq. 12: \(\theta + |\gamma_1| + |\gamma_0| \leq 2\pi \), then at least one of the links is fully rotatable.

From the second condition in Eq. 12: \(|\gamma_1| + |\gamma_0| < \theta \Rightarrow \frac{1}{2}(\alpha_{A1,A3} + \alpha_{B3,B1}) < \alpha_{A3,B3} = \alpha_{B1,A1} \) and \(\alpha_{min} \neq \alpha_{A3,B3} = \alpha_{B1,A1} \). By contradiction consider that none of the links is fully rotatable. Then, if \(\alpha_{max} = \alpha_{A3,B3} = \alpha_{B1,A1} = \theta \), the criterion it follows:

\[\alpha_{min} + \theta > \theta + \alpha_q \Rightarrow \alpha_{min} > \alpha_q \]
which is a contradiction. In a similar way, now consider \(\alpha_p = \alpha_4 = \alpha_{A3,B3} = \alpha_{A1,A1} = \theta \):

\[
\alpha_{\text{min}} + \alpha_{\text{max}} > 2\theta \Rightarrow \alpha_{A1,A3} + \alpha_{B3,B1} > 2\theta
\]

which contradicts the second condition in Eq. (12). Hence, it is proved that at least one of the links is fully rotatable. This link is the one whose twist angle is \(\alpha_{\text{min}} \). In Fig. 10 it can be seen that the twist angle for the coupler and fixed links is \(\theta \), which is proved to be different to \(\alpha_{\text{min}} \). Therefore, the smallest twist angle corresponds to either the input or output links. Hence, all the linkages are crank-rocker or, if \(\alpha_{A1,A3} = \alpha_{B3,B1} \Rightarrow \gamma = \gamma_b \), change-point.

It is known [55] that in crank-rocker (or rocker-crank) 4R linkages both branches are disjoint. Therefore, from Proposition 6.1 it is concluded that the only way to have a special configuration joining the two branches is the spherical equivalent of a parallelogram linkage. In such a very special case the criterion for branch change is simply the parallel- or anti-parallelism of the links. For crank-rockers (or rocker-cranks), the following two propositions allow the identification of branch change.

Proposition 6.2: A 4R linkage with two opposite links of the same twist angle can reach four plane-symmetric configurations, two of them belong to the same branch while the other two belong to the other branch.

Proof: Refer to Fig. 10 which shows the spherical 4R linkage with two opposite links of the same twist angle, \(\theta \), the angle of the other two links are \(2\gamma_a \) and \(2\gamma_b \). The linkage is shown in a plane-symmetric configuration. \(\hat{s}_{A1}, \hat{s}_{A3}, \hat{s}_{B3} \) and \(\hat{s}_{B1} \) are the unit vectors parallel to the axes of the revolute joints. A coordinate system \(X_0Y_0Z_0 \) is placed fixed to the symmetry plane \(\pi \), so that \(\pi \) coincides with the plane \(X_0Z_0 \) and \(X_0 \) bisects the angle between \(\hat{s}_{A1} \) and \(\hat{s}_{A3} \).

The linkage is symmetric with respect to \(\pi \) when \(\hat{s}_{01} \cdot \hat{j} = 0 \) and \(\hat{s}_{01} \cdot \hat{i} = 0 \) while \(\hat{s}_{01} \cdot \hat{j} = 0 \) and \(\hat{s}_{01} \cdot \hat{i} = 0 \). Adding this restriction, the following four solutions are found for \(\hat{s}_{01} \):

\[
\begin{align*}
\hat{s}_{B1} &= \left(\frac{\cos \gamma - K_1}{\cos \gamma_b}, \frac{K_1}{2 \cos^2 \gamma_b - \cos \gamma \sin \gamma_b}, \frac{K_3 + K_1 \cos \gamma}{\cos^3 \gamma_b} \right) \\
\hat{s}_{B2} &= \left(\frac{-K_1}{\cos \gamma_b}, \frac{K_1}{2 \cos^2 \gamma_b - \cos \gamma \sin \gamma_b}, \frac{K_3 + K_1 \cos \gamma}{\cos^3 \gamma_b} \right) \\
\hat{s}_{B3} &= \left(\frac{K_1}{\cos \gamma_b}, \frac{K_1}{2 \cos^2 \gamma_b - \cos \gamma \sin \gamma_b}, \frac{K_3 - K_1 \cos \gamma}{\cos^3 \gamma_b} \right) \\
\hat{s}_{B4} &= \left(\frac{-K_1}{\cos \gamma_b}, \frac{K_1}{2 \cos^2 \gamma_b - \cos \gamma \sin \gamma_b}, \frac{K_3 - K_1 \cos \gamma}{\cos^3 \gamma_b} \right)
\end{align*}
\]

