The Role of Platelets in the Regulation of Pulmonary Infection and Host Defence

O'Shaughnessy, Blaze Georgia

Awarding institution:
King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.

END USER LICENCE AGREEMENT

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to:
• Share: to copy, distribute and transmit the work

Under the following conditions:
• Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work).
• Non Commercial: You may not use this work for commercial purposes.
• No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above.

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 01. Nov. 2019
The Role of Platelets in the Regulation of Pulmonary Infection and Host Defence

Blaze Georgia O’Shaughnessy

A thesis submitted for the degree of Doctor of Philosophy

Experiments described in this thesis were performed in:

The Sackler Institute of Pulmonary Pharmacology
Institute of Pharmaceutical Science
King's College London
Abstract

Background. The implication of platelets in inflammatory disorders, such as asthma, has become increasingly more apparent. Following an inflammatory insult, platelets modulate inflammation by a number of distinct mechanisms, including pulmonary-leukocyte recruitment and release of platelet specific mediators. However, little is known regarding the role of platelets in the regulation of pulmonary infection. Pulmonary colonisation of bacteria, including *Pseudomonas aeruginosa* (*P.aeruginosa*) and *Staphylococcus aureus* (*S.aureus*) presents a therapeutic challenge due to antimicrobial resistance (AMR).

Objectives. In this study, the effect of experimentally induced platelet depletion was investigated on infection and inflammatory parameters in a murine model of pulmonary infection. A new approach in targeting AMR was also tested, using a novel antibiotic enhancer compound, HT61.

Methods. C57/B16 mice were experimentally depleted of platelets, 24 hours prior to infection with either sham, *P.aeruginosa* or *S.aureus* embedded agar beads. Bronchoalveolar lavage (BAL) fluid and lungs, kidney and spleen were analysed for inflammatory cells and bacterial load respectively. The role of platelet purinergic receptors was also assessed. *In vitro* assays were performed to investigate the effect of bacteria on platelet function, through measurements of platelet-leukocyte complexes and mediator release. Additional *in vivo* experiments were performed to test enhancer compound, HT61.

Results. Infection induced pulmonary platelet recruitment (p<0.01) in addition to a mild state of thrombocytopenia (p<0.05). Evidence of platelet activation was detected in infected mice through increased levels of platelet-derived mediators Platelet Factor-4 (PF-4) and Regulated upon activation, normal T-cell expressed and secreted (RANTES) in BAL fluid and platelet-neutrophil complexes (p<0.01) in blood. In mice depleted of circulating platelets, there was evidence of systemic bacterial dissemination and weight loss was increased compared to mice with normal platelet levels. Furthermore, pulmonary neutrophil recruitment was significantly reduced 24 hours post infection in mice depleted of circulating platelets. These results were reproduced following inhibition of the P2Y14 receptor and use of the ATP/ADP hydrolysing agent, Apyrase. HT61 as a singular treatment showed no inhibition of *P.aeruginosa* or *S.aureus* bacterial load, however, in combination with Tobramycin an enhanced reduction in bacterial load was observed for two strains of *P.aeruginosa* (p<0.05) when compared to treatment with either drug alone.

Conclusions. Here it is demonstrated that infection induces platelet activation and accumulation in the lungs. Mice depleted of circulating platelets or treated with Apyrase or a P2Y14 receptor antagonist demonstrated increased weight loss and increased systemic infection, this therefore suggests that in addition to the role played by neutrophils, platelets also have a distinct role in the host defence against bacterial infection.

Furthermore, I demonstrated an enhancement of Tobramycin’s efficacy when administered in combination with HT61, highlighting a potential novel treatment to target AMR.
Acknowledgements

I wish to express my sincere gratitude to several people without whom this PhD would not have been possible.

First and foremost, I would like to thank my supervisors Professor Clive Page and Dr. Simon Pitchford. Clive, thank you for believing in me and supporting me over the course of the last few years. I have been incredibly lucky to have you as my supervisor and I have learnt a great deal from you. Simon, thank you for your continued support and guidance throughout my project, your advice has always been invaluable. I would also like to thank my ‘everyday supervisor’ and good friend- Richard Amison. Working with you has been an absolute pleasure and I could not have asked for a better supervisor. We have laughed together, (I have) cried and I will never forget our hilarious conversations during experiments! Your support, particularly in these last few months, really has carried me through so I am eternally grateful. Thank you also to the other members of the Sackler Institute, particularly Steph, Simon and Sajeel, I have absolutely loved working with all of you and what a team we make!

Next, I would like to thank my boyfriend, Joe. Without sounding too cliché you have been my absolute rock recently and in no way would this PhD have been possible without you. You continually amaze me with your willingness to listen to me talking gobbledygook about platelets and your encouragement with everything I do in life. You have made these last few years so much easier and I can only hope I can repay you somehow in the future.

A special thank you to my Mum and sister for your support. Mum, since I was tiny you have always encouraged me and supported me, and being the most hard working, driven person I know, you have inspired me to take the same approach to life. Thank you for always being there, I owe you so much! Amber, since moving to Singapore you have still been the most
caring, attentive and supportive sister, offering to proofread my thesis and countless phone calls to check up on me. Speaking to you always brightens up my day so thank you so much for being the best sister I could wish for. Also thank you to Tom Olney for supporting me and being the older brother I never had, you make me feel so at ease with your career advice and I always feel way better after speaking with you!

To my Dad and step mum, Rachel- coming home throughout my PhD has been a breath of fresh air. Even if it is supplying me with a much needed gin and tonic and giving me puppies to walk, it has been a wonderful break at times and very much helped to alleviate stress, so thank you for that and your continued support with everything I do.

Finally, a big thank you to all of my friends for your support over the last few years, particularly, Livvy O’Neill for always being there for me since we were little 11-year olds! Having a best friend like you has made my PhD so much easier.

You have all helped in so many ways I can’t even describe and I couldn’t have done it without all of you, thank you!
Publications Arising from Thesis

- Amison RT, Arnold S, O'Shaughnessy BG, Cleary SJ, Ofoedu J, Idzko M, Page CP, Pitchford SC. Lipopolysaccharide (LPS) induced pulmonary neutrophil recruitment and platelet activation is mediated via the P2Y1 and P2Y14 receptors in mice. Pulm Pharmacol Ther, 2017, 45: 62-68

- Cleary SJ, Hobbs C, Amison RT, Arnold S, O'Shaughnessy BG, Lefrançais E, Mallavia V, Looney MR, Page CP, Pitchford SC. Platelet recruitment to lungs of mice following LPS inhalation does not require interaction with neutrophils, PSGL-1 or P-selectin (Manuscript in preparation)

- O'Shaughnessy BG, Amison RT, Coates A, Page CP. Assessing the synergistic effect of the enhancer compound HT61 on Tobramycin activity in a murine lung infection model, European Respiratory Journal, 2017, 50 (suppl 61) OA4837
Contents

Abstract ... 2

Acknowledgements ... 3

Publications Arising from Thesis ... 5

List of Abbreviations ... 13

List of Tables ... 18

List of Figures ... 19

Chapter I ... 26

1.1 Pulmonary infection with *Pseudomonas aeruginosa* and *Staphylococcus aureus* 27

1.1.1 *Pseudomonas aeruginosa* .. 27

1.1.2 Biofilm Formation .. 28

1.1.3 *Staphylococcus aureus* .. 31

1.2 Antibiotic Resistance .. 33

1.2.1 An Introduction to Antibiotic Resistance ... 33

1.2.2 Mechanisms of Antibiotic Resistance .. 35

1.2.3 Antibiotic Enhancer Compounds .. 38

1.3 Platelets .. 40

1.3.1 Platelet Development and Production ... 40

1.3.2 Platelet Ultrastructure ... 43

1.4 Mechanisms of Platelet Activation .. 47

1.5 A Proposed Divergence in Platelet Function .. 54

1.5.1 The Role of Platelets in Haemostasis and Thrombosis .. 54

1.5.2 The Role of Platelets in Inflammation .. 56

1.5.3 The Role of Platelets in Infection ... 64

1.6 Aims and Objectives ... 94
Chapter II ... 97

2.1 Materials .. 98

2.2 Animal ... 103

2.3 Bacterial Strains ... 103

2.4 Bacterial Culture Preparation .. 104

2.5 In vivo Animal Studies .. 104

2.5.1 Preparation of Bacterial Embedded Agar Beads ... 104

2.5.2 Establishing a Model of Pulmonary Infection with *P. aeruginosa* and MRSA 105

2.5.3 Whole Blood Platelet Quantification and Plasma Isolation .. 106

2.5.4 Bronchoalveolar Lavage .. 107

2.5.5 Total Leukocyte Quantification .. 107

2.5.6 Differential Leukocyte Quantification .. 107

2.5.7 Colony Forming Unit Determination .. 108

2.5.8 The Effect of Tobramycin on Pulmonary Infection with *P. aeruginosa* 108

2.5.9 The Effect of Vancomycin on Pulmonary Infection with MRSA ... 109

2.6 The Effect of Thrombocytopenia in a Murine Model of Pulmonary Infection with

 P. aeruginosa and MRSA .. 109

2.6.1 Establishing a Murine Model of Platelet Depletion .. 109

2.6.2 The Effect of Platelet Depletion on Pulmonary Haemorrhage .. 111

2.6.3 Spleen and Kidney Harvest for Microbiological Analysis ... 111

2.6.4 Evaluation of Biochemical Markers of Metabolic Acidosis .. 112

2.6.5 The Effect of Thrombocytopenia on Pulmonary Alveolar Integrity ... 112

2.7 Mechanisms of Platelet Involvement in Infection ... 113

2.7.1 The Role of Platelet TLR4 in the Regulation of Pulmonary Infection ... 113

2.7.2 The Role of Platelet Purinergic Receptors in the Regulation of Pulmonary Infection 115

2.8 Histological Analysis of Lung Tissue .. 116

2.8.1 Analysis of Infection Induced Pulmonary Neutrophil Recruitment .. 116
2.8.2 Histological Analysis of Pulmonary Tissue with Haematoxylin and Eosin (H&E):......119

2.9 Evaluation of Inflammatory and Platelet Activation Markers Following Infection:..........119

2.10 The Use of a Murine Model of Pulmonary Infection for Therapeutic Analysis:...........121

2.10.1 The Effect of HT61 Against Pulmonary Infection with *P. aeruginosa* and MRSA:......121

2.10.2 Effects of HT61 and Tobramycin/ Vancomycin Combination Treatment Against Pulmonary Infection with *P. aeruginosa* and MRSA:...122

2.11 The Role of Platelets in the Regulation of Pulmonary Infection:...............................123

2.11.1 Pulmonary Platelet Recruitment Following Infection with *P. aeruginosa* Strain RP73: ..123

2.12 In vitro Experiments:..123

2.12.1 Murine Blood Collection:..123

2.12.2 Murine Platelet Isolation:..124

2.12.3 The Effect of Platelets on Growth of *P. aeruginosa* strain RP73 *in vitro*:...........124

2.12.4 Platelet Bacterial Killing Assays:...125

2.13 Ex vivo Animal Studies:...126

2.13.1 Analysis of Platelet-Leukocyte Complex Formation ex vivo:...............................126

2.14 Human in vitro Studies:..127

2.14.1 Human Platelet Isolation:..127

2.14.2 Bacteria Induced Platelet Chemotaxis in vitro:...127

2.15 Statistical Analysis:..129

Chapter III...131

3.1 Establishing a Murine Model of Pulmonary Infection with *P. aeruginosa* and MRSA.....132

3.1.1 Establishing a Murine Model of Pulmonary Infection with *P. aeruginosa* strain RP73. ..132

3.1.2 Establishing a Murine Model of Pulmonary Infection with *P. aeruginosa* strain PAO1. ..139

3.1.3 Establishing a Murine Model of Pulmonary Infection with *P. aeruginosa* strain NN2.141

3.1.4 Establishing a Murine Model of Pulmonary Infection with MRSA strain USA300.....143
3.2 Investigating the Effects of Infection on Inflammatory Markers in BAL Fluid and Blood Plasma

3.2.1 Quantification of IL-6 Levels in BAL Fluid Following Infection with *P. aeruginosa* or MRSA. ...146

3.2.2 Quantification of IL-6 Levels in Blood Plasma Following Infection with *P. aeruginosa* or MRSA. ...148

3.2.3 Quantification of KC Levels in BAL Fluid Following Infection with *P. aeruginosa* or MRSA. ...150

3.2.4 Quantification of KC Levels in Blood Plasma Following Infection with *P. aeruginosa* or MRSA. ...152

3.3 Validation of the Murine Model of Pulmonary Infection with *P. aeruginosa* and MRSA, using Tobramycin and Vancomycin...154

3.3.1 Validation: Assessing the Ability of Tobramycin to Reduce Bacterial Load Post Infection with *P. aeruginosa* strain RP73. ...154

3.3.2 Validation: Assessing the Ability of Tobramycin to Reduce Bacterial Load Post Infection with *P. aeruginosa* strain PAO1. ...157

3.3.3 Validation: Assessing the Ability of Tobramycin to Reduce Bacterial Load Post Infection with *P. aeruginosa* strain NN2. ...160

3.3.4 Validation: Assessing the Ability of Tobramycin to Reduce Bacterial Load Post Infection with MRSA strain USA300. ...163

Chapter IV ..166

4.1 Investigating Infection Induced Thrombocytopenia...167

4.2 Investigating *P. aeruginosa* strain RP73 Infection Induced Pulmonary Platelet Recruitment. ..169

4.3 Investigating the Effects of Infection on Platelet Activation Markers in BAL Fluid and Blood Plasma ...172

4.3.1 Quantification of PF-4 Levels in BAL fluid Following Infection with *P. aeruginosa* or MRSA. ..172
4.3.2 Quantification of RANTES Levels in BAL fluid Following Infection with P. aeruginosa or MRSA .. 174

4.3.3 Quantification of PF-4 Levels in Blood Plasma Following Infection with P. aeruginosa or MRSA. ... 176

4.4 Investigating P. aeruginosa strain RP73 Infection Induced Platelet-Leukocyte Complex Formation ex vivo ... 178

4.5 Investigating Bacteria Induced Platelet Migration. .. 180

4.6 Establishing a Thrombocytopenic Model of Pulmonary Infection with P. aeruginosa strain RP73. ... 181

4.6.1 Investigating the Effect of Pulmonary Infection on Circulating Platelet Numbers. 181

4.6.2 Investigating the Effect of Experimentally Induced Platelet Depletion on the Circulating Platelet Numbers. ... 182

4.6.3 Investigating the Effect of Platelet Depletion on Pulmonary Haemorrhage. 184

4.6.4 Investigating the Effect of Experimentally Induced Platelet Depletion on Weight Loss. ... 186

4.6.5 Investigating the Effect of Experimentally Induced Platelet Depletion on Pulmonary Bacterial Load ... 188

4.6.6 Investigating the Effect of Experimentally Induced Platelet Depletion on Bacterial Dissemination. ... 191

4.6.7 Investigating the Effect of Experimentally Induced Platelet Depletion on Pulmonary Leukocyte Recruitment ... 195

4.6.8 Investigating the Effect of Experimentally Induced Platelet Depletion on Mortality. 201

4.6.9 Investigating the Effect of Experimentally Induced Platelet Depletion on Cause of Death ... 204

4.6.10 Investigating the Effect of Experimentally Induced Thrombocytopenia on Pulmonary Alveolar Integrity ... 208

4.7 Establishing a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300. ... 210

4.7.1 Investigating the Effect of Experimentally Induced Platelet Depletion on the Circulating Platelet Count. ... 210
4.7.2	Investigating the Effect of Experimentally Induced Platelet Depletion on Weight Loss.
4.7.3	Investigating the Effect of Platelet Depletion on Pulmonary Haemorrhage.
4.7.4	Investigating the Effect of Experimentally Induced Platelet Depletion on Pulmonary Bacterial Load.
4.7.5	Investigating the Effect of Experimentally Induced Platelet Depletion on Bacterial Dissemination to the Kidney and Spleen.
4.7.6	Investigating the Effect of Experimentally Induced Platelet Depletion on Pulmonary Leukocyte Recruitment.
4.7.7	Investigating the Effect of Experimentally Induced Platelet Depletion on Mortality.
4.7.8	Investigating the Effect of Experimentally Induced Platelet Depletion on Changes in Biochemical Markers of Metabolic Acidosis.

4.8	Investigating the Mechanisms of Platelet Involvement in Infection.
4.8.1	The Role of Platelet TLR4 in the Regulation of Pulmonary Infection.
4.8.2	The Role of Platelet Purinergic Receptors in the Regulation of Pulmonary Infection.
4.8.3	Investigating the Effect of Platelets on Growth of *P. aeruginosa* strain RP73 *in vitro*.
4.8.4	Investigating the Effect of Platelets on Death of *P. aeruginosa* strain RP73 *in vitro*.

