Document Version
Early version, also known as pre-print

Link to publication record in King's Research Portal

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 28. Jul. 2019
INTRODUCTION
The non-invasive assessment of regional bone metabolism using 18F-fluoride positron emission tomography (18F-PET) can aid in understanding the pathophysiology of metabolic bone diseases such as osteoporosis.

The aim of this study was to evaluate the relationship between five different quantification methods against the three compartment four parameter model (Ki-4k), used as the gold standard, for the measurement of regional bone turnover (Ki, representing the net plasma clearance to bone mineral) using 18F-PET at the hip and lumbar spine.

METHODS
Twelve healthy postmenopausal women aged 52-71 years, with no history of metabolic bone disease (except untreated osteoporosis in the spine) and not currently on treatments affecting skeletal metabolism were recruited.

Each subject had 60 minutes dynamic 18F-PET scans at the lumbar spine and hip two weeks apart with injected 18F-fluoride activities of 90 MBq and 180 MBq respectively.

Arterial input functions were obtained from images of the aorta in the same datasets in order to determine Ki values at both the sites using a Ki-4k, three compartment three parameter model (Ki-3k), Patlak analysis (Ki-Pat), spectral analysis (Ki-Spec), deconvolution analysis (Ki-Decon) and Standardised uptake value (SUV).

RESULTS
For Ki at the hip, the correlation between Ki-4k with Ki-Spec, Ki-Pat, Ki-Decon, SUV and Ki-3k were 0.95, 0.89, 0.89, 0.91 and 0.59 respectively (Table 1).

For Ki at the lumbar spine, the correlation between Ki-4k with Ki-Spec, Ki-Decon, Ki-Pat, Ki-3k, SUV were 0.89, 0.89, 0.86, 0.82, 0.78 respectively (Table 1).

For the combined Ki at the hip and lumbar spine, the correlation between Ki-4k with Ki-Pat, SUV, Ki-Decon, Ki-3k, Ki-Spec were 0.95, 0.95, 0.93, 0.93, 0.88 respectively (Table 1).

The differences between the correlations measured using Fisher's Z-test were not significant (p>0.05).

CONCLUSION
We concluded that all five methods of quantification (Ki-3k, Ki-Pat, Ki-Spec, Ki-Decon and SUV) strongly correlate with Ki-4k.

However, care should be taken when comparing reports that use different methods of quantification.

The semi-quantitative SUV correlated just as well with Ki-4k estimates as the other dynamic quantification methods.

However, it is not yet clear if the SUV is a good indicator of measuring changes in bone turnover for therapeutic purposes since no studies have been performed directly comparing the changes in SUV with the changes in bone histomorphometric data as a measure of gold standard.

<table>
<thead>
<tr>
<th>Ki-4k</th>
<th>Spine (p-value)</th>
<th>Hip (p-value)</th>
<th>Combined (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ki-3k</td>
<td>0.82 (0.0012)</td>
<td>0.59 (0.0436)</td>
<td>0.93 (<0.0001)</td>
</tr>
<tr>
<td>Ki-Pat</td>
<td>0.86 (0.0004)</td>
<td>0.89 (0.0001)</td>
<td>0.95 (<0.0001)</td>
</tr>
<tr>
<td>Ki-Spec</td>
<td>0.89 (<0.0001)</td>
<td>0.95 (<0.0001)</td>
<td>0.88 (<0.0001)</td>
</tr>
<tr>
<td>Ki-Decon</td>
<td>0.89 (0.0001)</td>
<td>0.89 (<0.0001)</td>
<td>0.93 (<0.0001)</td>
</tr>
<tr>
<td>SUV</td>
<td>0.78 (0.0028)</td>
<td>0.91 (<0.0001)</td>
<td>0.95 (<0.0001)</td>
</tr>
</tbody>
</table>

TABLE 1: Pearson correlation and their significance values between Ki-4k and other methods measured at the hip, lumbar spine and combined values.

FINANCIAL SUPPORT
This work was funded by the Health Research Board in Ireland under grant No: RP/2007/319.

*CORRESPONDING AUTHOR
tanujpuri82@gmail.com