where \(K_1 = \frac{1}{2} \cos \gamma \sin \gamma_b \sqrt{2(1 - \cos \gamma_A)} \) and \(K_2 = \frac{1}{2} \cos \gamma_b (2 \cos^2 \gamma_b + 2 \cos^2 \gamma \cos \gamma_A - 1) \). \(K_{B3} \), \(k = 1, \ldots, 4 \), can be obtained from \(\hat{s}_{B1} \) by simply changing the sign of the \(\gamma_b \) component of each vector. \(\hat{s}_{A1} \) and \(\hat{s}_{A3} \) are the same for all configurations since they are fixed to plane \(\pi \).

According to [56], if the linkage is crank-rocker (or rocker-crank), all the configurations for which \(\eta_k := \hat{s}_{A1} \times \hat{s}_{B3} \times \hat{s}_{B3} \times \hat{s}_{A3} \) has the same sign belong to the same branch. Upon calculation it is found that, \(\text{sign}(\eta_1) = \text{sign}(\eta_3) = \text{sign}(\cos \gamma_b \sin \gamma_b) \) and \(\text{sign}(\eta_2) = \text{sign}(\eta_4) = -\text{sign}(\cos \gamma_b \sin \gamma_b) \). Hence, it is concluded that plane-symmetric configurations 1 and 3 lie in the same branch, while configurations 2 and 4 lie in the other branch.

From Proposition 6.2 it can be seen that the two different Bricard branches may reconfigure to spherical 4R modes in different branches, making impossible to move from one Bricard branch to the other. Each of the four plane-symmetric configurations presented in Proposition 6.2 is a bifurcation configuration between Bricard branches and spherical 4R branches. Therefore, a vector \(\psi \) tangent to the curve of intersection at \(O \) can be calculated for each of these configurations. For the sake of simplicity we call these vectors *escape directions*.

Proposition 6.3 Given a plane-symmetric Bricard linkage generated from the intersection of two concentric singular toroids with the axis of one rotated about the \(Y \) axis from the other, the escape directions lying on the same side of the plane \(XZ \) correspond to configurations lying in the same spherical 4R branch.

Proof: From the geometry of the plane-symmetric linkages obtained from the intersection of two concentric singular toroids it can be proved that the escape directions \(\psi \) are parallel to \(\hat{B}_2 (\hat{s}_{B3} \times \hat{s}_{B1}) \times (\hat{s}_{A3} \times \hat{s}_{A1}) || \hat{j}_0 \), where \(\hat{j}_0 \) is the unit vector in the direction of \(\hat{j}_O \) in Fig. 10. Each of the four configurations obtained in Proposition 6.2 lead to a escape direction \(\psi \). We are interested in obtaining such vectors in the coordinate system \(A \), which is fixed, while coordinate system \(O \) moves from one configuration to another. Therefore, for coordinate system \(A \), vectors \(\hat{s}_{A1} \) and \(\hat{s}_{B1} \) are fixed, while there are four sets of vectors \(\hat{s}_{A3} \) and \(\hat{s}_{B3} \).