Chapter V: Results III

5.1	Investigating the Effect of HT61 in Model of Pulmonary Infection with the Gram-Negative *P. aeruginosa*.
5.1.1	Investigating the Effect of HT61 in a Model of Pulmonary Infection with *P. aeruginosa* strain RP73.
5.1.2	Investigating the Effect of HT61 in a Model of Pulmonary Infection with *P. aeruginosa* strain PAO1.
5.1.3	Investigating the Effect of HT61 in a Model of Pulmonary Infection with *P. aeruginosa* strain NN2.
5.2 Investigating the Effect of HT61 in a Model of Pulmonary Infection with the Gram-Positive MRSA.. 254

5.2.1 Investigating the Effect of HT61 in a Model of Pulmonary Infection with MRSA strain USA300.. 254

5.3 Investigating the Effect of HT61 and Tobramycin Combination Therapy in a Model of Pulmonary Infection with Gram- Negative P. aeruginosa .. 257

5.3.1 Investigating the Effect of HT61 and Tobramycin in a Model of Pulmonary Infection with P. aeruginosa RP73. .. 257

5.3.2 Investigating the Effect of HT61 and Tobramycin in a Model of Pulmonary Infection with P. aeruginosa PAO1. .. 261

5.3.3 Investigating the Effect of HT61 and Tobramycin in a Model of Pulmonary Infection with P. aeruginosa NN2 .. 264

5.4 Investigating the Effect of HT61 and Vancomycin Combination Therapy in a Model of Pulmonary Infection with Gram- Positive MRSA. .. 267

5.4.1 Investigating the Effect of HT61 and Vancomycin in a Model of Pulmonary Infection with MRSA strain USA300. ... 267

Chapter VI ... 270

6.1 Establishment and Validation of a Murine Model of Pulmonary Infection. .. 271

6.2 The Role of Platelets in the Regulation of Pulmonary Infection and Host Defence. 276

6.3 The Use of a Murine Model of Pulmonary Infection for Therapeutic Analysis. 291

Future Work... 295

Final Remarks ... 298

References ... 299
List of Abbreviations

ACD- Acid Citrate Dextrose
ADP- Adenosine diphosphate
ALI- Acute Lung Injury
AMP- Adenosine Monophosphate
AMR- Antimicrobial Resistance
AnGAP- Anion Gap
ANOVA- One-way Analysis of Variance
ARDS- Acute Respiratory Distress Syndrome
ASPA- Animal (Scientific Procedures) Act
ATP- Adenosine Triphosphate
BAL- Bronchoalveolar Lavage
BCS- Body Conditioning Score
BSA- Bovine Serum Albumin
β-TG- Beta-Thromboglobulin
Ca$^{2+}$- Calcium
CF- Cystic Fibrosis
cfu- Colony Forming Units
CI- Chemotactic Index
ClfA- Clumping Factor A
ClfB- Clumping Factor B
CLR- C Type Lectin Receptors
COPD- Chronic Obstructive Pulmonary Disease
CTAP-3- Connective Tissue Activating Peptide
DAB- Diaminobenzidine
DMSO- Dimethyl Sulfoxide
DTS- Dense Tubular System
E.coli- Escherichia coli
ELISA- Enzyme Linked Immunosorbent Assay
EPS- Extracellular Polymeric Substance
ESAM- Endothelial Cell-Specific Adhesion Molecule
FB-A- Fibrinopeptide A
FB-B- Fibrinopeptide B
FITC- Fluorescein Isothiocyanate
fMLP- N-Formylmethionine-leucyl-phenylalanine
FnBPA- Fibronectin Binding Protein A
FnBPB- Fibronectin Binding Protein B
GP- Glycoprotein
GPCR- G Protein Coupled Receptor
H and E- Haematoxylin and Eosin
Hb- Haemoglobin
HCO3- Hydrogen Carbonate
Hct- Haematocrit
HEK- Human Embryonic Kidney
h.p.i- Hours Post Infection
H. pylori- Helicobacter pylori
HRP- Horse Radish Peroxidase
IACUC- Institutional Animal Care and Use Committee
IBD- Irritable Bowl Syndrome
ICAM 2- Intracellular Adhesion Molecule 2
Ig- Immunoglobulin
IFNy- Interferon Gamma
IL- Interleukin
i.m- Intramuscular
i.p- Intraperitoneal
Iscd- Iron-Regulated Surface Determinant
i.v- Intravenous
JAM- Junctional Adhesion Molecule
KC- Chemokine Receptor Ligand KC (CXCL1)
KCl- Potassium Chloride
K. pneumoniae- Klebsiella pneumoniae
LAD- Leukocyte Adhesion Deficiency
LFA1- Lymphocyte function-associated antigen 1
LPS- Lipopolysaccharide
LPxTG- Leucine-Proline-x-Threonine-Glycine
MAdCAM 1- Mucosal Vascular Addressin Cell Adhesion Molecule 1
MDC- Macrophage Derived Chemokine
MFI- Mean Fluorescence Intensity
MgCl2- Magnesium Chloride
MIP-1α- Macrophage Inflammatory Protein- 1α
MMP- Matrix Metalloproteinases
mL- Millilitres
MRSA- Methicillin- resistant *Staphylococcus aureus*
MS- Multiple Sclerosis
MSSA- Methicillin- susceptible *Staphylococcus aureus*
NaHCO3- Sodium Hydrogen Carbonate
Na2HPO4.12H2O- Sodium Dihydrogen Phosphate Dodecahydrate
NAP-2- Neutrophil activating peptide-2
NaOH- Sodium Hydroxide
NET- Neutrophil Extracellular Trap
ng- Nanograms
NK- Natural Killer
NLR- NOD like Receptor
o.a- Oropharyngeal
OCS- Open Canalicular System
OD- Optical Density
ONC- Overnight Culture

P. aeruginosa- *Pseudomonas aeruginosa*

PAF- Platelet Activating Factor

PAMP- Pathogen Associated Molecular Pattern

PBP- Platelet Basic Protein

PB- Penicillin Binding Protein

PBS- Phosphate Buffered Saline

PCO2- Partial Pressure Carbon Dioxide

PCR- Polymerase Chain Reaction

PCV- Packed Cell Volume

PDGF- Platelet Derived Growth Factor

PE- Phycoerythrin

PECAM- Platelet Endothelial Cell Adhesion Molecule

PF-4- Platelet Factor- 4

PGE1- Prostaglandin E1

PI- Propidium Iodide

PKC- Protein Kinase C

PLC- Phospholipase C

PMC- Polymononuclear Cell

PMP- Platelet Microbicidal Protein

PPP- Platelet Poor Plasma

PRP- Platelet Rich Plasma

PRR- Pathogen Recognition Receptors

PSGL-1- P-selectin Glycoprotein Ligand 1

RA- Rheumatoid Arthritis

RANTES- Regulated on Activation, Normal T- cell Expressed and Secreted

RGD- Arginine Glycine Aspartate

RLR- RIG-1 like Receptors

RPM- Rotations Per Minute
S. aureus - *Staphylococcus aureus*

SDF-1α - Stromal Cell Derived Factor 1α

SEM - Standard Error of the Mean

S. gordonii - *Streptococcus gordonii*

S. pneumoniae - *Streptococcus pneumoniae*

S. pyogenes - *Streptococcus pyogenes*

S. sanguinis - *Streptococcus sanguinis*

NaCl - Sodium Chloride

TARC - Thymus Activated on Regulated Chemokine

Tβ-4 - Thymosin β-4

TCO2 - Total Carbon Dioxide

TGFB - Transforming Growth Factor Beta

TLR - Toll-like Receptor

TNFα - Tumour Necrosis Factor Alpha

TRAP - Thrombin Receptor Activating Peptide

TSA - Tryptic Soy Agar

TSB - Tryptic Soy Broth

TxA2 - Thromboxane

UDP - Uridine Diphosphate

UTP - Uridine Triphosphate

VCAM-1 - Vascular Cell Adhesion Protein 1

VEGF - Vascular Endothelial Growth Factor

VLA4 - Very Late Antigen 4

vWF - Von Willebrand Factor

w/v - Weight Per Volume

µL - Microliters
List of Tables

Chapter I: Introduction

Table 1. 1. Platelet Granular Constituents. ... 46

Chapter II: Materials and Methods

Table 2. 1. Tobramycin Doses for the Murine Model of Pulmonary Infection with P.aeruginosa .. 109
Table 2. 2. Reaction Mixture Components and Final Concentrations Used. 114
Table 2. 3. TLR4 Knockout and Wild Type Primers using for DNA Amplification. 114
Table 2. 4. Cycling Parameters Used for DNA Amplification. 115
Table 2. 5. Protocol to Prepare Lung Tissues From Mice Infected with P.aeruginosa... 117
Table 2. 6. The Concentrations of Capture and Detection Antibodies and 7-point Standards: mouse Duoset enzyme linked immunosorbent assay (ELISA) kit. 120
Table 2. 7. HT61 Doses Used in the Murine Model of Pulmonary Infection with P.aeruginosa and MRSA ... 121
Table 2. 8. Singular and Combination Treatment Doses for the Murine Model of Pulmonary Infection with P.aeruginosa and MRSA. .. 122
List of Figures

Chapter I: Introduction

Figure 1.1. The Process of Biofilm Formation ...30
Figure 1.2. The Action of Traditional Antibiotics ..34
Figure 1.3. Induction of Platelet Shape Change and Granule Secretion via Gq Coupled
Receptors ..52
Figure 1.4. Involvement of Platelets in Leukocyte Recruitment to Inflamed Tissue63
Figure 1.5. The Innate and Acquired Immune Responses to Infection66
Figure 1.6. A Summary of Direct and Indirect Interactions Between Platelets (TLR, FcyRIIa,
αIIbβ3, GPIIbα, complement) and Bacteria ..76
Figure 1.7. An Overview of the Main Components and Actions of Complement78
Figure 1.8. An Overview of Platelet Purinergic Signalling and Effects81
Figure 1.9. An Overview of the Direct and Indirect Antimicrobial Functions of Platelets...88

Chapter II: Materials and Methods

Figure 2.1. Protocol for inducing pulmonary bacterial infection in mice106
Figure 2.2. A Protocol for Platelet Depletion: To Investigate the Effect of Platelet Depletion
in a Murine Model of Pulmonary Bacterial Infection ...110
Figure 2.3. Diagrammatic Representation of the Bacterial Induced Platelet Chemotaxis
Apparatus ..129
Chapter III: Results I

Figure 3.1. Effects of P. aeruginosa strain RP73 on Bacterial and Inflammatory Parameters of Pulmonary Infection...

Figure 3.2. Effects of P. aeruginosa strain RP73 on Inflammatory Cell Recruitment, Lung Architecture and Alveolar Integrity.

Figure 3.3. Effects of P. aeruginosa strain RP73 on Pulmonary Neutrophil Recruitment.

Figure 3.4. Effects of P. aeruginosa strain PAO1 on Bacterial and Inflammatory Parameters of Pulmonary Infection.

Figure 3.5. Effects of P. aeruginosa strain NN2 on Bacterial and Inflammatory Parameters of Pulmonary Infection.

Figure 3.6. Effects of MRSA strain USA300 on Bacterial and Inflammatory Parameters of Pulmonary Infection.

Figure 3.7. Effects of Infection with P. aeruginosa and MRSA on IL-6 Levels in BAL Fluid.

Figure 3.8. Effects of Infection with P. aeruginosa and MRSA on IL-6 levels in Blood Plasma.

Figure 3.9. Effects of Infection with P. aeruginosa and MRSA on KC levels in Bal Fluid.

Figure 3.10. Effects of Infection with P. aeruginosa and MRSA on KC levels in Blood Plasma.

Figure 3.11. Effects of Tobramycin Following Infection with P. aeruginosa strain RP73.

Figure 3.12. Effects of Tobramycin Following Infection with P. aeruginosa strain PAO1.

Figure 3.13. Effects of Tobramycin Following Infection with P. aeruginosa strain NN2.

Figure 3.14. Effects of Vancomycin Following Infection with MRSA strain USA300.
Chapter IV: Results II

Figure 4.1. Effects of Infection with P.aeruginosa and MRSA on Circulating Platelet Levels. ..168

Figure 4.2. Effects of Infection with P.aeruginosa strain RP73 on Pulmonary Platelet Accumulation. ...171

Figure 4.3. Effects of Infection with P.aeruginosa and MRSA on PF-4 Levels in BAL Fluid. ..173

Figure 4.4. Effects of Infection with P.aeruginosa and MRSA on RANTES Levels in BAL Fluid. ...175

Figure 4.5. Effects of Infection with P.aeruginosa and MRSA on PF-4 Levels in Blood Plasma. ...177

Figure 4.6. Effects of Infection with P.aeruginosa on Platelet-Leukocyte Complex Formation ...179

Figure 4.7. Effects of Bacteria Induced Platelet Migration. ...180

Figure 4.8. Effects of Experimentally Induced Platelet Depletion on Circulating Platelet Numbers in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73. ...183

Figure 4.9. Effect of the Platelet Depleting anti-Gplbα Antibody on Pulmonary Haemorrhage in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73..185

Figure 4.10. Effects of Experimentally Induced Platelet Deletion on Weight Loss in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73..............187
Figure 4.11. Effects of Experimentally Induced Platelet Deletion on Pulmonary Bacterial Load in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73...190

Figure 4.12. Effects of Experimentally Induced Platelet Deletion on Bacterial Dissemination to the Kidney in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73. ...193

Figure 4.13. Effects of Experimentally Induced Platelet Deletion on Bacterial Dissemination to the Spleen in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73. ...194

Figure 4.14. Effect of Experimentally Induced Platelet Depletion on Pulmonary Total Leukocyte Recruitment in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73. ...198

Figure 4.15. Effects of Experimentally Induced Platelet Depletion on Pulmonary Neutrophil Recruitment in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73. ...199

Figure 4.16. Effects of Experimentally Induced Platelet Depletion on Pulmonary Macrophage Recruitment in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73. ...200

Figure 4.17. Effects of Experimentally Induced Platelet Depletion on Mortality in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73.................203

Figure 4.18. Effects of Experimentally Induced Platelet Depletion on Change in Temperature in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73.206
Figure 4.19. Effects of Experimentally Induced Platelet Depletion on Changes in Biochemical Markers of Metabolic Acidosis in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73. ... 207

Figure 4.20. Effects of Experimentally Induced Thrombocytopenia on Pulmonary Alveolar Integrity in a Thrombocytopenic Model of Pulmonary Infection with P.aeruginosa strain RP73. ... 209

Figure 4.21. Effects of Experimentally Induced Platelet Depletion on the Circulating Platelet Count in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300. ..211

Figure 4.22. Effects of Experimentally Induced Platelet Depletion on Weight Loss in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300. ... 212

Figure 4.23. Effect of the Platelet Depleting anti-GpIbα Antibody on Pulmonary Haemorrhage in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300 .. 213

Figure 4.24. Effects of Experimentally Induced Platelet Depletion on Pulmonary Bacterial Load in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300.215

Figure 4.25. Effects of Experimentally Induced Platelet Depletion on Bacterial Dissemination to the Kidney and Spleen in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300. .. 217

Figure 4.26. Effects of Experimentally Induced Platelet Depletion on Pulmonary Leukocyte Recruitment in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300. .. 219

Figure 4.27. Effects of Experimentally Induced Platelet Depletion on Changes in Biochemical Markers of Metabolic Acidosis in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300. .. 222
Figure 4.28. The Role of Platelet TLR4 in the Regulation of Pulmonary Infection with P. aeruginosa strain RP73.................................225

Figure 4.29. PCR Analysis of TLR4 Knockout and C57/B16J Wild Type DNA.226

Figure 4.30. Effects of Apyrase on Circulating Platelet Count in a Murine Model of Pulmonary Infection with P. aeruginosa strain RP73..228

Figure 4.31. Effects of Apyrase on Weight Loss in a Murine Model of Pulmonary Infection with P. aeruginosa strain RP73. ..229

Figure 4.32. Effects of Apyrase on Pulmonary Bacterial Load and Leukocyte Recruitment in a Murine Model of Pulmonary Infection with P. aeruginosa strain RP73........................232

Figure 4.33. Effects of Apyrase on Bacterial Dissemination to the Kidney and Spleen in a Murine Model of Pulmonary Infection with P. aeruginosa strain RP73........................234

Figure 4.34. Effects of Purinergic Receptor Antagonists on Pulmonary Bacterial Load and Leukocyte Recruitment in a Murine Model of Pulmonary Infection with P. aeruginosa strain RP73. ..237

Figure 4.35. Effects of Purinergic Receptor Antagonists on Bacterial Dissemination to the Kidney and Spleen in a Murine Model of Pulmonary Infection with P. aeruginosa strain RP73. ..239

Figure 4.36. Effect of Platelets on Growth of P. aeruginosa strain RP73 in vitro.241

Figure 4.37. Effect of Platelets on Death of P. aeruginosa strain RP73 in vitro.................243

Chapter V: Results III

Figure 5.1. Effects of HT61 as a Singular Treatment on Infection with P. aeruginosa strain RP73. ..247
Figure 5.2. Effects of HT61 as a Singular Treatment on Infection with *P. aeruginosa* strain PAO1.

Figure 5.3. Effects of HT61 as a Singular Treatment on Infection with *P. aeruginosa* strain NN2.

Figure 5.4. Effects of HT61 as a Singular Treatment on Infection with MRSA strain USA300.

Figure 5.5. Effects of Combination Therapy of HT61 and Tobramycin on Infection with *P. aeruginosa* strain RP73.

Figure 5.6. Effects of Combination Therapy of HT61 and Tobramycin on Infection with *P. aeruginosa* strain PAO1.

Figure 5.7. Effects of Combination Therapy of HT61 and Tobramycin on Infection with *P. aeruginosa* strain NN2.

Figure 5.8. Effects of Combination Therapy of HT61 and Vancomycin on Infection with MRSA strain USA300.

Chapter VI: Discussion

Figure 6.1. A Proposed Mechanism of Action of the Platelet Antimicrobial Response.
Chapter I

Introduction
1.1 Pulmonary infection with *Pseudomonas aeruginosa* and *Staphylococcus aureus*

1.1.1 *Pseudomonas aeruginosa*

P. aeruginosa is a highly motile, gram-negative bacterium, preliminarily identified by its distinctive grape-like odour and white, pearlescent appearance of colonies. *P. aeruginosa* is a versatile bacterium able to grow in soil and aqueous environments, in addition to on plant and animal tissue (Stover et al., 2000) (Gellatly and Hancock, 2013). *P. aeruginosa* is a major opportunistic pathogen, accounting for between 17-26% of all nosocomial infections (Nanvazadeh et al., 2013) and it typically establishes itself in the respiratory, urinary and gastrointestinal tracts of immunodeficient individuals, with infection prevalent in patients with severe burns, acute leukaemia, urinary-tract infections in catheterised patients and in patients who have received organ transplants (Di Lorenzo et al., 2015) (Stover et al., 2000) (Nanvazadeh et al., 2013) (Gellatly and Hancock, 2013). *P. aeruginosa* is now recognised as a major colonising pathogen in the pathophysiology of cystic fibrosis (CF) (Di Lorenzo et al., 2015) (Van Heeckeren et al., 1997), with *P. aeruginosa* infection established in 70-80% of CF patients (Lyczak et al., 2002). *P. aeruginosa* is also the predominant cause of morbidity and mortality in CF patients (Stover et al., 2000).

P. aeruginosa can exist in non-mucoid and mucoid forms; non-mucoid strains initially colonise the lung, causing transient pulmonary infections in early life (Di Lorenzo et al., 2015) (Friedl et al., 1992), followed by the predominance of the mucoid form in the subsequent course of disease. Mucoid strains are frequently isolated from the respiratory tracts of patients with CF and chronic obstructive pulmonary disease (COPD) (Friedl et al., 1992), and these strains produce large quantities of viscous polysaccharide. Mucoid strains of *P. aeruginosa* persist in the lung forming biofilms (Patrauchan et al., 2007). This establishes a chronic, persistent
Chapter I: Introduction

infection (Di Lorenzo et al., 2015) (Costerton et al., 1999), associated with incessant cycles of airway obstruction and chronic inflammation, leading to the progressive loss of respiratory function (Gibson et al., 2003) (Dhooghe et al., 2014).

1.1.2 Biofilm Formation

Several species of bacteria possess the ability to become associated with one another and irreversibly adhere to wet, solid surfaces to form a coat, called a biofilm (Klausen et al., 2003). A biofilm may be defined as a highly organised, structured community of bacterial cells embedded in a self-producing matrix of extracellular polymeric substance (EPS) (Bjarnsholt, 2013). Biofilms preferentially develop on both living surfaces, in the case of endocarditis, and inert, non-living surfaces, such as on medical devices and sequestra of dead bone (Costerton et al., 1999). Furthermore, biofilms can be present in natural, industrial or hospital environments.

P. aeruginosa is a bacterium that can form a structured consortium of bacteria on moist surfaces, acting as a protective mechanism of growth in a hostile environment. Biofilm formation is a major survival mechanism of *P. aeruginosa* and aides evasion of the host defences (Bjarnsholt, 2013). It has been suggested that mucoid forms of *P. aeruginosa* can form a biofilm on host tissues and epithelial surfaces during chronic infections, particularly in the CF lung (Gellatly and Hancock, 2013) (Friedl et al., 1992) (Dötsch et al., 2012). Biofilms are a hallmark of *P. aeruginosa* chronic infection, and the incessant cycles of infection and inflammation experienced by patients with long term pulmonary colonisation by *P. aeruginosa* exemplifies most biofilm infections (Costerton et al., 1999).
Nasal carriage of the gram-positive *S. aureus* allows bacteria to disseminate to other parts of the body, where it is either removed by the immune system of the host, or attaches to extracellular matrix proteins of the host to form a multi-layered, heterogeneous biofilm (Archer et al., 2011). *S. aureus* infections possess the ability to rapidly develop multiple-antibiotic resistance, and transform acute, transient infections into ones of a recurrent, chronic nature (Archer et al., 2011).

Biofilm formation is a sequential process, involving several different phases (Figure 1.1). Initially, bacteria migrate towards a nutrient rich surface (Klausen et al., 2003). This is followed by the attachment phase; whereby motile and non-motile subpopulations of bacteria attach to the solid surface. This reversible interaction is mediated by van der Waals and electrostatic forces, and reinforced by host and tissue-specific adhesins, such as flagella and pili (Kaplan, 2010). Maturation and clonal growth follows the attachment phase, where microcolonies differentiate into ‘true’ biofilms of EPS encased communities (Costerton et al., 1999). During this phase, the motile bacterial subpopulation spread out along the substratum and non-motile bacteria form a microcolony (Bjarnsholt, 2013). Immobilised aggregates of bacteria begin to spontaneously secrete EPS, composed of nucleic acids, polysaccharide and macromolar components. This forms a matrix, which attracts motile bacteria and forms mushroom-like shaped structures (Bjarnsholt, 2013) (Klausen et al., 2003). The final stage of biofilm development is the detachment of sessile bacteria from the biofilm, and dispersal into the environment to colonise new areas (Kaplan, 2010) (Costerton et al., 1999).
Figure 1. 1 The Process of Biofilm Formation

Sessile bacteria present in biofilms are significantly less susceptible to antimicrobial agents than their planktonic (non-attached, free swimming) counterparts (Gellatly and Hancock, 2013) (Archer et al., 2011), due to the heterogeneous subpopulations of bacteria contained within them (Stewart, 2002). Antibiotic therapy often alleviates the symptoms of pulmonary infection, yet fails to eradicate the infection within a biofilm community (Costerton et al., 1999). One potential mechanism of biofilm resistance to antimicrobial agents is the inability of antimicrobials to penetrate the entire depth of the biofilm, with components of the matrix slowing down the diffusion rate of antibiotics and host defence molecules (Gellatly and Hancock, 2013) (Stewart, 2002) (Costerton et al., 1999). Furthermore, mature biofilms are highly heterogeneous; microenvironments established within the biofilm are exposed to different physiochemical characteristics, such as varying gradients in pH, O₂, nutrients and waste material (Batoni et al., 2016) (Archer et al., 2011), where these factors may impact the activity of antimicrobial agents. Biofilm embedded bacteria possess many advantages over
planktonic bacteria, including the ability to evade multiple clearance mechanisms produced by the host and synthetic sources. Biofilm embedded bacteria are resistant to clearance strategies by antimicrobial agents, shear stress, host phagocytic elimination and host radical and protease defences (Archer et al., 2011). This has been demonstrated in the literature, whereby *P.aeruginosa* planktonic and young biofilm cells were susceptible to killing by Tobramycin and Piperacillin, resulting in total eradication. In contrast, older *P.aeruginosa* biofilm cells were reduced to approximately 20% of the total population and regrowth of the organism occurred following antibiotic therapy (Anwar et al., 1992). This demonstrates the reduced susceptibility of biofilm embedded bacteria to antimicrobial agents.

Biofilm-associated infections result in chronic disease and the progression of a biofilm is now recognised as a major mediator in infection. The high intrinsic and inducible resistance of biofilms to antimicrobials contributes towards their resilience, and consequently, the prevention and management of biofilm- associated infections represents a serious therapeutic challenge (Nanvazadeh et al., 2013). In this context, experimental models could be established to investigate the potential anti-biofilm activity of antimicrobial agents, as the majority of research groups investigate this *in vitro*, which is perhaps not truly representative of the pathophysiological processes involved in biofilm formation in chronic disease.

1.1.3 *Staphylococcus aureus*

S.aureus is a non-motile, gram-positive coccus bacterium, that forms distinctive irregular grape-like clusters. *S.aureus* is a commensal bacterium, which grows on the skin and nasal mucus membrane, and in the human population, 20-25% have become persistently colonised (Archer et al., 2011). However, *S.aureus* is also a leading cause of infection in humans, causing
a wide array of diseases, ranging from minor skin and soft tissue infections, to the more life-threatening, septicaemia, endocarditis, toxic shock syndrome and pneumonia (Diep et al., 2006) (Hu, 2013).

Methicillin was introduced to the clinic in 1959 to treat \textit{S. aureus} infections (Stapleton and Taylor, 2007). Two years later however, in the United Kingdom, it was reported that isolates of \textit{S. aureus} had acquired resistance to Methicillin (Enright et al., 2002). Methicillin-resistant \textit{Staphylococcus aureus} (MRSA) is now one of the most common pathogens implicated in both hospital and community-acquired infections (Hu, 2013) (Enright et al., 2002) (Diep et al., 2006); frequently associated with infections in health care facilities, sports facilities, clinics and the community, and in patients presenting to the intensive care unit (Green et al., 2012).

Formerly, MRSA infections were acquired exclusively in hospitals. Prior exposure of patients to healthcare associated risk factors, such as previous antibiotic therapy, surgery, admission to an intensive care unit and exposure to an MRSA colonised patient, increased the likelihood of MRSA colonisation (Chambers, 2001). However, the prevalence of MRSA infections has dramatically increased due to the emergence of community-acquired strains of MRSA in healthy individuals (Diep et al., 2006). Colonisation of the lower respiratory tract by \textit{S. aureus} and MRSA can occur in chronic pulmonary diseases, such as COPD (Defres et al., 2009), or due to breaches in natural defences, such as endotracheal intubation (Defres et al., 2009). The most commonly reported MRSA infections in patients include septic shock (56%), pneumonia (32%), endocarditis (19%), bacteraemia (10%) and cellulitis (1%) (Green et al., 2012), and these infections are now associated with significant increases in length of hospital stay, cost of treatment and mortality rate (Klevens et al., 2007) (Archer et al., 2011) (Green et al., 2012).
1.2 Antibiotic Resistance

1.2.1 An Introduction to Antibiotic Resistance

During the era of antibiotic discovery (1940-1960), more than 15 different classes of antibiotics were developed and produced (Hu et al., 2010) (Martens and Demain, 2017). These antibiotics typically target multiplying bacteria (Hu, 2007), yet are inefficient at killing non-multiplying bacteria or persister cells (Hu et al., 2010) (Martens and Demain, 2017) thus resulting in only the partial clearance of the total bacterial population (Figure 1.2). A more prolonged duration of antibiotic therapy is therefore often required to control bacterial infections, increasing the possibility of emergence of resistance (Hu et al., 2010). The reduced efficacy of current antibiotics in combination with a steady decline in the discovery of novel compounds (Martens and Demain, 2017) has exacerbated the emergence of antibiotic resistance. Inappropriate antibiotic use by humans is a significant driver of this problem, for example misuse and overuse of antibiotics, poor management of childhood and hospital-acquired infections, and use of antibiotics in agriculture to prevent disease in livestock (Laxminarayan, 2014).
As a result of a significant increase in resistance, infectious disease is now the second leading cause of mortality in the world, with drug-resistant bacteria killing ~25,000 people per year in Europe (Martens and Demain, 2017). Some infections that were previously susceptible to antibiotics, such as *Neisseria gonorrhoeae* with penicillin, are now entirely resistant (Laxminarayan, 2014). This exemplifies the critical requirement for a novel approach towards antibiotic discovery and use, in addition to the conservation of current antimicrobials.

Colistin remains the last line of defence against many gram-negative bacteria, due to their resistance to multiple antimicrobial agents. However, as a likely consequence of increased Colistin use, Colistin-resistant bacteria have now been reported (Giani et al., 2015). This research reports a large nosocomial outbreak of 93 bloodstream infections with Colistin-resistant *Klebsiella pneumoniae* (*K.pneumoniae*). This clearly highlights the critical requirement for novel antimicrobial agents in the clinic, which show efficacy against multiple drug resistant bacteria.

Figure 1. 2 The Action of Traditional Antibiotics

Figure adapted from:
http://www.ukpharmsci.org/2012resourcepack/PDFPresentations/TCS1_1540_Prof_Antony_Coates.pdf:
Prof Anthony Coates, St George’s University of London, Antibiotic Discovery
1.2.2 Mechanisms of Antibiotic Resistance

P. aeruginosa is a versatile and adaptable microorganism, able to evade the activity of antimicrobial agents. The emergence of mutator variants in chronic infections further increases its adaptability and development of resistance to antimicrobials (Cabot et al., 2016). *P. aeruginosa* exhibits the highest rates of resistance towards fluoroquinolones, with resistance to ciprofloxacin ranging from 33-34% of all isolates (Flamm et al., 2004), in comparison to Aminoglycoside and β-lactam antibiotics (Tobramycin: 12-16%, Ceftazidime: 12-15%) (Flamm et al., 2004). Multidrug resistant strains of *P. aeruginosa* represent a more serious therapeutic challenge, displaying resistance to three or more classes of antibiotics (Flamm et al., 2004). Recent research has reported that 24.9% of *P. aeruginosa* strains, isolated from wounds, blood and respiratory tracts of patients, displayed multidrug resistance (Flamm et al., 2004), highlighting the ongoing concern for isolates exhibiting antimicrobial resistance.

During the course of chronic pulmonary infection in patients with CF, *P. aeruginosa* strains develop mutants that differ both phenotypically and genotypically to the initial infecting strain (Bragonzi et al., 2009). The major resistance mechanism in chronic *P. aeruginosa* infections, such as CF, is the production of high levels of β-lactamase (Campbell et al., 1997) (Zaidenstein et al., 2018). β-lactamases are cephalosporinase enzymes, which are encoded by an inducible AmpC gene and are responsible for the metabolism of β-lactam antibiotics. In wild type *P. aeruginosa* strains, AmpC cephalosporinase is expressed at low levels, however the pathway is induced following exposure to β-lactam antibiotics (Cabot et al., 2016). Mutation to constitutive high level β-lactamase production occurs spontaneously and this mediates resistance to β-lactam antibiotics (Colom et al., 1995). The genetic events
underlying the overproduction of the enzyme in resistant clinical isolates have not been elucidated, however it is reported that the enhancement of \(\beta \)-lactamase levels may occur either through the acquisition of a secondary \(\beta \)-lactamase, amplification of the gene encoding the chromosomal \(\beta \)-lactamase or mutations in the regulatory genes that control the expression of the \(\beta \)-lactamase gene (Campbell et al., 1997) (Colom et al., 1995).

The outer membrane of \(P. aeruginosa \) contains water filled protein channels, called porins (Bajaj et al., 2017). These channels play an important role in the transportation of nutrients, ions, vitamins and proteins through biological membranes (Bajaj et al., 2017) (Ochs et al., 1999). Additionally, certain classes of hydrophilic antibiotics are transported across the membrane via porins, for example OprD is responsible for the transportation of carbapenems, including Imipenem (Ochs et al., 1999). Research has reported that two predominant types of imipenem-resistant mutants are observed in the clinic, both involving the porin channel, OrpD (Ochs et al., 1999). Firstly, OrpD-mediated resistance occurs as a result of deletions in the OrpD coding region and the upstream promoter region. Secondly, bacteria displaying multiple antibiotic resistance to both imipenem, quinolones and chloramphenicol show a marked reduction in the expression of OprD in the outer membrane (Ochs et al., 1999) (Cabot et al., 2016). A loss of function and inactivation of the membrane porin channels prevent antimicrobial agents from crossing bacterial membranes and further contribute to the complexity and concern about antimicrobial resistance. In addition to the production of inducible AmpC cephalosporinases and the reduced permeability of the outer membrane, \(P. aeruginosa \) expresses constitutive and inducible efflux pumps which further contribute to the genetic antibiotic resistance machinery of \(P. aeruginosa \) (Cabot et al., 2016).
Similarly, *S. aureus* has the ability to rapidly develop resistance towards antimicrobial agents through the acquisition of resistance genes or through chromosomally encoded resistance mechanisms. Methicillin is a β-lactam antibiotic, which acts by inhibiting penicillin-binding proteins (PBPs). β-lactam antibiotics function to inhibit the transpeptidation domain of PBPs, thus interfering with the cross-linking reaction. Without the cross-linking of peptidoglycan, the cell wall is weakened, resulting in leakage of the bacterial cell contents and cell death (Stapleton and Taylor, 2007). PBPs are involved in the synthesis of a mesh-like structure, called peptidoglycan, which is an essential component of the Staphylococcal cell wall. There are four native subtypes of PBPs in *S. aureus*, PB1, PB2, PB3 and PB4, which are essential for the growth and survival of the bacteria (Pereira et al., 2007). These PBPs have different molecular weights; with high molecular weight PBPs possessing two protein domains, one involved in transpeptidation and the other involved in transglycosylation (Stapleton and Taylor, 2007). Furthermore, these PBPs elicit different susceptibilities to antimicrobials, most likely a reflection of differential PBP affinity (Georgopapadakou and Liu., 1980).

Resistance to Methicillin in *S. aureus* is, in part, conferred through the expression of a foreign PBP, called PBP2a, which is encoded by the *mecA* gene (García-Álvarez et al., 2011) (Pereira et al., 2007). Synthesis of PBP2a is regulated and usually expressed low at basal levels, however synthesis is enhanced if mutations occur in the regulatory genes (Stapleton and Taylor, 2007). In contrast to the native PBPs, PBP2a shows an extremely low affinity for most β-lactam antibiotics, consequently PBP2a can take over the transpeptidase function of cell wall synthesis in the presence of therapeutic levels of methicillin, which would usually inhibit the function of other PBPs (Pereira et al., 2007) (García-Álvarez et al., 2011).
Chapter I: Introduction

The emergence of mutant forms of *P. aeruginosa* and *S. aureus*, which display reduced susceptibility to antimicrobial agents and possess a wide array of resistance mechanisms, demonstrate that a novel approach for the discovery of antibiotics is critical to allow the continuation of the antibiotic era.

1.2.3 Antibiotic Enhancer Compounds

Within a bacterial population, both multiplying and non-multiplying bacteria co-exist (Hu et al., 2010). Antibiotics are typically developed to target the multiplying subpopulation of bacteria and all commercially available antibiotics currently work via this mode of action (Hu et al., 2010). However, these agents are either inactive or only partially active against non-multiplying or slow multiplying bacteria (Belley et al., 2009). Consequently, this leads to the partial death of the total target population, requiring repeated doses of antibiotics and in turn, enhancing the emergence of resistance (Hu et al., 2010). Furthermore, in some cases, it is not feasible to significantly enhance doses of antibiotics as a result of their toxic side effects (Hu et al., 2010).

One potential strategy for eradicating bacterial infection is by targeting the non-multiplying population of bacteria, thereby swiftly removing the total target bacterial population and in turn, shortening the duration of therapy. Shortening antibiotic treatment regimens has the added benefit of reducing side effects for patients, reducing cost of treatment and slowing the emergence of antibiotic resistance (Coates and Hu, 2008). Enhancer compounds have been developed as a strategy to provide improved treatments for infectious diseases, which act by restoring sensitivity of resistant bacteria to currently commercially available antibiotics. Furthermore, enhancer compounds target both multiplying and non-multiplying bacteria (Hu,
Hu and colleagues have developed such a drug, the antibiotic enhancer, HT61, a small quinolone derived compound as an exemplar of this novel approach.

The activity of HT61 was tested and compared to commercially available antibiotics, including Amoxicillin and Levofoxacin and it was demonstrated that HT61 as a singular treatment was more active against non-multiplying Methicillin-susceptible Staphylococcus aureus (MSSA), producing a 7 log CFU/ml reduction in bacteria, when compared to currently available antibiotics, which failed to exhibit any activities against non-multiplying bacteria (Hu et al., 2010). Intriguingly, HT61 was less active against multiplying S. aureus, when compared to commercially available antibiotics, and despite showing activity against non-multiplying gram-positive bacteria, had no activity against gram-negative bacteria, including P. aeruginosa (Hu et al., 2010).

With the aim of restoring sensitivity to drug resistant bacteria, experiments were performed using HT61 in combination with commercially available antibiotics. Intriguingly, time-kill analysis reported an enhancement of the activity of older generation antibiotics (gentamicin, neomycin and chlorhexidine) when used in combination with HT61 (Hu, 2013) against MRSA and MSSA, eradicating the total bacterial population by 2-8 hours.

It was elucidated that the compound acts on the bacterial cell membrane, causing cell depolarisation and the release of the intracellular contents of the cell, leading to bacterial destruction (Hubbard et al., 2017). In addition, the cell wall structure was nicked in the presence of high concentrations of HT61 (Hu et al., 2010), allowing greater cellular access to the antibiotic. Furthermore, it is postulated that HT61 by disrupting the membrane, the membrane-embedded enzymes that are involved in anaerobic metabolism are disrupted. Therefore, non-multiplying bacteria are required to activate their anaerobic metabolic
pathways when they are oxygen deprived and consequently become susceptible to killing by compounds that poison the respiratory chain (Hu, 2013). It has been reported elsewhere in the literature that antimicrobial combinations that display in vitro synergistic effects may be more effective in eradicating infections in patients, for example against Tobramycin resistant strains of *P. aeruginosa* (Chan and Zabransky, 1987). These observations have also been supported by other studies, which have demonstrated the enhancement of the activity of Doxycycline with ianthelliformisamine derivatives against resistant gram-negative bacteria (Pieri et al., 2014).

These studies highlight the potential beneficial effects of using combination treatments and enhancer compounds to target drug-resistant bacteria and to eradicate infection.