The escape directions are calculated by finding the bases \(\{ \hat{A}_1, \hat{A}_3, \hat{A}_4 \} \):

\[
\Lambda \psi_j = A_j \hat{j}_0 = A_j \hat{A}_1 = \text{aug} \left(\hat{A}_1, \hat{A}_3, \hat{A}_4 \right)^{-1} j
\]

The following four escape directions are found, each related to each of the symmetric configurations found in Propo-
It can be seen that $A\mathcal{V}_1$ and $A\mathcal{V}_2$ ($A\mathcal{V}_3$ and $A\mathcal{V}_4$) are symmetric with respect to the X_AZ_A plane as the only difference between them is the sign of the Y component. The sign of the Y components of $A\mathcal{V}_1$ and $A\mathcal{V}_3$ ($A\mathcal{V}_2$ and $A\mathcal{V}_4$) is the same, namely $-\text{sign}(\cos \gamma_b)$ ($\text{sign}(\cos \gamma_b)$), hence they lie in the same side of the X_AZ_A plane. In addition, all these vectors lie in the same side of the X_AY_A plane as their Z components are the same, namely $-\text{sign}(\sin \gamma_b)$. From Proposition 6.2 it is known that configurations 1 and 3 (2 and 4) lie in the same branch, therefore it can be concluded that the escape directions lying in the same side of the X_AZ_A plane belong to the same branch of the spherical 4R linkage.

Fig. 11 shows three possible cases of intersection composed by two curves: $r_A > r_B$, $r_A = r_B$ and $r_A < r_B$. In each case the tangent vector to the curves at O, the double singularity point, are shown. These tangent vectors are the same that were calculated in Proposition 6.3, in which it was proven that if these 4 vectors have Z_A component of the same sign, then: when the vectors lie in the same side of the X_AZ_A plane the configurations of the spherical 4R linkage lie in the same branch. From Fig. 11 it can be seen that for the case $r_A > r_B$ the vectors lying on the same side of the X_AZ_A plane are tangent to the same curve, and since these configurations belong to the same spherical 4R branch reconfiguration to the other curve is impossible and the two spherical 4R branches cannot be reached without disassembling the linkage. For $r_A = r_B$ and $r_A < r_B$ the two vectors lying on the same side of the X_AZ_A are tangent to different curves, this means that it is possible to reconfigure the disjoint spherical 4R branches without disassembling the linkage as both branches are connected through a Bricard branch related to each of the two curves.

9 An example with two spherical 4R branches connected through two Bricard plane-symmetric branches.

Consider the plane-symmetric linkage shown in figure 13 which has the following DH parameters:

\[
\begin{align*}
\alpha_{A1,A2} &= \frac{1}{3} \pi, \quad \alpha_{B1,B2} = \frac{23}{12} \pi, \quad \alpha_{B1,A1} = \frac{17}{18} \pi, \\
\alpha_{A1,A2} &= 5, \quad \alpha_{B2,B1} = 6, \quad \alpha_{B1,A1} = 0, \\
\alpha_{A2,A3} &= \frac{5}{3} \pi, \quad \alpha_{B3,B2} = \frac{17}{12} \pi, \quad \alpha_{A3,B3} = \frac{25}{18} \pi, \\
\alpha_{A2,A3} &= 5, \quad \alpha_{B3,B2} = 6, \quad \alpha_{A3,B3} = 0
\end{align*}
\]

(14)

then the linkage generates the intersection of two concentric singular toroids, such that $\gamma_a = \frac{1}{3} \pi$, $r_a = 5$, $\gamma_b = -\frac{15}{186} \pi$, $r_b = 6$ and $\theta = \frac{85}{186} \pi$. These construction parameters satisfy the conditions in Eq. 12 therefore $C = \mathcal{V}_1 \cup \mathcal{V}_2$ such that $\mathcal{V}_1 \cap \mathcal{V}_2 = \{O\}$. Since E can reach the double singularity O the linkage has four motion branches: two Bricard branches and two spherical 4R branches. In addition, since $r_A < r_B$ and $\gamma_A \neq \gamma_B$ the linkage should be able to move through the two spherical 4R branches without disassembling it.

Figure 14 shows the linkage in several configurations in each motion branch. Observe that the two configurations belonging to V_1 (V_2) for which $E = O$ are different as expected. None of these four symmetric configurations coincide since V_1 and V_2 are disjoint. However, each of these is singular in V, allowing the reconfiguration to V_{O1} and V_{O2}, the spherical 4R branches, for which $E(q) = O$, $q \in V_{O1} \cup V_{O2}$. The reconfiguration between branches is presented in the diagram in Fig. 12a, which shows how the two branches of the evolved spherical 4R linkage are connected through plane-symmetric Bricard branches allowing reconfigurability without disassembling.