1.3 Platelets

1.3.1 Platelet Development and Production

The platelet is an anucleated, specialised component of the blood, which primarily functions as a regulator of haemostasis in response to vascular injury. It is well documented that circulating platelets have a characteristic discoid shape under normal resting conditions (Hartwig et al., 2003) and an approximate size of 1-3 µm (Machlus and Italiano, 2013). Platelets are present at high concentrations in the human blood, typically ranging from 1.5-4.0 x 10^8 platelets/mL, and once released into the circulation, have a typical lifespan of 8-10 days (Thon and Italiano, 2012). Whilst the precise mechanism remains unclear, platelets derive from the fragmentation of megakaryocytes and (Radley and Scurfield, 1980) were the first to postulate that long pro-platelet extensions from megakaryocytes were linked to the
production and release of platelets. In order to maintain adequate platelet levels, approximately 10^{11} platelets are replenished daily from megakaryocytes residing in the bone marrow (Hartwig et al., 2003).

The development and production of platelets is a complex process and can be arbitrarily divided into two main phases (Hartwig et al., 2003) (Machlus and Italiano, 2013). The first phase occurs over a period of days and requires megakaryocyte specific growth factors (Hartwig et al., 2003). During this phase, the cytoplasm of the megakaryocytes becomes enlarged and is filled with cytoskeletal proteins and platelet specific granules (Thon and Italiano, 2012) (Machlus and Italiano, 2013). The second phase of platelet development is much more rapid and is completed within hours. During the second phase, it has been proposed that the cytoplasm of the megakaryocyte remolds itself into multiple long, branching extensions, termed pro-platelets (Richardson et al., 2005) (Hartwig et al., 2003). In this case, platelets form at the tip of the pro-platelet extensions, extruding outwards from the cell body of the megakaryocyte. Prior to the release of mature platelets into the circulation, nascent platelets must be packaged and assembled with platelet organelles and granules (Machlus and Italiano, 2013). Pro-platelets function as the assembly line of platelet production, with the shaft of the pro-platelet serving as a track to transport the organelles and granules from the regions of synthesis within the megakaryocyte to the pro-platelet (Thon and Italiano, 2012) (Machlus and Italiano, 2013). This transportation process is bidirectional, culminating at the end of the pro-platelet (Thon and Italiano, 2012), where the platelet organelles and granules can be assembled and packaged, thus completing platelet maturation prior to their subsequent release (Kosaki, 2005) (Leven and Yee, 1987) (Tablin et al., 1990). The process of megakaryopoiesis and platelet production occurs over a time period of approximately 5 days in humans (Machlus and Italiano, 2013), and intriguingly, a single
megakaryocyte can form 10-20 pro-platelet extensions (Machlus and Italiano, 2013) and give rise to 1,000-3,000 platelets (Thon and Italiano, 2012).

It remains unclear as to where this process occurs as platelets have been shown to be produced from megakaryocytes within the pulmonary circulation (Trowrridge et al., 1982) (Martin et al., 1983), which is suggestive of the occurrence of thrombopoiesis in an additional organ asides from the bone marrow. Indeed, the formation of pro-platelets from megakaryocytes isolated from humans, mice and guinea pigs has been demonstrated in vitro (Cramer et al., 1997) (Leven and Yee., 1987) (Tablin et al., 1990) (Radley and Haller, 1983). Moreover, the release of platelets from pro-platelet tips has been demonstrated using intravital microscopy in mice (Junt et al., 2007) and pro-platelets extending into the sinusoidal blood vessels of bone marrow has been observed (Zhang et al., 2012). Asides from animal models, in the clinic it has been reported that platelet production from megakaryocytes can increase by as much as 20-fold under conditions of peripheral demand and inflammation (Bozza et al., 2009). Significant increases in pulmonary megakaryocytes have been detected in patients with acute lung injury, acute respiratory distress syndrome (ARDS) and in patients dying from burns, and in addition, platelet life span and platelet turnover rates are altered in these patients (Mandal et al., 2007).

The experimental and clinical evidence demonstrating enhanced platelet production and megakaryopoiesis in the lung is suggestive of a potential role for platelets as effector cells in a variety of pulmonary disorders (Weyrich and Zimmerman, 2013).
1.3.2 Platelet Ultrastructure

Platelets have a complex structure, containing a number of distinguishable structural elements that allow them to function as regulators of haemostasis, angiogenesis and innate immunity. The plasma membrane of the platelet is composed of a phospholipid bilayer, comprising of cholesterol, glycolipids and glycoproteins, and further contains a plethora of densely packed receptors that are requisite in signaling and intracellular trafficking of the platelet (Thon and Italiano, 2012). In addition, the plasma membrane contains membrane foldings, which are the entrances to a system of internal membranes called the open canalicular system (OCS) (Hartwig, 2013) (Bearer et al., 2002). The OCS is a network of membrane channels that run throughout the platelet, which has several functions. The OCS allows for the selective entry of external elements into the platelet and serves as a conduit into which platelet granules fuse and release their contents (Hartwig, 2013). Studies have demonstrated that following platelet activation, degranulation occurs most often into the OCS, with granule contents subsequently released through pores into the extracellular space (Stenberg et al., 1984). Furthermore, the OCS may facilitate filopodia formation and cell spreading following platelet adhesion to an activating surface and acts as a storage site for plasma membrane glycoproteins (Thon and Italiano, 2012). The dense tubular system (DTS) of the platelet is a closed-channel network of residual endoplasmic reticulum, which is involved in calcium ion (Ca$^{2+}$) sequestration (Bearer et al., 2002).

Also contained within the platelet are a vast array of different organelles, including mitochondria, peroxisomes, lysosomes and granules, which contain a large number of biologically active molecules (Bearer et al. 2002). The mediators contained within platelet granules are implicated in the regulation of haemostasis, inflammation and infection, and are
requisite in determining platelet function following activation (Smyth et al., 2009). Platelet granular contents are listed in Table 1.1.

Platelets contain three main types of granule within their cytoplasm, α-granules, dense (δ) granules and lysosomal (λ) granules. Previous published research has demonstrated that thrombin stimulation of platelets results in the release of preformed mediators from platelet α-granules (Stenberg et al., 1984), thus highlighting that platelet activation leads to granular release. Platelet α-granules are the largest (approximately 0.2-0.5 μm in diameter) and most abundant granule (50-80 per platelet) (King and Reed, 2002) (Yun et al., 2016). The α-granules contain mediators requisite in platelet adhesion during vascular repair and haemostatic functions. The α-granules store matrix adhesive proteins (fibrinogen, fibronectin, thrombospondin, vitronectin and von- Willebrand Factor (vWF)), and have glycoprotein (GP) and platelet adherence receptors embedded in their membranes (P-selectin, GPIb-IX-V, integrin αIIβ3), which promote adhesion between platelets and the matrix (Hartwig, 2013) (Thon and Italiano, 2012).

In contrast to α-granules, platelets contain considerably less dense granules, with approximately 3-9 present in human platelets (King and Reed, 2002). Dense granules are approximately 0.15 μm in diameter and they function primarily to enhance platelet activation through the secretion of additional platelet agonists. Dense-granules contain a variety of haemostatically active molecules, including adenosine triphosphate (ATP), adenosine diphosphate (ADP), serotonin and Ca²⁺ (Hartwig, 2013) (Yun et al., 2016), which upon platelet activation promote aggregation. Furthermore, they contain a large array of chemokines, including Macrophage Inflammatory Protein-1α (MIP-1α) and Regulated on Activation,
Normal T Cell expressed and Secreted (RANTES), which can amplify platelet activation and induce platelet and leukocyte migration (Smyth et al., 2009).

The third type of platelet secretory granules are lysosomal granules, which contain glycosidases, acid proteases, and cationic proteins, including collagenase and β-glucuronidase, which may possess bactericidal activity and aid in pathogen clearance (Yun., 2016) (Jenne et al., 2013).
<table>
<thead>
<tr>
<th>α-granules</th>
<th>Dense granules</th>
<th>Lysosomal granules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimerin</td>
<td>ADP *−#</td>
<td>Acid Proteases</td>
</tr>
<tr>
<td>Adhesive glycoproteins</td>
<td>ATP *−</td>
<td>Cathespin D</td>
</tr>
<tr>
<td>von Willebrand factor *</td>
<td>Calcium *−#</td>
<td>Cathespin E</td>
</tr>
<tr>
<td>Fibrinogen *#</td>
<td>Serotonin *−#</td>
<td>Carboxypeptidase A</td>
</tr>
<tr>
<td>von Willebrand factor propeptide</td>
<td>Pyrophosphate</td>
<td>Carboxypeptidase B</td>
</tr>
<tr>
<td>Fibronecin *#</td>
<td>GDP *</td>
<td>Collagenase #</td>
</tr>
<tr>
<td>Thrombospondin-1 *#</td>
<td>Magnesium</td>
<td>Acid Phosphatase</td>
</tr>
<tr>
<td>Vitronecin *~</td>
<td>Others secreted or released proteins</td>
<td>Arylsulphatase</td>
</tr>
<tr>
<td></td>
<td>Protease nexin 1 *</td>
<td>Glycalkinases</td>
</tr>
<tr>
<td>Coagulation factors</td>
<td>Ges6 *</td>
<td>Heperine</td>
</tr>
<tr>
<td>Factor V *</td>
<td>Amyloid b-protein precursor</td>
<td>β-N-acetyl-galactosamin</td>
</tr>
<tr>
<td>Protein S *</td>
<td>Tissue factor pathway inhibitor</td>
<td>β−glucuronidase #</td>
</tr>
<tr>
<td>Factor XI *</td>
<td>Factor XIII *</td>
<td>β−galactosidase #</td>
</tr>
<tr>
<td>Mitogenic factors</td>
<td>α1-Protease inhibitor</td>
<td>α−glucosidase</td>
</tr>
<tr>
<td>Platelet-derived growth factor *~ #</td>
<td>Complement I inhibitor ~ #</td>
<td></td>
</tr>
<tr>
<td>Transforming growth factor-b ~ #</td>
<td>High molecular weight kininogen</td>
<td></td>
</tr>
<tr>
<td>Endothelial cell growth factor ^</td>
<td>α1-Macroglobulin</td>
<td></td>
</tr>
<tr>
<td>Epidermal growth factor</td>
<td>Vascular permeability factor</td>
<td></td>
</tr>
<tr>
<td>Insulin-like growth factor I</td>
<td>Interleukin-13 ~</td>
<td></td>
</tr>
<tr>
<td>Angiogenic factors</td>
<td>Histidine-rich glycoprotein</td>
<td></td>
</tr>
<tr>
<td>Vascular endothelial growth factor ^</td>
<td>Chemokines</td>
<td></td>
</tr>
<tr>
<td>Platelet factor 4 (Inhibitor) ~ ^</td>
<td>MIP-1α (CCL5) ~</td>
<td></td>
</tr>
<tr>
<td>Fibrinolytic inhibitors</td>
<td>RANTES (CCL5) ~</td>
<td></td>
</tr>
<tr>
<td>α1-Plasmin inhibitor *#</td>
<td>MCP-3 (CCL7) ~</td>
<td></td>
</tr>
<tr>
<td>Plasminogen activator inhibitor-1 *</td>
<td>Gro−α (CXCL1) ~</td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td>Platelet factor 4 (CXCL4) *~ #</td>
<td></td>
</tr>
<tr>
<td>immunoglobulins *</td>
<td>NAP-2 (CCL7) *~</td>
<td></td>
</tr>
<tr>
<td>Granule membrane-specific proteins</td>
<td>ENA−78 (CXCL5) ~</td>
<td></td>
</tr>
<tr>
<td>P-selectin (CD62P) *~</td>
<td>Interleukin-8 (CXCL8) ~</td>
<td></td>
</tr>
<tr>
<td>GMP 33</td>
<td>TARC (CCL17) ~</td>
<td></td>
</tr>
<tr>
<td>GP IB/IIa/V *</td>
<td>Table 1. 1 Platelet Granular Constituents</td>
<td></td>
</tr>
<tr>
<td>GP IIb/IIIa *</td>
<td>Adapted from (Smyth et al., 2009) (Yeaman, 1997) (Jenne et al., 2013)</td>
<td></td>
</tr>
</tbody>
</table>

* Granular contents involved in haemostasis
~ Granular contents involved in inflammation
^ Granular contents involved in angiogenesis
Granular contents involved in antimicrobial defence
The cytoskeleton defines the discoid shape of the resting platelet and maintains cell integrity, under the shear forces generated by the blood flow (Thon and Italiano, 2012). The cytoskeleton is composed of a spectrin-based skeleton, a microtubule coil and a network of cross-linked actin filaments and supports the OCS and platelet plasma membrane (Hartwig, 2013) (Bearer et al., 2002). Under normal resting conditions, granules are located within close proximity to the OCS membranes. Upon platelet activation, the α and dense-granules may fuse with the plasma membrane and secrete their pre-formed mediators (Table 1.1) via the OCS, to be delivered precisely at the site of vascular injury (Thon and Italiano, 2012). This process enables platelets to play important roles in the functional modulation of leukocytes and other circulating platelets (Smyth et al., 2009).

1.4 Mechanisms of Platelet Activation

Under normal physiological conditions, circulating platelets must sustain the high fluid shear forces generated by the blood flow over the endothelium, without becoming prematurely activated. Platelet activation leading to aggregation is a well-defined role of platelets in the regulation of haemostasis, following injury to damaged endothelium (Brass, 2010). In this instance, platelets must recognise vascular injury, cease motion, adhere to the vessel wall and aggregate to one another to form a stable platelet plug (Brass, 2010). Additionally, over stimulation of platelet aggregation results in the formation of platelet thrombi (Andrews and Berndt, 2004). This occurs when diseases or drugs interfere with the mechanisms involved in unwarranted platelet activation, resulting in the accumulation of platelets where it is not required (Brass, 2010).
Conversely, platelets have also been shown to play an important role in the modulation of the inflammatory response (Hechler and Gachet, 2015) (Pitchford, 2007) (Semple and Freedman, 2010) (Amison et al., 2015) (Gresele et al., 1993) (Boilard et al., 2010). Platelets are thought to be implicated in various autoimmune, allergic and infectious diseases, including asthma, COPD, rheumatoid arthritis (RA) and sepsis (Pitchford et al., 2008) (Gawaz et al., 1995) (Gresele et al., 1993) (Johansson et al., 2011) (Bunescu et al., 2004) (Ferroni et al., 2000). Interestingly, in regards to platelet activation in the context of inflammation, activation induced by inflammatory stimuli is not associated with subsequent platelet aggregation. Indeed, it has been demonstrated that in patients with asthma a mild haemostatic defect is seen (Kowalska et al., 2000) (Brown et al., 2013).

Quiescent platelets express a plethora of cell surface receptors, including G-Protein Coupled Receptors (GPCRs) (Purine receptors, Thromboxane receptors, Thrombin receptors and Chemokines receptors) (Brass, 2010), Ionotropic receptors (P2X1), Toll-like receptors (TLR2, TLR4 and TLR9) (Clark et al., 2007) (Kerrigan and Cox, 2010) (Middleton et al., 2016), integrins (αIIbβ3), immunoglobulin receptors (FceRI) and glycoprotein receptors (GPVI) (Walsh et al., 2015). Furthermore, platelets express a wide array of adhesion molecules (P-selectin, P-selectin glycoprotein ligand-1 (PSGL-1), CD40 and CD40L (Pitchford, 2007) (Yeaman, 2010) (Hechler and Gachet, 2015) (Mangin et al., 2004). Platelets can become activated by a number of inflammatory agents, such as bacteria, viruses and chemokines, as well as in response to endogenous agonists, such as ADP and thrombin. Stimulation of these receptors may result in different products of platelet activation, such as platelet granule secretion (Stenberg et al., 1984), platelet chemotaxis (Czapiga et al., 2005) (Kraemer et al., 2010), leukocyte recruitment (Pitchford et al., 2003) and pathogen recognition (Ali et al., 2017).
Although there are some shared intracellular signalling cascades leading to platelet granule secretion, it is now recognised that there is a divergence in platelet function whereby platelet activation is distinct following activation with inflammatory stimuli in comparison to aggregatory stimuli (Maccia et al., 1977) (Thompson et al., 1984) (Amison et al., 2018). For example, the purinergic ligand, ADP can activate platelets by signalling through the purinergic P2Y₁ receptor (Gachet, 2006) (Leon et al., 2008). This receptor is mediated via stimulation of Gαq, which induces PLC-β activation, catalysing the production of inositol-1,4,5-triphosphate (IP₃) and Diacyl-glycerol (DAG). IP₃ triggers Ca²⁺ mobilisation from intracellular stores, whilst DAG causes the activation of PKC. This initiates platelet shape change, granule release and transient aggregation (Mangin et al., 2004) (Amison et al., 2018) (Fabre et al., 1999).

Similarly, activation of the CCR4 receptor by Macrophage derived Chemokine (MDC) and Thymus and Activation-Regulated Chemokine (TARC), and activation of the CXCR4 receptor by Stromal Derived Factor 1α (SDF-1α), is mediated by Gαq intracellular pathways and induces a transient intracellular rise in cytosolic Ca²⁺ in washed platelet preparations (Abi-Younes et al., 2001) (Abi-Younes et al., 2000). However, whilst stimulation of the P2Y₁ receptor with ADP induces transient platelet aggregation with a subthreshold dose of ADP (100nm) (Fabre et al., 1999), co-activation with SDF-1α and MDC stimulates platelet chemotaxis (Kraemer et al., 2010) (Amison et al., 2015). This therefore highlights that there are multiple mechanisms controlling platelet function, which dictates the type of the response (Walsh et al., 2015).

Further evidence supports this divergence in platelet function, since platelet activation induced by inflammatory stimuli can be inhibited pharmacologically, without interfering with platelet aggregation (Amison et al., 2015). The rho family of GTP binding proteins, commonly known as Rho-GTPases (including RhoA, Rac1 and cdc42), are regulators of platelet function,
and are important in adhesion, activation and motility of leukocytes (Amison et al., 2018). Rho-GTPases are involved in the amplification of the intracellular signaling pathways following activation of platelet cell surface receptors (Aslan and McCarty, 2013), which in turn moderates platelet function. It is thought that RhoA contributes towards platelet shape change upon activation and has been implicated in the motility of leukocytes (Aslan and McCarty, 2013), however RhoA activity is insufficient for full platelet aggregation in response to ADP (Amison et al., 2018). Furthermore, it has been suggested that Rac1 controls platelet lamellipodia formation and plays a minor role in platelet aggregation (Qian et al., 2012), and Cdc42 is associated with platelet granule secretion (Aslan and McCarty, 2013).

(Amison et al., 2018) showed differences in the signaling of P2Y_1 receptors depending on the stimulation present, for example low doses of ADP (0.1µM) induced inflammatory effects through the small GTPase RhoA, but not through induction of the canonical pathway via PLC (Amison et al., 2018). Conversely, high doses of ADP (10µM) induced platelet aggregation (Amison et al., 2018). Other GTPases, such as Rac1 are requisite for leukocyte recruitment in lipopolysaccharide (LPS)-induced airway inflammation (Qian et al., 2012). As the P2Y_1 specific agonist MRS2365 binds to the same site as ADP, albeit with a much lower affinity, it is possible that this difference in effect on platelet function through P2Y_1 is a result of biased agonism (Amison et al., 2018) (Amison et al., 2015).

However, despite these specific functions of Rho-GTPases and the canonical pathway in platelet activation, it is now thought that there is a cross-talk amongst integrins, GPCRs and Rho proteins to modulate platelet function in cytoskeletal regulation, aggregation, secretion, thrombus formation and other cellular processes (Aslan and McCarty, 2013).
Platelets undergo dynamic morphological alterations upon exposure to biological stimuli or agonists, changing from a resting discoid shape into more rounded structures. Platelet shape change occurs following exposure to sub-threshold concentrations of platelet agonists, which cannot result in either aggregation or adhesion (Shin et al., 2017). Under normal resting physiological conditions, the discoid shape of the platelet is maintained through inhibition of actin polymerisation and sequestration of actin monomers by monomer binding proteins, such as profilin and thymosin-β4 (Hartwig, 1992) (Bearer et al., 2002). Platelet shape change occurs via reorganisation of actin filaments within the cytoskeleton. Firstly, platelets become rounded as actin filaments are fragmented, and spectrin networks composed of filamin A, Gp1b/IX and spectrin are released (Paul et al., 1999) (Shin et al., 2017) (Hartwig, 1992). The membranes of the platelets then protrude outwards, forming lamellipodia and filopodia, resulting from actin filament assembly (Winokur and Hartwig, 1995). As previously described, platelet activation leading to shape change is mediated via a Gαq dependent mechanism (Zheng et al., 2015) (Paul et al., 1999) (Gachet, 2006) (Lapetina and Siegel, 1983) (Figure 1.3).
Figure 1. 3 Induction of Platelet Shape Change and Granule Secretion via Gαq Coupled Receptors

Breakdown of the cytoskeleton maintaining the discoid shape under resting conditions is regulated by Gelsolin and Cofilin (Hartwig, 1992) (Li et al., 2002) (Winokur and Hartwig, 1995) (Bearer, 1991). These are actin binding proteins that severe and cap actin filaments in the presence of Ca\(^{2+}\), and subsequently release actin monomers (Shin et al., 2017). This unlocks the membrane cytoskeleton and allows deformation of the membrane, allowing the production of new structures within the platelet (Shin et al., 2017). The actin monomers can then bind to Arp2/3 complex (actin related protein 2/3) stimulating actin assembly (Li et al., 2002). In addition, actin sequestering proteins, profilin and thymosin-β4, carry actin monomers to the barbed end of filopodia enabling filament elongation. CapZ then recaps the barbed filament ends to complete assembly (Bearer, 1991). This newly formed actin cytoskeleton results in the final activated platelet shape- round, small structures with long, thin filopodia extending outwards from the platelet (Hartwig, 1992).
Platelet shape change is one of the first measurable physiological responses following platelet activation (Lapetina and Siegel, 1983). Although, for continued platelet activation a vast number of signalling and adhesion molecules (Table 1.1) are released from the platelet granules (Smyth et al., 2009). Platelet activation results in the release of contents from dense granules via exocytosis. Dense granules store an array of haemostatically activate mediators, such as ADP, ATP and Ca$^{2+}$ (King and Reed, 2002) (Jenne et al., 2013). Additional mediators are released from platelet dense granules, such as serotonin, which has been shown to play an important role in neutrophil rolling and adhesion (Duerschmied et al., 2013).

Previous studies have demonstrated the redistribution of platelet α-granule contents (Fibrinogen, Platelet Factor 4) following platelet stimulation with thrombin (Stenberg et al., 1984), demonstrating platelet α-granules release upon activation. Platelet activation inducing granular release is mediated through stimulation of Gαq receptors (Figure 1.3) (Gachet, 2006). These mediators play a significant role in innate immunity, either by modulating the expression of platelet adhesion receptors interacting with leukocytes, or by releasing cytokines that affect leukocyte function (Yun et al., 2016). Platelet factor-4 (PF-4) is one of the most abundant proteins within α-granules and has a broad range of activities linked to innate immunity, such as promoting phagocytosis, respiratory burst and the secretion of cytokines (Kasper et al., 2007). RANTES is also found in large quantities in platelet α-granules and mediates monocyte recruitment (Von Hundelshausen et al., 2005). Platelets express P-selectin, which is rapidly mobilised to the platelet surface upon activation and has a requisite role in the interactions between platelets, leukocytes and endothelial cells via its counter ligand PSGL-1 (Frenette et al., 2000). P-selectin/PSGL-1 interactions are critical mediators in the formation of platelet-leukocyte complexes, allowing tethering and rolling along the
Chapter I: Introduction

endothelium and the subsequent recruitment of platelet-leukocyte complexes (Pitchford et al., 2003). Furthermore, platelets have been identified as the single largest source of CD40L, which interacts with CD40 located on neutrophils (Pitchford et al., 2017). The engagement of CD40L with CD40 induces a pro-inflammatory phenotype, characterised by the release of pro-inflammatory cytokines and an increased expression of adhesion molecules (intercellular adhesion molecule-2 (ICAM-2), and vascular cell adhesion molecule-1 (VCAM-1)) (Vowinkel et al., 2007) (Danese et al., 2004).

Platelet shape change and the secretion of mediators from platelet granules contributes to activation pathways and allows platelets to function as regulators of haemostasis, thrombosis and innate immunity.

1.5 A Proposed Divergence in Platelet Function

1.5.1 The Role of Platelets in Haemostasis and Thrombosis

Platelets have a well-established role in haemostasis and platelet activity is primarily associated with the initiation of platelet activation and aggregation in response to vascular injury. The basic function of platelets is to bind to endothelial cells of damaged blood vessels, aggregate to form a stable platelet plug and prevent excessive bleeding. Similarly, the role of platelets in thrombosis has been well established. Thrombosis is considered to be a pathological process, where clot formation results from inappropriately triggered or dysregulated haemostasis (Kuijpers et al., 2004) (Middleton et al., 2016). In this instance, activated platelets aggregate at the site of the atherosclerotic plaque or endothelial cell
erosion, stimulating thrombus formation and promoting atherothrombotic disease (Yun et al., 2016)

The haemostatic response can be characterised by three distinct phases, initiation, extension and stabilisation (Brass, 2010). During the initiation phase, platelets are activated by collagen or thrombin and adhere to the damaged vessel wall (Brass, 2010) (Kuijpers et al., 2004). Platelets bind to collagen fibres, which forms a complex with vWF. This complex subsequently interacts with exposed GPIbα on the surface of circulating platelets (Tsuji et al., 1997). The interaction of platelets and collagen fibres, mediated by vWF, slows platelet progression along the vessel and triggers inside-out activation of the integrin αIibβ3 (Kuijpers et al., 2004).

Platelet activation also results in the secretion of thromboxane A2 (TXA2) and ADP from dense granules, alongside increased expression of adhesion molecules, including P-selectin and PSGL-1 (Li et al., 2010). This creates a monolayer of activated platelets along the damaged endothelium (Rivera et al., 2009).

During the secondary extension phase, circulating platelets adhere to this platelet monolayer resulting in their activation and the further release of platelet agonists, Thrombin, ADP and TXA2. These all activate PLCβ via Gq resulting in an increase in cytosolic levels of Ca^{2+} (Li et al., 2010) (Brass, 2010). This activates integrin αIibβ3 via inside-out signalling, which enables interaction with fibrinogen and the formation of cohesive interactions between adjacent platelets. (Rivera et al., 2009) (Brass, 2010). Interactions between adjacent platelets and platelets with the endothelium are then strengthened via interactions between fibrinogen/fibrin or vWF with αIibβ3, GPVI or GPIb-IX-V (Andrews and Berndt, 2004) (Li et al., 2010).
The third stabilisation phase is characterised by activated platelets within the plug coming into close contact with one another to form a cross-linked fibrin network, preventing premature platelet disaggregation. This enables paracrine signalling of platelet molecules and occurs through outside-in signalling, predominantly mediated by integrin αIIbβ3 (Rivera et al., 2009). This results in the formation of a haemostatic plug composed of activated platelets embedded within a cross-linked fibrin mesh, stable enough to withstand the shear forces generated by the flow of blood (Brass, 2010).

1.5.2 The Role of Platelets in Inflammation

1.5.2.1 The Role of Platelets in Inflammatory Disorders

In addition to their roles in haemostasis and thrombosis, platelets have been described as important mediators in inflammatory disorders. Evidence now suggests that platelets are potent and versatile immune and inflammatory effector cells, with the ability to perform recognition and signaling functions, transfer biologic information and orchestrate complex physiological and pathological inflammatory responses (Middleton et al., 2016) (Middleton et al., 2018). Platelets have been implicated in several pro-inflammatory disorders, including asthma, COPD, irritable bowel disease (IBD), RA, ARDS and acute lung injury (ALI) (Pitchford et al., 2003) (Joseph et al., 2001) (Bunescu et al, 2004) (Gresele et al., 1993) (Vowinkel et al., 2007) (Ortiz-Muñoz et al., 2014) (Lax et al., 2017).

Platelets contribute to inflammatory disorders via several mechanisms. Firstly, platelets have been reported to directly migrate to the site of inflammation (Pitchford et al., 2003) (Pitchford et al., 2005), where they release pro-inflammatory mediators from their granules
(Table 1.1), contributing to chronic inflammatory events inducing tissue remodelling and altering tissue architecture (Pitchford et al., 2004) (Idzko et al., 2015). Secondly, platelets can directly interact with inflammatory leukocytes, ‘priming’ them for efficient migration to the site of inflammation. Therefore, platelets are critical links between the innate and adaptive immune system (Pitchford, 2007) (Middleton et al., 2016) (Bozza et al., 2009) (Semple and Freedman, 2010) (Langer and Chavakis, 2009) (Amison et al., 2012).

Evidence has suggested an alteration in platelet function and character in the clinic in patients with allergic inflammatory diseases, including asthma, allergic rhinitis and atopic dermatitis (Pitchford, 2007), as measured by alterations in platelet secretion, expression of surface molecules, aggregation and adhesion to the endothelium (Idzko et al., 2015). In addition, elevated levels of platelet-derived activation markers have been detected in patients with asthma following allergen provocation, with increased levels of Beta-Thromboglobulin (β-TG), PF-4, RANTES, platelet activating factor (PAF) and P-selectin (Pitchford., 2007) (O’Sullivan et al., 2005) (Idzko et al., 2015). Moreover, patients with atopic asthma have also been reported to have a shorter platelet lifespan in the circulation (4.7 days), when compared to healthy individuals (8.9 days) (Taytard et al., 1986), suggestive of continuous platelet activation in this disease. This clearly highlights a role for platelets in the modulation of inflammatory disorders, which is distinct from haemostasis and thrombosis.

1.5.2.1 Pulmonary Platelet Recruitment

Platelets were previously regarded as static cells that do no move once they adhere to a matrix (Kraemer et al., 2010). However, once recruited from the circulation platelets possess
all of the molecular assets required for cell migration (Gaertner et al., 2017). More recently,
platelet migration towards both allergic and bacterial stimuli has been demonstrated in vitro,
towards N-formyl-methionyl-leucyl-phenylalanine (fMLP) (Czapiga et al., 2005), LPS (Ortiz-
Muñoz et al., 2014), SDF-1α (Kraemer et al., 2010) and MDC (Kowalska et al., 2000). This
highlights that platelets are indeed motile cells and suggests that platelet migration may be
modulated by mediators involved in inflammation and infection. Through the use of
experimental models, platelets have been found in extravascular lung tissue of allergic mice,
mediated by an IgE/FceRI-dependent mechanism (Idzko et al., 2015) (Pitchford et al., 2008).
Similarly, intratracheal LPS administration has been shown to induce pulmonary platelet
sequestration (Ortiz-Muñoz et al., 2014) and platelet recruitment into lung alveoli (Lax et al.,
2017). This is consistent with findings in the clinic, whereby platelets obtained from allergic
donors have demonstrated migration in vitro when exposed to the allergen to which the
patient was sensitised (Idzko et al., 2015). Similarly in other inflammatory diseases, platelets
have been found extravascularly in the synovial fluid of patients with arthritis (Boilard et al.,
2010) and in ischemia and reperfusion (Kraemer et al., 2010) (Rainger et al., 2015). This
evidence therefore suggests that mediators involved in inflammation and infection may be
capable of inducing platelet activation and migration.

Once recruited to inflamed tissue, platelets participate in the innate immune response and
contribute directly to tissue remodeling in chronic inflammation. Studies have implicated a
direct role for platelets in airway remodelling and chronic inflammation, by the release of
platelet-derived mediators, including growth factors (transforming growth factor b (TGFB),
vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF)) and
matrix metalloproteinases (MMP1, MMP2, MMP3 and MMP14) (Pitchford et al., 2004). This
platelet activation has been shown to persist long after the initial allergen challenge, suggesting a potential role for platelets in chronic airway remodeling associated with asthmatic patients (Kowal et al., 2006). Similarly, increased platelet activation has been shown to correlate with changes in lung architecture, as measured by basement membrane thickening, myofibroblast proliferation and bronchial smooth muscle growth (Pitchford, 2007). This is further demonstrated in studies where platelet depletion in a mouse model of allergic inflammation decreased epithelial thickening, smooth muscle thickening, and sub-epithelial reticular fiber deposition (Pitchford et al., 2004).

1.5.2.2 The Role of Platelets in Inflammatory Leukocyte Recruitment

In addition to platelet recruitment alone, research suggests that platelets can influence leukocyte recruitment towards both allergic and infectious stimuli (Page and Pitchford, 2013) (Pitchford et al., 2017) (Kornerup et al., 2010) (Ortiz-Muñoz et al., 2014) (Lax et al., 2017). Activated platelets displaying adhesion molecules (CD40L, P-selectin) are able to interact with counter ligands expressed on leukocytes (CD40, PSGL-1) within the circulation, forming platelet-leukocyte complexes (Langer and Chavakis, 2009) (Page and Pitchford, 2013). These complexes are important for subsequent leukocyte activation, tethering, rolling and migration into inflamed tissue (Kornerup et al., 2010) (Wang et al., 2007) (Lukacs et al., 2002) (Pitchford et al., 2005). The heightened occurrence of platelet-leukocyte complexes in circulating blood has been reported in a vast array of inflammatory, infectious and autoimmune diseases, including asthma, COPD, RA, bacteremia and sepsis (Ferroni et al., 2000) (Gresele et al., 1993) (Pitchford et al., 2003) (Pitchford et al., 2005) (Johansson et al., 2011) (Gawaz et al., 1995) (Russwurm et al., 2002) (Bunescu et al., 2004). The formation of
platelet-leukocyte complexes as seen in the clinic has also been replicated in numerous animal models of acute inflammation (Lukacs et al., 2002) (Pitchford et al., 2003) (Pitchford et al., 2005) (Tamagawa-Mineoka et al., 2009) (Bins et al., 2014) (Pan et al., 2015) (Amison et al., 2015), underpinning a role for platelets in leukocyte recruitment.

The importance of platelets in the recruitment of leukocytes in the acute inflammatory response has been demonstrated previously in literature (Kornerup et al. 2010) (Pitchford et al., 2003) (Pan et al., 2015) (Amison et al., 2017) (Coyle et al., 1990). For example, recent observations have indicated that platelet depletion results in the abolition of allergen induced eosinophilia (Pitchford et al., 2003) (Amison et al., 2015), and platelet activity is important for LPS-induced neutrophil recruitment (Pan et al., 2015) (Riffo-Vasquez et al., 2016) (Amison et al., 2017). This further demonstrates platelet-facilitated leukocyte accumulation.

P-selectin is a glycoprotein expressed by platelets, which is rapidly translocated from platelet α-granules to the plasma membrane of the platelet upon platelet activation (Mauler et al., 2016). Here, P-selectin recognises its counter ligand PSGL-1, expressed on the surface of polymononuclear cells (PMC), initiating the interaction between platelets and leukocytes and increasing circulating platelet-leukocyte complexes (Joseph et al., 2001) (Kornerup et al., 2010) (Pitchford et al., 2003) (Jawien et al., 2002). These interactions support contact-dependent activation of leukocytes and subsequent activation of integrins (αMβ2 and α4β1) (Johansson and Mosher, 2013). This leads to increased adhesion of leukocytes to the vascular endothelium and facilitates the extravasation of leukocytes into inflamed tissue (Jawien et al. 2002).

Indeed, the importance of P-selectin in mediating leukocyte recruitment has been demonstrated experimentally using both P-selectin knockout mice and P-selectin blocking
agents (de Stoppelaar et al., 2015) (Mauler et al., 2016), which demonstrate platelet dependence of leukocyte rolling, intravascular crawling and diapedesis in vivo (Langer and Chavakis, 2009) (Wang et al., 2007). This has been further confirmed through reinfusion of thrombocytopenic mice with platelets treated with the P-selectin blocking antibody RB40.34 (Pitchford et al., 2005). When treated platelets were reinfused, allergen induced eosinophilia remained suppressed unlike vehicle treated platelets.

P-selectin-PSGL-1 interactions tether leukocytes to the endothelium from rapidly flowing blood. The sequential formation and dissolution of these interactions enables the subsequent rolling of platelet-leukocyte complexes along the endothelium (Alon et al., 1996) This process does not require leukocyte activation and is mediated by endothelial derived selectins (P-selectin, E-selectin and L-selectin). The importance of leukocyte rolling in the recruitment of leukocytes is highlighted by a rare congenital disorder called leukocyte adhesion deficiency II (LAD II), where patients cannot produce functional selectin ligands and consequently display defects in neutrophil rolling and recruitment, leading to severe recurrent bacterial infections (Langer and Chavakis, 2009).

Whilst it is important to note that P-selectin-PSGL-1 interactions are important in leukocyte adhesion and recruitment to inflamed tissue, other molecules are implicated. The mediators involved are dependent upon both the cell types involved and the mediators expressed and released on the platelet surface. It has been reported that activated platelets are a rich source of soluble CD40L (Vowinkel et al., 2007) (Vanichakarn et al., 2008), which has been shown to interact with its receptor CD40 expressed on neutrophils (Vanichakarn et al., 2008). Studies have demonstrated that the engagement of CD40L with its receptor stimulates the release of pro inflammatory cytokines, chemokines and the increased expression of adhesion
molecules, including selectins and ICAM-2 (Vowinkel et al., 2007). This increased expression of adhesion molecules amplifies the signals involved in the recruitment of leukocytes to inflamed tissue and may contribute to the perpetuation of the inflammatory response. The importance of CD40-CD40L interactions has been highlighted in the literature, which described an attenuated recruitment of leukocytes and platelets in CD40 or CD40L knockout mice in a model of acute inflammation (Vowinkel et al., 2007).