5Such a proof, as mentioned above, is based on the parallelism or anti-parallelism of the links. The proof is not presented due to space reasons.
Fig. 11. Tangent vectors to the intersection curves at the double singularity, for the three possible cases: \(r_A > r_B \), \(r_A = r_B \) and \(r_A < r_B \).

Fig. 12. Two cases of branch reconfiguration diagrams when the intersection of concentric singular toroids is composed of two singular curves: a) \(r_A < r_B \) and \(\gamma_A \neq \gamma_B \) (example presented in this subsection); b) \(r_A = r_B \) and \(|\gamma_A| = |\gamma_B| \).

Conclusions

The plane-symmetric case of Bricard loops was analyzed using the intersection of two concentric singular toroids, allowing the design of reconfigurable linkages with several motion branches which can be either plane-symmetric 6R branches or spherical 4R branches. The conditions for having two singular curves in the intersection set were presented. Each of these curves is related to a plane-symmetric 6R branch of motion. The phenomenon of double singularity leads to kinematotropy when the two surface generators are joined by a spherical pair or a reduction of this to a pair of revolute joints each being parallel to the axis of rotation of surfaces of revolution. However, in the case of overconstrained plane-symmetric linkages it was found that such double singularity leads to a spherical 4R branch.

The study of the escape directions, which are the tangents to the intersection curves at the double singularity revealed the existence of linkages whose evolved crank-rocker spherical 4R linkage can work in its two branches without disassembling it. To the knowledge of the authors, this is the first time that a linkage with this property is presented. These interesting results, along with those for the line-symmetric case, which the authors are presenting in a different paper, shed light on whether it is possible to design more overconstrained linkages that can be reconfigured between different branches using the method of generated surfaces. The paper in which the authors apply the method to the line-symmetric case, [44], is published in parallel with this paper.
Fig. 14. Several configurations of the plane-symmetric Bricard linkage when the intersection of concentric toroids contains two singular curves.

Acknowledgements
The authors gratefully acknowledge the support from the EU 7th Framework Programme, Clearing Clutter Bit by Bit (SQUIRREL), under grant No.610532 and the EPSRC project EP/P026087/1. The first author would like to thank The Mexican National Council for Science and Technology (CONACyT) for the scholarship awarded to pursue doctoral studies as well as the Mexican Ministry of Public Education (SEP) for the complementary funding awarded for the same aim.

References

a constrained parallel robot to reach a set of task positions”. In Proceeding of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 4026–4030.

List of Figures

1. The general plane-symmetric case of Bricard linkage. ... 2
2. An RR dyad generating a singular toroid ($r = l, s = 0$). ... 3
3. The concentric singular toroids intersection: a) surfaces, b) resultant Bricard plane-symmetric linkage. . . 4
4. Common perpendicular diagram for the plane-symmetric linkage. ... 4
5. Two singular toroids that are tangent to each other in the XAZ_A plane. 5
6. A Bricard plane-symmetric linkage with finite mobility zero in its two different assembly modes. . . . 7
7. A Bricard plane-symmetric linkage with finite mobility zero in the assembly mode with $E(q_1) = P_1$. . . 7
8. A case with two singular curves in the intersection: a) A_A and B_B curves, b) surfaces and intersection. . 8
9. A reconfigurable Bricard plane-symmetric linkage in its spherical 4R operation mode, with its two secondary circles tangent to each other and to curve C_1 and the linkage is about to escape to V_1. 9
10. A plane-symmetric configuration of a spherical 4R linkage with two opposite links of the same angle. . 9
11. Tangent vectors to the intersection curves at the double singularity, for the three possible cases: $r_A > r_B$. 12
12. Two cases of branch reconfiguration diagrams when the intersection of concentric singular toroids is composed of two singular curves: a) $r_A < r_B$ and $\gamma_A \neq \gamma_B$ (example presented in this subsection); b) $r_A = r_B$ and $|\gamma_A| = |\gamma_B|$. ... 12
13. A reconfigurable Bricard plane-symmetric linkage that allows the reconfiguration between two spherical 4R branches through two Bricard branches. The intersection of the concentric singular toroids is composed of two singular curves. ... 12
14. Several configurations of the plane-symmetric Bricard linkage when the intersection of concentric toroids contains two singular curves. ... 13