Contact dependent activation, in addition to activation of leukocytes by chemokines secreted from the inflamed tissue, leads to inside-out integrin activation of leukocytes (Johansson and Mosher, 2013). Integrin adhesion molecules and their counter ligands (ICAM-2/ Lymphocyte function-associated antigen 1 (LFA1) (Diacovo et al., 1994) (Kuijper et al., 1998), Very Late Antigen 4 (VLA4)/ VCAM-1, α4β7/ mucosal vascular addressin cell adhesion molecule 1 (MAdCAM 1) and junctional adhesion molecules (JAM 1-3)) (Chavakis et al., 2004) (Woodfin et al., 2007) provide firm adhesion to the endothelium and support paracellular and transcellular diapedesis of platelet-leukocyte complexes to inflamed tissue. Further important adhesion molecules involved in leukocyte recruitment include the platelet-endothelial cell adhesion molecule-1 (PECAM-1) (Berman and Muller, 1995) (Woodfin et al., 2007) and endothelial cell adhesion molecule (ESAM) (Figure 1.4). Intriguingly, the involvement of these interactions in mediating leukocyte recruitment has been demonstrated using antagonists, which was reported to significantly attenuate neutrophil recruitment into inflamed tissue (Chavakis et al., 2004).
Figure 1. 4. Involvement of Platelets in Leukocyte Recruitment to Inflamed Tissue

1. Platelet Activation
2. P-L Complex Formation
3. Rolling
4. Firm Adherence
5. Diapedesis
6. Leukocyte Migration
7. Platelet Participation in Innate Immunity

Inflammatory Chemokine Release

Blood Flow

Platelets

Granule Secretion

Neutrophils

Platelet-Leukocyte

JAMs

α4β7/MAdCAM-1

VLA4/VCAM-1

ICAM-2/LFA1

PECAM-1

P-selectin-PGL-1

ESAM

3. Platelet Activation
4. P-L Complex Formation
5. Diapedesis
6. Leukocyte Migration
7. Platelet Participation in Innate Immunity

Inflammatory Chemokine Release

Blood
1.5.3 The Role of Platelets in Infection

1.5.3.1 The Inflammatory Response to Bacterial Infection

The innate immune system and its primary cellular components, including macrophages, neutrophils, natural killer (NK) and dendritic cells (Figure 1.5), play a pivotal role in the activation of the inflammatory response to infection. Pulmonary bacterial infections, including CF, are characterised by chronic airway inflammation and consequently patients present to the clinic with diminished lung function (Pillarisetti et al., 2011) (Cigana et al., 2018).

Innate immune mechanisms detect bacterial infections through their characteristic pathogen associated molecular mechanisms (PAMPs), which triggers the appropriate response against that particular infection (Kurup and Tarleton, 2013). PAMPs are usually components of the bacterial cell wall, including LPS (gram-negative), lipopeptides (gram-positive), peptidoglycan, flagellin and bacterial DNA (Elson and Daubeuf, 2007). PAMPs are recognised by complement, and the complement components C3b and iC3b (Frank and Fries, 1991) (Gaboriaud et al., 2003) subsequently label the particles in a process termed opsonisation. Phagocytes are then able to recognise opsonised bacterial components by the expression of complement (C1q and C3) and Fc receptors (Frank and Fries, 1991) (Van Amersfoort et al., 2003). In addition, phagocytes express pattern recognition receptors (PRRs) (TLRs, NOD-like receptors (NLRs), RIG-1 like receptors (RLRs), C type lectin receptors (CLR)s) on their cell surface, which enables the recognition and phagocytosis of opsonised bacteria. The bacterial epitopes may then be presented on the cell surface via MHC class II to initiate the adaptive immune response.

Pathogens or immunogenic particles initiate the release of an array of pro-inflammatory mediators from macrophages, including tumour necrosis factor (TNF-α), interleukin (IL) 1β
and IL-6, and induce vascular and physiological changes (Kawakami et al., 1983) (Broug-Holub et al., 1997) (Huang et al., 2008) (Bhakdi et al., 1991). Neutrophils respond to these inflammatory stimuli by intravascular aggregation, adhering to the endothelium and migrating towards the inflammatory source (Bray et al., 1981) (Schiffmann et al., 1975) (Gaertner et al., 2017). Neutrophils further augment the inflammatory cascade by the production of additional inflammatory mediators, including leukotriene-β4, PAF and TNFα (Camussi and Tetta, 1989). Once activated, neutrophils express CD14, CD11/CD18, complement and Fc receptors, enabling phagocytosis of either bacterial fragments or whole bacteria (Van Amersfoort et al., 2003) (Gaertner et al., 2017).

Neutrophils produce and secrete microbicidal agents from internal granules, including oxygen free radicals and lysozyme, which facilitate their role in host defence (Chatham and Blackburn, 1993). In addition to their more traditional role in phagocytosis, activation of neutrophils causes the release of dense web-like structures of DNA, called neutrophil extracellular traps (NETs). These NETs contain proteolytic activity that can trap and destroy invading microorganisms (Caudrillier et al., 2012) (Clark et al., 2007) (McDonald et al., 2012).

The innate immune response leads to the activation of the acquired immune system. It is reported that IL-12 is a key modulator of immune function (Wolf et al., 1994). Antigen presenting cells present bacterial epitopes to naïve T-cells, resulting in the activation of T-cells and the differentiation of naïve T-cells into Th1 cells (Figure 1.5). This leads to the production of pro-inflammatory cytokines, including interferon gamma (IFN-γ) (Wolf et al., 1994) (Cooper et al., 1995) (O’Sullivan et al., 1995), which promotes cell mediated immunity directed towards intracellular pathogens (Wurster et al., 2002). Exposure to allergen induces IL-4 production and causes activation of the transcription factor STAT6, which promotes Th2 cell
differentiation (Kaplan et al., 1996) (Figure 1.5). Th2 cells produce IL-4, IL-5 and IL-13, which activate mast cells and eosinophils (Wurster et al., 2002) to mediate allergic reactions, asthma and anti-parasitic infections. A summary of the innate and acquired immune responses to bacterial infection is shown in Figure 1.5.

![Figure 1.5 The Innate and Acquired Immune Responses to Infection](Sherwood and Toliver-Kinsky, 2004)

1.5.3.2 Platelet Activation and Thrombocytopenia in Infectious Diseases

Asides from their well-established role in haemostasis, recently a role for platelets in the regulation of the immune response has become increasingly more apparent. Platelets are the first and most abundant inflammatory cell type recruited in response to injury or infection.
Chapter I: Introduction

(Kerrigan, 2015) (Gaertner et al., 2017). Furthermore, platelets interact with various inflammatory cells and regulate adhesion and extravasation (Pitchford et al., 2003) (Smyth et al., 2009) (Hurley et al., 2016) (Ortiz-Muñoz et al., 2014) (Kornerup et al., 2010) (Amison et al., 2017), suggesting a role for platelets in orchestrating the immune response to infection.

The involvement of platelets in the regulation of the immune response to infection was initially identified in 1901, whereby platelets were observed to ‘clump’ in response to *Vibrio cholerae* in rabbits (Levaditi, 1901). This has since been validated in the clinic, whereby increases in the expression of platelet activation markers in patients with numerous infectious diseases has been documented (Gawaz et al., 1995) (Gawaz et al., 1997) (Ogura et al., 2001) (O’Sullivan et al., 2005) (Papapanagiotou et al., 2009). It has been demonstrated that CF patients have increased circulating activated platelets when compared to healthy individuals, as determined by increases in platelet-monocyte and platelet-neutrophil complexes, and platelet P-selectin surface expression, (O’Sullivan et al., 2005). Similarly, platelet activation has been detected in patients presenting to the clinic with sepsis (Gawaz et al., 1995) (Gawaz et al., 1997) (Ogura et al., 2001). In these patients, circulating platelet-neutrophil complexes are increased in early stage sepsis, yet decrease following multiple organ dysfunction, suggesting the platelet-neutrophil complexes migrate towards the damaged organs (Russwurm et al., 2002) (Peters et al., 2003) (Gawaz et al., 1997). This finding is consistent in animal models of bacterial induced sepsis, indicating that platelet-neutrophil complexes decrease during late stage sepsis (Hurley et al., 2016). Similarly in other bacterial infections, including periodontitis, platelet activation has been shown to correlate with the severity of disease (Papapanagiotou et al., 2009).
Indeed, the finding of platelet activation in response to bacterial infection has been replicated in numerous experimental models of pulmonary infection, as measured by increases in platelet granular secretion and platelet-neutrophil complex formation (Youssefian et al., 2002) (Hurley et al., 2016) (Gawaz et al., 1995) (Ogura et al., 2001) (de Stoppelaar, 2014) (de Stoppelaar et al., 2015). Gram-positive species of bacteria (S.aureus and Streptococcus pyogenes (S.pyogenes)) have been shown to induce platelet activation, as measured by elevated P-selectin surface expression and fibrinogen release (Youssefian et al., 2002), in addition to increased platelet-neutrophil complex formation and the accumulation of platelet aggregates (Hurley et al., 2016). Similarly, gram-negative species of bacteria have been shown to induce platelet activation in a model of gram-negative pneumonia derived sepsis, whereby K.pneumoniae induced PF-4 secretion from platelet granules (de Stoppelaar, 2014). These findings clearly suggest a role for platelets in response to bacterial infection.

Thrombocytopenia is a common finding in patients admitted to the intensive care unit with sepsis (de Stoppelaar, 2014) (Shannon, 2015) (Greco et al., 2017) and this is associated with a poor prognosis and worsened outcome (Xiang et al., 2013) (Yeaman, 2014) (Claushuis et al., 2016). Studies have reported that the level of thrombocytopenia correlates to illness severity. For example, findings by (Hui et al., 2011) have demonstrated that the occurrence of thrombocytopenia during critical illness appeared to increase the risk of death and was often correlated to sepsis and organ dysfunction in patients admitted to the intense care unit. Furthermore, additional studies have demonstrated that patients with thrombocytopenia presented more commonly with severe sepsis and 30-day mortality was significantly elevated (Gafter-Gvili et al., 2011). Other studies have suggested that thrombocytopenia can also be used as an independent predictor of organ damage and mortality in critically ill patients (Hurley et al, 2016).
There are several proposed mechanisms to elucidate infection induced thrombocytopenia. Firstly, bacteria induces platelet activation and activated platelets have shown shortened survival (4.7 days) in comparison to platelets from healthy individuals (8.9 days) (Taytard et al., 1986) in atopic asthma. Furthermore, platelet activation induced by interactions with bacteria causes platelet granular secretion, irreversible platelet aggregation (Youssefian et al., 2002) (Clawson and White, 1971) and increased platelet accumulation at the site of infection (Hurley et al., 2016) (Kerrigan and Cox, 2010) (Yeaman, 2014). Reports have suggested that bacterial components, such as peptidoglycan and their secreted toxins can induce platelet apoptosis and cytotoxic effects (Kraemer et al., 2012), further contributing to the observed thrombocytopenia during bacterial infection. Other plausible mechanisms which induce thrombocytopenia during infection are the enhancement of platelet phagocytosis by macrophages (Guo et al., 2009) and the sequestration of platelets in the spleen (Aster, 1966). Animal models of experimentally induced thrombocytopenia have been developed to further investigate the protective role of platelets in host defence against infection. In these models, experimentally induced thrombocytopenia has been associated with worsened infection in rabbits and mice, as measured by enhanced mortality and bacterial load and the exacerbation of sepsis and organ failure (Sullam et al., 1993) (Xiang et al., 2013) (de Stoppelaar, 2014)(van den Boogaard et al., 2015) (Ali et al., 2017). The depletion of circulating platelets has been shown to dramatically impair host defence against infection, increasing mortality in LPS induced endotoxemia (Xiang et al., 2013) and *K.pneumonaie* (de Stoppelaar, 2014), *Streptococcus pneumoniae (S.pneumoniae)* and *Escherichia coli (E.coli)* derived sepsis models (van den Boogaard et al., 2015) (Xiang et al., 2013). Thrombocytopenia has been associated with a higher bacterial burden in a rabbit model of *Streptococcal* endocarditis (Sullam et al., 1993) and has been shown to exacerbate bacterial sepsis and organ failure in numerous other
models (Xiang et al., 2013) (Van den Boogaard et al., 2015) (de Stoppelaar, 2014). Intriguingly, the protective effect of platelets have been restored upon platelet reinfusion, improving survival and protection against septic shock (Xiang et al., 2013). These data implicate a role for platelets in the protection against infection and suggest that platelet transfusion may be an effective method of treating severely septic patients.

1.5.3.3 Platelet-Bacteria Interactions

Platelets express an array of constitutive and inducible receptors that allow them to sense PAMPs and respond to signals of infection (Kurup and Tarleton, 2013) (Figure 1.6). Platelets are able to interact with bacteria via three main mechanisms: Direct binding, whereby a bacterial surface protein binds to a platelet surface receptor (Kerrigan et al., 2002) (Miajlovic et al., 2010), indirect binding, mediated by a protein that can bind to both platelets and bacteria (e.g. fibrinogen) (Loughman et al., 2005) (Siauw et al., 2006), or the binding of platelets to bacterial secretory product (e.g. cysteine proteinases) (Ståhl et al., 2006) (Lourbakos et al., 2001). The sequence of events involved in platelet-bacteria interactions involves four subsequent steps: contact, platelet shape change, early aggregation and irreversible aggregation (Clawson and White, 1971a).

Bacteria display considerable variation in their ability to interact with platelets, with the subsequent effect on platelet function determined by the receptors involved in bacterial recognition and both the species and concentration of bacteria present (Dewitte et al., 2017) (Yeaman, 1997a). For example, \textit{S. aureus} and \textit{S. pyogenes} have been shown to induce rapid
and complete platelet aggregation, whilst *E.coli* induces platelet aggregation much less rapidly (Clawson and White, 1971b) (Clawson and White, 1971a).

Similarly, the bacteria to platelet ratio has a direct correlation with the velocity and extent with which platelet aggregation occurs (Bayer et al., 1995) (Yeaman et al., 1992). Platelet aggregation induced by bacteria is an ‘all or nothing’ response, whereby a sub-threshold concentration of bacteria does not induce platelet aggregation (Arman et al., 2014). Unlike with classical platelets agonists, following interaction there is a distinct pause or ‘lag’ prior to platelet aggregation induced by bacteria, with a higher concentration of bacteria shortening the lag time to aggregation (Arman et al., 2014). A short lag time is indicative of a direct interaction between platelets and bacteria, yet a long lag time is indicative of an indirect interaction (Kerrigan, 2015). Literature has reported that some bacteria, including *Helicobacter pylori* (*H.pylori*), can induce platelet aggregation with a short lag time of 2-5 minutes (Byrne et al., 2003) (Kerrigan et al., 2002), whilst other bacteria, including *Streptococcus gordonii* (*S.gordonii*), can induce platelet aggregation with a long lag time of 12-18 minutes (Loughman et al., 2005) (Kerrigan et al., 2007).

1.5.3.3.1 Toll-Like Receptors

Murine and human platelets constitutively express low levels of TLR2, TLR4 and TLR9 on their surface (Andonegui et al., 2005) (Cognasse et al., 2005) (Aslam et al., 2016), suggesting that platelets can detect and bind infectious agents (*Figure 1.6*). The expression of these TLRs is significantly increased upon platelet activation (Scott and Owens, 2008). Studies have indicated that PAMPs are detected via TLRs (Takeuchi et al., 1999) and this is a pivotal component of the immune response to infection. Indeed, it has been demonstrated that LPS
from gram-negative bacteria evokes platelet activation and secretion by a TLR4-mediated process, whilst the platelet response to LPS was diminished using platelets isolated from TLR4 knockout mice (Zhang et al., 2009). Furthermore, engagement of TLR4 by LPS has been shown to induce platelet degranulation, enhancing ATP release and P-selectin expression, in addition to inducing the secretion of cytokines, microbicidal proteins and kinocidins (Zhang et al., 2009) (Cognasse et al., 2008). Conversely, additional studies reported that LPS did not induce platelet aggregation, nor the expression of the activation marker P-selectin (Ward et al., 2005). It is therefore evident that the ability of platelet TLR4 to induce aggregation in response to LPS remains controversial and requires further investigation.

Evidence has reported that the actions of LPS on platelet activation mediated by TLR4 may in fact be indirect. It has been suggested that LPS induced platelet activation by TLR4 primes platelets for efficient neutrophil binding and activation (Clark et al., 2007), leading to NETosis and the subsequent trapping of bacteria within the vasculature.

Platelet TLR2 also plays a significant role in the recognition of PAMPs associated with gram-positive bacteria, including lipoproteins (Takeuchi et al., 1999). Gram-positive bacteria, including S. pneumoniae, have been shown to induce platelet aggregation and dense granule secretion in a TLR2-dependent manner (Keane et al., 2010). This was further demonstrated using blocking agents, whereby pre-treatment of platelets with an inhibitory monoclonal antibody against TLR2 antibody abolished bacterial-induced platelet secretion and aggregation (Keane et al., 2010). These data highlight the importance of TLR2 and TLR4 in platelet interactions with gram-positive and gram-negative bacteria respectively. They further suggest that platelets possess the capacity to augment the antimicrobial function of other immune cells.
1.5.3.3.2 FcγRIIa receptors

Platelets express a large number of functional FcγRIIa receptors (400-2000 per platelet) (Karas et al., 1982), which are thought to be involved in platelet interactions with bacteria (Dewitte et al., 2017) (Figure 1.6). FcγRIIa is a low affinity receptor that binds to IgG (Karas et al., 1982) and plays a significant role in linking the innate and adaptive immune systems. The platelet FcγRIIa receptor can recognise immune complexes and other IgG coated targets (Middleton et al., 2016) (Arman et al., 2014), providing direct mechanisms for immune interaction and effector activities. Subsequent receptor stimulation triggers Ca\(^{2+}\) mobilisation, platelet activation and the release of platelet derived mediators (PF-4, P-selectin), which further amplifies the platelet response to bacteria (Arman et al., 2014). Furthermore, it has been suggested that IgG immune complexes that bind to FcγRIIa can be internalised by platelets (Worth et al., 2006). A number of reports suggest that the binding of bacteria to FcγRIIa is mediated via an indirect mechanism, whereby bacterial proteins use IgG to cross-link to platelet FcγRIIa (Tilley et al., 2013) (Naito et al., 2006). Bacteria-induced platelet aggregation is generally inhibited by antibodies that target the FcγRIIa receptor, with the blockade of FcγRIIa preventing aggregation induced by numerous bacterial species (Kerrigan et al., 2002) (Shannon et al., 2007) (Byrne et al., 2003). It has also been suggested that the activation of other platelet receptors by bacteria often requires the simultaneous involvement of the FcγRIIa receptor for an effective platelet response (Hamzeh-Cognasse et al., 2015). This suggests a direct link between the FcγRIIa receptor and the mechanisms of platelet aggregation induced by bacteria. Platelets are the richest source of FcγRIIa, therefore they play a pivotal role in the ability of platelets to interact with bacteria and in their subsequent antibacterial response (Hamzeh-Cognasse et al., 2015).
Integrin $\alpha_{IIb}\beta_3$ (GPIIbIIIa) is expressed exclusively on platelets and megakaryocytes and primarily acts as a fibrinogen receptor (Bennett, 2005). $\alpha_{IIb}\beta_3$ facilitates the bridging of fibrinogen and cross-linking of platelets in haemostasis, although this platelet receptor has also been implicated in mediating the interactions between platelets and bacteria (Deppermann et al., 2017) (Deppermann et al., 2016) (Figure 1.6). The binding sites of ligands, including fibrinogen, to this receptor is thought to be mediated by the recognition of an arginine-glycine-aspartate (RGD) peptide sequence (Kerrigan, 2015). A number of bacteria have also been shown to express surface proteins that can bind directly to $\alpha_{IIb}\beta_3$, independent of fibrinogen (Kerrigan, 2015). A common feature of these interactions is the presence of regions rich with RGD repeats in the bacterial protein mediating the binding (Kerrigan, 2015). For example, S. aureus expresses iron-regulated surface determinant (Isd) proteins, which have been shown to directly bind to platelet $\alpha_{IIb}\beta_3$ in the absence of fibrinogen (Arman et al., 2014). Furthermore, platelet adhesion and aggregation induced by S. aureus were significantly attenuated following incubation with either an anti-$\alpha_{IIb}\beta_3$ antibody, Tirofiban, an RGD-sequence inhibitor or using a strain defective in the expression of IsdB (Miajlovic et al., 2010).

Bacteria are also capable of indirect binding to platelet $\alpha_{IIb}\beta_3$ using a plasma protein, such as fibrinogen, to bridge itself to the platelet (Deppermann and Kubes, 2016). Different species of bacteria express different proteins which enable binding to the plasma protein. For example, S. aureus expresses clumping factor B (ClfB), fibronectin-binding protein A (FnBPA), fibronectin-binding protein B (FnBPB) and clumping factor A (ClfA) (Arman et al., 2014). These bacterial proteins are characterised by an RGD-sequence and a C-terminal containing a leucine-proline-x-threonine-glycine (LPxTG) motif, which anchors the protein to the cell wall.
of the bacteria (Kerrigan, 2015) (Signas et al., 1989). Following binding to fibrinogen, the bacteria is then cross-linked to the platelet via $\alpha_{\text{IIb}}\beta_3$. In order to induce full platelet aggregation by indirect binding, a co-stimulus is required, which is provided by the bacteria binding IgG and cross-linking to the platelet FcγRIIa receptor (Arman et al., 2014).

1.5.3.3.4 GPIbα

GPIbα is a membrane glycoprotein expressed exclusively on platelets and megakaryocytes (Lopez, 1994). Although it primarily functions as the platelet receptor for vWF, a number of different species of bacteria have been shown to express serine-rich repeats (SRR), which can bind directly to platelet GPIbα (Arman et al., 2014). For example, Streptococcus sanguinis (S.sanguinis) and S.aureus express the SRR proteins termed SrpA and SraP respectively, which can bind directly to GPIbα (Plummer et al., 2005) (Siboo et al., 2005) (Figure 1.6). In the same way that fibrinogen acts as a bridge between bacteria and platelets when indirectly binding to $\alpha_{\text{IIb}}\beta_3$, vWF may be used as an intermediary to facilitate the interactions between bacteria and platelet GPIbα. For example, protein A (SpA) from S.aureus binds to vWF for indirect adhesion to platelets (O’Seaghdha et al., 2006), and similarly vWF is used by H.pylori to interact with platelets (Byrne et al., 2003). The involvement of this receptor in mediating the interaction with bacteria has been underpinned clinically, whereby platelets obtained from patients lacking expression of GPIbα in Bernard Soulier Syndrome fail to aggregate in response to H.pylori (Byrne et al., 2003).
Figure 1. A Summary of Direct and Indirect Interactions Between Platelets (TLR, FcγRIIa, αIIbβ3, GPIbα, complement) and Bacteria
1.5.3.3.5 Complement

The complement receptor gC1q-R is expressed at low levels on platelets under normal resting conditions, however it becomes upregulated upon platelet activation (Peerschke et al., 2003). Complement proteins interact with bacteria through both the classical and alternative complement pathways (Hamzeh-Cognasse et al., 2015) (Figure 1.7). The classical pathway is initiated following the formation of immune complexes, after IgG or IgM bind to bacteria (Sarma and Ward, 2011). The C1 complex, consisting of C1q, C1r and C1s molecules, then binds to the immune complex inducing the activation of C1s and C1r. C1s then subsequently cleaves C4 and C2 to form the C3 convertase, C4bC2a. C4bC2a further cleaves C3 to release C3a and C3b. C3b acts to amplify complement activation and is involved in phagocytosis. Furthermore, C3b complexes with the C3 convertases to form the C5 convertases, C3bBbC3b and C4bC2aC3b. The C5 convertases cleave C5 to form C5a and C5b. The membrane attack complex (C5b-9) is then initiated by C6 and C7 binding to C5b, followed by the binding of C8 and C9 binding. This complex forms a pore in cell membranes and results in cell lysis (Sarma and Ward, 2011) (Figure 1.7).

The alternative pathway is initiated by carbohydrates, lipids and proteins on non-self surfaces (Figure 1.7) (Sarma and Ward, 2011). C3 is hydrolysed to form C3b, which binds to bacteria. Factor B is then recruited to C3b, followed by Factor D, which cleaves Factor B to form the C3 convertase C3bBb (Sarma and Ward, 2011).

Bacteria coated with the complement factor C1q are able to interact with and bind to platelet gC1q-R (Hamzeh-Cognasse et al., 2015), where it has been shown that SpA from S.aureus can bind directly to platelet gC1q-R (Nguyen et al., 2000).
Platelet aggregation induced by ClfA and ClfB from *S.aureus* are also thought to be mediated by complement, since its inactivation by heating the sera or removing complement proteins using zymosan has been shown to inhibit platelet activation and aggregation (Loughman et al., 2005) (Miajlovic et al., 2007). Consequently, this implicates the complement receptor gC1q-R in mediating the interactions between platelets and bacteria (*Figure 1.6*).
These data suggest that platelets possess a vast array of cell surface receptors, which facilitate their interactions with bacteria (Figure 1.6). It is evident that different bacterial species have different mechanisms by which they interact with platelets and vary in their ability to adhere to and aggregate platelets. However, the overall resulting effect on platelet function induced by bacteria is determined by the magnitude of stimulation and the duration of contact between the platelets and bacteria (Yeaman and Bayer, 1999).

1.5.3.4 Platelet Purinergic Receptors in Inflammation and Infection

Platelets express a family of receptors, which are activated by the purines, ADP, ATP, uridine 5′-diphosphoglucose (UDP) and uridine 5′-triphosphoglucose (UTP) (Scrivens and Dickenson, 2006) (Chambers et al., 2000). 4 receptor subtypes are known to be expressed on the platelet surface, 3 from the G-protein coupled receptor family, P2Y₁, P2Y₁₂ and P2Y₁₄ and 1 from the ionotropic P2X family, P2X₁ (Storey et al., 2002) (Dovlatova et al., 2008) (Figure 1.8). The P2X₁ receptor is a ligand gated ion channel, which is activated by endogenous ATP, resulting in the rapid influx of Ca²⁺ ions (Murugappan and Kunapuli, 2006). In contrast, the P2Y₁ receptor subtype is stimulated by endogenous ADP triggering activation of the Gₐₛ/ phospholipase C pathway (Gachet, 2006). Similarly, the P2Y₁₂ receptor is activated by endogenous ADP and is coupled to Gᵢ. Signalling via this G-protein negatively regulates the membrane bound adenylyl cyclase (Kauffenstein et al., 2001). P2Y₁₄ receptors are thought to be coupled to Gᵢ and are activated by uridine diphosphate (UDP) and UDP-glucose (Dovlatova et al., 2008), although signalling downstream of the P2Y₁₄ receptor remains to be elucidated in platelets.

The role of platelet purinergic receptors in platelet aggregation (P2X₁, P2Y₁, P2Y₁₂) has been well documented (Gachet, 2006) (Léon et al., 2003) (Storey et al., 2000), however more
recently the implication of these receptors and their purine ligands in inflammatory processes has become much more apparent (Storey et al., 2002) (Leon et al., 2008) (Klinkhardt et al., 2002) (Amison et al., 2018c) (Amison et al., 2015). Various cell types involved in innate immunity and inflammation express the purinergic P2 receptor subtype, which have been shown to be involved in the modulation of inflammation and the immune response.
Figure 1.8 An Overview of Platelet Purinergic Signalling and Effects
Asides from the ability of platelet purinergic receptors to modulate platelet function in the context of haemostasis, stimulation of the platelet purinergic receptors, by ADP or ATP has been shown to induce platelet activation, resulting in aggregation, granule secretion, adhesion molecule upregulation and interactions with inflammatory cells (Fabre et al., 1999) (Léon et al., 2003) (Storey et al., 2000) (Cattaneo et al., 2004) (Hechler et al., 2003). Indeed, a number of studies have demonstrated the ability of purinergic receptor stimulation to induce increases in P-selectin expression, platelet-leukocyte complex formation and in contributing to leukocyte activation and recruitment (Léon et al., 2003) (Storey et al., 2002) (Amison et al., 2017) (Amison et al., 2015). This is suggestive of the ability of platelet purinergic receptors to modulate platelet function that is relevant to inflammation.

ADP induced activation of platelet P2Y₁ receptors triggers the activation of PLCβ via Gq (Gachet, 2006), leading to the generation of the second messengers IP₃ and DAG from PIP₂ (Figure 1.8). Elevated levels of IP₃ result in calcium mobilisation and release from intracellular stores (Lian et al., 2005). Ca²⁺ promotes rearrangement of the actin cytoskeleton to induce platelet shape change. Furthermore, DAG triggers PKC activation, which in combination with elevated levels of intracellular Ca²⁺, results in the secretion of platelet granules (Walker and Watson, 1993). Indeed, the inhibition of P2Y₁ has been shown to reduce platelet activation and inflammation in a number of studies. For example, pulmonary neutrophil recruitment induced by intranasal LPS administration was inhibited in mice following administration of a P2Y₁ antagonist, MRS2500 (Amison et al., 2017), whilst blockade of P2Y₁ also reduced P-selectin expression and the incidence of circulating platelet-leukocyte complexes (Léon et al., 2003) (Amison et al., 2015).
The platelet P2Y\textsubscript{12} receptor is coupled to G\textsubscript{i}, with activation of the G-protein negatively regulating adenylyl cyclase. Under normal resting conditions, adenylyl cyclase catalyses the production of cyclic adenosine monophosphate (cAMP), which locks the platelet integrin \(\alpha\text{IIb}\beta3\) in an inactive conformation preventing platelet aggregation (Kauffenstein et al., 2001). However, upon P2Y\textsubscript{12} receptor activation and subsequent inhibition of adenylyl cyclase, the decrease in intracellular cAMP levels removes this ‘break’ on the platelet integrin \(\alpha\text{IIb}\beta3\) activation, thus enabling platelet aggregation (Kauffenstein et al., 2001) (Gachet, 2006). Furthermore, activation of the platelet P2Y\textsubscript{12} receptors amplifies platelet aggregation, since its activation also stimulates the secretion of platelet dense granules resulting in the local generation of thrombin and TXA\textsubscript{2} (Storey et al., 2000).

The P2Y\textsubscript{12} receptor is an attractive therapeutic target for anti-thrombotic agents and its antagonism has demonstrated clear anti-thrombotic effects, decreasing P-selectin expression and platelet aggregation induced by a variety of stimuli (Storey et al., 2002) (Léon et al., 2003) (Kauffenstein et al., 2001).

In the context of inflammation, literature has shown mixed actions of the platelet P2Y\textsubscript{12} receptor. Some groups have highlighted that antagonism of the platelet P2Y\textsubscript{12} receptor, using Clopidogrel, has demonstrated attenuation of circulating inflammatory mediators, decreased exposure of P-selectin and CD40L and diminished formation of platelet-leukocyte complexes (Gachet, 2012) (Cattaneo, 2015) (Steinhubl et al., 2007) (Liverani et al., 2016). Recent findings also implicate the P2Y\textsubscript{12} receptor in acute inflammation in sepsis, where platelets play an important role by enhancing pulmonary infiltration of neutrophils, exacerbating tissue damage (Asaduzzaman et al., 2009) (de Stoppelaar et al., 2015). Whilst, other published literature has demonstrated that LPS induced systemic inflammation becomes more severe
in the absence of P2Y12 receptors (Liverani et al., 2014) and P2Y12 antagonism using Clopidogrel was shown to potentiate inflammation in a rat model of peptidoglycan-polysaccharide induced arthritis (Garcia et al., 2011).

In contrast, literature using a murine model of allergic airway inflammation has suggested that the antagonism of P2Y12 had no significant effect in pulmonary leukocyte recruitment, yet significantly reduces bleeding time and ex vivo platelet aggregation to ADP (Amison et al., 2017). This would indicate a dichotomy in platelet activation during inflammation when compared to purinergic receptor involvement in haemostatic processes, however the conflicting results in the literature show a clear need to further investigate the role of the P2Y12 receptor in inflammatory conditions.

More recently, platelets have also been shown to express the purinergic P2Y14 receptor on their surface (Dovlatova et al., 2008), which is activated by UDP glucose and related sugar nucleotides (Scrivens and Dickenson, 2006). It has been suggested that the P2Y14 receptor is coupled to G\textsubscript{i} proteins (Moore et al., 2003) (Dovlatova et al., 2008), since UDP-glucose stimulated signalling was completely blocked following pre-treatment of human embryonic kidney (HEK) 293 cells with pertussis toxin (Chambers et al., 2000). Furthermore, UDP glucose has been shown to stimulate significant increases in intracellular Ca2+ in a variety of cell lines, which again was sensitive to pertussis toxin (Scrivens and Dickenson, 2006). This is further suggestive of the P2Y14 receptor coupling to G\textsubscript{i} proteins.

The physiological function of P2Y14 remains unknown at present, however the P2Y14 receptor appears to be redundant in platelet aggregation unlike the other platelet P2 receptors (Amison et al., 2017) (Dovlatova et al., 2008). This receptor subtype has demonstrated an ability to mediate cell migration in other cell types, including stem cells (Lee et al., 2003), in
addition to stimulating pro-inflammatory cytokine release (IL-8), inducing dendritic cell maturation (Scrivens and Dickenson, 2006) and inhibiting T-lymphocyte proliferation (Scrivens and Dickenson, 2005), clearly indicating an involvement of the P2Y14 receptor in modulating inflammatory processes. Moreover, the expression of P2Y14 has been shown to increase in rat brain and spleen following provocation with LPS (Moore et al., 2003). Others (Amison et al., 2017) have demonstrated that P2Y14 receptor activation affects platelet function by stimulating platelet-induced neutrophil chemotaxis in vitro and in mediating pulmonary neutrophil recruitment in mice, in response to LPS challenge (Amison et al., 2017). In these studies, administration of a P2Y14 antagonist significantly inhibited pulmonary neutrophil recruitment induced by intranasal LPS, whilst the haemostatic responses (platelet aggregation and bleeding times) remained unaltered.

The P2X1 receptor is an ATP-gated, non-selective cation channel (Gachet, 2006). Studying the involvement of P2X1 in platelet activation has proved difficult due to rapid desensitisation of the receptor following stimulation. However, this can be prevented through the hydrolysis of excess ATP using Apyrase (Mahaut-Smith et al., 2011) (Sun et al., 1998). ATP stimulation of the P2X1 receptor has been shown to increase cellular permeability to Ca2+ (Sun et al., 1998), resulting in significant increases in intracellular Ca2+ levels following activation (Mahaut-Smith et al., 2011). The influx of Ca2+ can trigger reversible platelet shape change, movement of secretory granules without secretion and low level inside-out activation of αIIbβ3 integrin (Mahaut-Smith et al., 2011) (Toth-Zsamboki et al., 2003). Furthermore, it has been reported that activation of the P2X1 receptor with ATP plays an important role in facilitating neutrophil chemotaxis (Lecut et al., 2009).
In other studies, it was shown that inhibition of the P2X$_1$ receptors in a model of LPS-induced inflammation had no impact on pulmonary neutrophil recruitment (Amison et al., 2017). Interestingly, these studies demonstrated that antagonism of the P2X$_1$ receptor significantly increased bleeding times and ex vivo platelet aggregation in response to ADP. This further highlights a potential dichotomy in platelet activation during inflammation versus haemostasis.

It is evident that purinergic receptor signalling can mediate inflammatory processes, therefore it is reasonable to suggest that these receptors are likely to be activated in response to infection. In the lung, it is reported that purinergic receptors regulate the rate of mucus clearance (Homolya et al., 2000), surfactant secretion (Rice et al., 1995) and pulmonary vasodilation (Hamada et al., 1998). Whilst these receptors are also important in the modulation of inflammation, including the release of cytokines and leukocyte chemotaxis and adhesion (Geary et al., 2005).

A role for purinergic receptors in response to infection with P. aeruginosa has also been detailed. These studies have demonstrated that pulmonary P. aeruginosa infection of P2Y$_1$ and P2Y$_2$ deficient mice significantly decreased survival when compared to wild type mice (Geary et al., 2005). It is thought that the mechanism for the impaired survival of mice in these studies was related to an attenuation of the inflammatory cascade and impaired alveolar wall integrity (Geary et al., 2005).

Finally, additional studies have indicated that purinergic receptor signalling via P2X$_7$ is involved in modulating infectious processes in bacterial Chlamydia infections, protozoal infections, including Leishmania and Toxoplasma, and viral infections, including hepatitis B and C (Swartz et al., 2015) (Miller et al., 2011). However, this receptor is not expressed on the
platelet surface, suggesting that whilst platelet P2 receptors are involved in this process, their effects are not solely related to platelets.

1.5.3.5 Effects of Bacteria on Platelet Function

The consequences of the interactions between platelets and bacteria significantly influence the balance between infection and immunity. It has recently been described that platelets are involved in the earliest detection of microbial pathogens (Gaertner et al., 2017) (Kerrigan, 2015) and possess structures and functions of host defence effector cells. Numerous reports have suggested that platelets possess both direct antimicrobial functions, acting as a source of an array of antimicrobial peptides (Yang et al., 2015) (Yeaman, 2010) (Krijgsveld et al., 2000) (Tang et al., 2002) (Kraemer et al., 2011) (Dewitte et al., 2017) (Ali et al., 2017) and directly internalising bacteria (Youssefian et al., 2002), and also indirect antimicrobial functions by enhancing the immune functions of other cells, for example enhancing NET formation from neutrophils and the phagocytic capacity of macrophages (Clark et al., 2007) (Caudrillier et al., 2012) (Yeaman, 1997) (Ali et al., 2017) (Figure 1.9).
The release of antimicrobial proteins (PF-4, RANTES, connective tissue activating peptide 3 (CTAP-3), platelet basic protein (PBP), thymosin β-4 (Tβ-4), fibrinopeptide B (FP-B), and fibrinopeptide A (FP-A)) from both human and rabbit platelet α-granules has been demonstrated in vitro, following stimulation with thrombin (Krijgsfeld et al., 2000) (Figure 1.9). This releasate, termed platelet microbicidal proteins (PMPs), are reportedly involved in the clearance of pathogens including *viridans streptococci*, *S.aureus*, *E.coli* and *Candida albicans* (Krijgsfeld et al., 2000) (Tang et al., 2002) (Yeaman, 1997a). Furthermore, platelets have been shown to release a subset of PMPs, termed kinocidins, which directly kill pathogens and mediate leukocyte chemotaxis (Yount and Yeaman, 2006) (Yount et al., 2007). Thus
demonstrating that platelet-derived microbicidal proteins and kinocidins are capable of orchestrating the immune response to infection.

Kinocidins are classified according to their chemokine nomenclature, for example the CXC chemokines, including PF-4, PBP, CTAP-3 and neutrophil activating peptide 2 (NAP-2), are termed α- kinocidins due to their CXC-chemokine motif. In contrast, β- kinocidins, including RANTES, contain a CC-chemokine motif (Yeaman, 2010) (Yeaman et al., 1997) (Krijgsveld et al., 2000). Mature PMPs and kinocidins are subject to further cleavage after their release from platelets and their products also possess strong antimicrobial activity. For example, the N-terminal of the kinocidins PF-4 is cleaved to give rise to CTAP-III, β-TG and NAP-2 (Yeaman, 2014), generating additional antimicrobial peptides.

PMPs and kinocidins are rapidly released from platelets into the blood stream in response to bacterial invasion via a sequential process. Firstly, bacteria induced platelet activation results in platelet degranulation and the release of PMPs, kinocidins and ADP/ATP (Trier et al., 2008) (Figure 1.9). Studies have suggested that PMPs and kinocidins are released if the platelet-bacteria (S.aureus) ratio is above 10:1, highlighting the importance of platelet recognition and interactions with bacteria (Trier et al., 2008). The ADP/ATP released from platelets subsequently activates platelet purinergic receptors (P2X$_1$ and P2Y$_{12}$) on adjacent platelets, further amplifying the release of PMPs and kinocidins from successive platelets (Yeaman, 2010) (Figure 1.9). The association between purinergic receptors and PMPs/kinocidins has been underpinned using Apyrase and P2X$_1$ and P2Y$_{12}$ receptor antagonists, whereby the release of PMPs from platelets was diminished (Trier et al., 2008).

Studies have indicated that human derived PF-4 and RANTES display antimicrobial activity against E. coli and S.aureus (Y. Tang et al., 2002). Similarly, the levels of PMPs and kinocidins
released from human platelets have been reported to increase dramatically (4-6 fold) in an infectious setting in vivo (Lorenz and Brauer, 1988) (Mezzano et al., 1992). In this instance, plasma levels of PF-4 increased in septicaemia (Lorenz and Brauer, 1988) and other bacterial infections, including Streptococcal nephritis (Mezzano et al., 1992). Furthermore, research has indicated that platelet antimicrobial peptides are detectable within human wounds and blister fluid (Tang et al., 2002), demonstrating that platelets can play a protective role in preventing and limiting infection. Intriguingly, in patients with inherited platelet disorders, including Wiscott–Aldrich Syndrome, May–Hegglin Anomaly and Gray-Platelet Syndrome, where there is an abnormality in platelet function, a strong correlation exists between morbidity and mortality due to S.aureus and other infections (Yeaman, 2010). This study suggests that normal platelet function and a threshold platelet count is an important barrier to infection. This protective role of platelets in infection has highlighted the potential beneficial effect of platelet transfusions in infection and sepsis (Yeaman, 2010).

Additional studies have also demonstrated the antimicrobial activity of platelet rich plasma (PRP) and other additional plasma preparations in periodontal disease (Yang et al., 2015) (Drago et al., 2013). These studies showed that PRP interfered with Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans attachment (Yang et al., 2015) and inhibited the growth of Enterococcus faecalis, Candida albicans, Streptococcus agalactiae and Streptococcus oralis isolated from the oral cavity (Drago et al., 2013).

In vitro studies exposing rabbit derived PMPs to bacterial cells have revealed that PMPs target and disrupt bacterial cytoplasmic membranes (Yeaman, 1997) (Figure 1.9), resulting in ultrastructural damage and subsequent bactericidal and bacteriolytic effects. PMPs have also been shown to potentiate the antimicrobial effects of conventional antibiotics against
infection with *S. aureus* (Asensi and Fierer, 1991) (Figure 1.9), for example β-lysin and ampicillin interact synergistically *in vitro* to inhibit *Listeria monocytogenes*, thus demonstrating a potential therapeutic use of PMPs in patients with bacterial infections.

In addition to the release of PMPs and kinocidins, platelets contribute to other host defence effector functions. Platelets have been shown to release free radicals, such as superoxide anion, hydrogen peroxide and hydroxyl radicals, when stimulated by certain bacteria (Yeaman, 2010) (Figure 1.9). Moreover, studies have shown that platelets interact with components of the complement system to mediate complement fixation. For example, platelets are capable of regulating the generation of the membrane attack complex (Polley et al., 1981) (Zimmerman and Kolb, 1976) (Figure 1.9). Complement receptors expressed on the platelet surface subsequently bind to bacteria exhibiting this complex, which triggers platelet activation and degranulation (Polley and Nachman, 1983). Furthermore, platelet proteases can cleave C5 to C5a, therefore providing a positive chemotactic stimuli for the recruitment of macrophages and neutrophils (Weksler and Coupal, 1973) (Figure 1.9).

Platelet migration and scanning of the vascular surface for invading pathogens precedes the collection and internalisation of deposited bacteria, clearing pathogens from the bloodstream (Gaertner et al., 2017) (Youssefian et al., 2002). Studies performed by (Youssefian et al., 2002) demonstrated the engulfment of *S. aureus* by platelets that displayed classical signs of activation, including GPIb, P-selectin expression and fibrinogen release. It was proposed that the engulfing vacuole was formed by plasma membrane invagination following platelet activation. GPIb was not detected within the engulfing vacuole, suggested that its clearance from the platelet plasma membrane facilitates platelet shape change and initiates the contractile events required for bacteria internalisation. These studies also demonstrated the
fusion of platelet α-granules with the engulfing vacuole, resulting in the interaction of bacteria with the granular secretory products (Youssefian et al., 2002). Other research has proposed that platelets function as ‘covercytes,’ with platelet pseudopods surrounding bacteria until the organism is enclosed in a vacuole consisting of extracellular space surrounded by plasma membrane (White, 2005) (Figure 1.9).

In addition to platelets possessing direct antimicrobial functions, it has been suggested that platelets potentiate the antimicrobial mechanisms of leukocytes (Tang et al., 2002) (Clark et al., 2007) (Ali et al., 2017) (Caudrillier et al., 2012). It has been suggested that the interaction between platelets with monocytes and neutrophils provides a plausible mechanism by which platelets participate in antimicrobial defence. A wide array of platelet secretory products, including PF-4, PAF, PDGF, act as positive chemotactic stimuli for monocytes and neutrophils (Nachman and Weksler, 1972). Studies using experimental models have demonstrated that injection of PF-4 and PDGF rapidly induces neutrophil infiltration (Nachman and Weksler, 1972). Additionally, research performed by (Ali et al., 2017) suggested an indirect role of platelets in pathogen clearance through potentiation of phagocytic and killing capacity of macrophages (Ali et al., 2017) (Figure 1.9). In these studies, it was observed that activated platelets and their secreted products enhanced phagocytosis and restricted intracellular growth of *S.aureus* by macrophages. It was proposed that this process was mediated by platelet derived IL-1β, since its inhibition from platelets blocked phagocytosis and permitted *S.aureus* survival (Ali et al., 2017).

Other studies have suggested that PMPs that are active under mildly acidic conditions may augment the antimicrobial effect of leukocytes. It has been described that the ability of neutrophils to kill bacteria through non-oxidative mechanisms may be regulated by pH,
following engulfment by phagolysomes. Therefore, the acidic platelet (pH 5.5) releasate may amplify the direct antimicrobial mechanisms of neutrophils (Shafer et al., 1986) (Tang et al., 2002).

As previously described, emerging evidence has suggested that activated platelets induced the formation of NETS in ALI and sepsis (Caudrillier et al., 2012) (Clark et al., 2007) (Figure 1.9), further implicating platelets in the indirect mediation of the immune response to infection. These studies reported that under extreme conditions, such as severe sepsis, platelets via TLR4 function as a barometer for systemic infection. Bacteria induced platelet activation subsequently resulted in their rapid binding to sequestered neutrophils and induced the formation of NETS to ensnare bacteria in the circulation (Clark et al., 2007). The bacterial trapping capacity of these neutrophils is greatly augmented in the presence of platelets, with high concentration of LPS unable to induce NET formation directly, without the presence of platelets (Clark et al., 2007). Furthermore, the production of reactive oxygen species correlates to NET formation and interfering with platelet TXA₂ and MEK signalling significantly decreases NET formation (Caudrillier et al., 2012).

In summary, these studies provide evidence for platelets playing a key role in host defence against infection, mediated by both direct and indirect mechanisms. Platelets are the earliest and most abundant cell type present at sites of infection and can bind directly and indirectly to numerous microbial pathogens. Platelets can collect, bundle and internalise bacteria and release PMPs and kinocidins to facilitate microbial killing. They can also enhance the immune functions of other effector cells by NET formation and phagocytosis. Furthermore, thrombocytopenia has been shown to increase the susceptibility to infection (Yeaman, 1997). Therefore, the roles of platelets in infection towards *P. aeruginosa* and MRSA will be assessed
both in terms of their impact on inflammatory cell recruitment and direct interactions between platelets and bacteria.

1.6 Aims and Objectives

1) To assess the inflammatory components in the response to infection and the involvement of platelets in this response.

Neutrophil infiltration and inflammation are thought to contribute significantly to the pathophysiologic features of sepsis, CF and other bacterial infections. A murine model of pulmonary infection with *S. aureus* and *P. aeruginosa* will be established to investigate the inflammatory response induced by pulmonary bacterial infection.

To assess whether infection is associated with increased markers of platelet activation, measurements of platelet accumulation, granule secretion and the formation of platelet-neutrophil complexes will be quantified.

2) To validate a model of pulmonary infection in animals experimentally depleted of circulating platelets to assess their role in the regulation of the infectious phenotype.

Thrombocytopenia is a common feature in patients with sepsis, which is associated with a poor prognosis and worsened outcome. Similarly, numerous animal models have
demonstrated that thrombocytopenia dramatically impairs host defence. Therefore, the aims are:

1) To investigate whether experimentally induced platelet depletion in a murine model of pulmonary infection with *S.aureus* and *P.aeruginosa* is associated with a worsened phenotype.

2) To confirm whether the removal of circulating platelets enhances bacterial survival and subsequent mortality rates.

3) To determine whether thrombocytopenia amplifies increased permeability of alveolar and endothelial barriers in infection and permits the usual localised pulmonary infection to become systemic.

3) **Identify platelet signalling mechanisms involved in the regulation of the host response to *P.aeruginosa* and MRSA infection.**

Extending from the objects listed above, the involvement of TLR4 and purinergic receptors will be assessed on the bacterial and inflammatory parameters in a model of pulmonary infection with *P.aeruginosa* and MRSA.

4) **To determine whether a novel antibiotic enhancer compound attenuates bacterial infection with drug-resistant strains of *P.aeruginosa* and *S.aureus*.**
Chapter I: Introduction

The reduced efficacy of current antibiotics in combination with a steady decline in the discovery of novel compounds have exacerbated the emergence of antibiotic resistance. One possible approach to provide improved treatment for infectious diseases is the use of enhancer compounds, which act by restoring sensitivity of resistant bacteria to currently available antibiotics. A novel antibiotic enhancer compound, HT61 will be utilised in a murine model of pulmonary infection with *S.aureus* and *P.aeruginosa* to determine whether there is any synergism associated using combination treatment with the conventional antibiotics, Tobramycin and Vancomycin.
Chapter II

Materials and Methods
2.1 Materials

ABC Vectastain kit Vector Laboratories, CA, USA.
AB183345 (anti-CD42b) Abcam plc, Cambridgeshire, UK.
AB68672 (Anti-Neutrophil Elastase Antibody) Abcam plc, Cambridgeshire, UK.
Acid alcohol differentiation solution Sigma-Aldrich LTD, Dorset, UK
Acid Citrate-Dextrose Sigma-Aldrich LTD, Dorset, UK.
ADP Sigma-Aldrich LTD, Dorset, UK.
Anti-GPIbα antibody #R300 Emfret Analytics, Wurzburg, Germany.
Apyrase Sigma-Aldrich LTD, Dorset, UK.
ARC-66096 Tocris Bioscience, Bristol, UK
BA1000 (Biotinylated Goat Anti-Rabbit Secondary Antibody) Vector Laboratories, CA, USA.
BD Falcon 24 well companion plate Beckton Dickinson, Plymouth, UK.
BD Falcon Transparent 3μM PET insert Beckton Dickinson, Plymouth, UK.
GelRed Nucleic Acid Stain VWR International, Leicestershire, UK.
Bovine serum albumin Sigma-Aldrich LTD, Dorset, UK.
Calcium Sigma-Aldrich LTD, Dorset, UK.
Dimethyl sulfoxide Sigma-Aldrich LTD, Dorset, UK.
DNA Ladder #15615-016 Invitrogen, Paisley, UK.
<table>
<thead>
<tr>
<th>Item</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPX mounting medium</td>
<td>Thermo Fisher, Loughborough, UK.</td>
</tr>
<tr>
<td>EC8+ blood analyser cartridges</td>
<td>Point of Care Testing ltd, London, UK.</td>
</tr>
<tr>
<td>Eosin</td>
<td>Thermo Fisher, Loughborough, UK.</td>
</tr>
<tr>
<td>Evans Blue Dye</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>FITC mouse anti-human CD41a #555466</td>
<td>BD Biosciences, Oxford, UK.</td>
</tr>
<tr>
<td>FITC mouse anti-rat IgG2b #553900</td>
<td>BD Biosciences, Oxford, UK.</td>
</tr>
<tr>
<td>FITC mouse IgG1κ isotype control #555909</td>
<td>BD Biosciences, Oxford, UK.</td>
</tr>
<tr>
<td>FITC rat anti-mouse CD41 #553848</td>
<td>BD Biosciences, Oxford, UK.</td>
</tr>
<tr>
<td>Flow count flurospheres</td>
<td>Beckman Coulter Inc, Buckinghamshire, UK.</td>
</tr>
<tr>
<td>MRS2500</td>
<td>Tocris Bioscience, Bristol, UK</td>
</tr>
<tr>
<td>Murine Stromal cell derived factor 1</td>
<td>PeproTech EC, Ltd, London, UK.</td>
</tr>
<tr>
<td>NF279</td>
<td>Tocris Bioscience, Bristol, UK</td>
</tr>
<tr>
<td>Noble Agar</td>
<td>Scientific Laboratory Supplies, Nottingham, UK.</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>Thermo Fisher, Loughborough, UK.</td>
</tr>
<tr>
<td>Formamide</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>Glucose</td>
<td>Thermo Fisher, Loughborough, UK.</td>
</tr>
<tr>
<td>Haemotoxlyin</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>Material</td>
<td>Supplier</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Heparin Sodium</td>
<td>Sigma-Aldrich LTD, Dorset, UK</td>
</tr>
<tr>
<td>HEPES</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>Histoclear</td>
<td>National Diagnostics, Nottingham, UK.</td>
</tr>
<tr>
<td>HT61</td>
<td>Helperby Therapeutics, London, UK.</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>Sigma-Aldrich LTD, Dorset, UK</td>
</tr>
<tr>
<td>100% Industrial methylated spirit</td>
<td>Fisher Scientific, Loughborough, UK.</td>
</tr>
<tr>
<td>Isoflurane</td>
<td>Animal Care Ltd, York, UK.</td>
</tr>
<tr>
<td>i-STAT blood analyser</td>
<td>Abaxis, Union City, CA, USA.</td>
</tr>
<tr>
<td>(VetScan iSTAT 1 analyser 300A)</td>
<td></td>
</tr>
<tr>
<td>LIVE/DEAD BacLight Bacterial Viability #L7012</td>
<td>Thermo Fisher, Loughborough, UK.</td>
</tr>
<tr>
<td>Magnesium Chloride</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>Mineral oil</td>
<td>Sigma Aldrich, Dorset, UK.</td>
</tr>
<tr>
<td>Mouse IgG isotype control #00751</td>
<td>Bioxcell, New Hampshire, USA.</td>
</tr>
<tr>
<td>Murine IL-6 Duoset ELISA, DY453</td>
<td>Bio-techne, Oxfordshire, UK.</td>
</tr>
<tr>
<td>Murine KC Duoset ELISA, DY406</td>
<td>Bio-techne, Oxfordshire, UK.</td>
</tr>
<tr>
<td>Murine PF-4 Duoset ELISA, DY595</td>
<td>Bio-techne, Oxfordshire, UK.</td>
</tr>
<tr>
<td>Murine RANTES Duoset ELISA, DY478</td>
<td>Bio-techne, Oxfordshire, UK.</td>
</tr>
<tr>
<td>Paraplast</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>PCR Ready Mix Reaction Kit, R2648 20RXN</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>Material</td>
<td>Supplier</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PE rat anti-mouse Ly6g #551461</td>
<td>BD Biosciences, Oxford, UK.</td>
</tr>
<tr>
<td>PE rat IgG1 κ Isotype control #551979</td>
<td>BD Biosciences, Oxford, UK.</td>
</tr>
<tr>
<td>Phosphate buffered saline</td>
<td>Oxoid, Hampshire, UK.</td>
</tr>
<tr>
<td>Potassium Chloride</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>PPTN Mesylate</td>
<td>Sigma-Aldrich LTD, Dorset, UK</td>
</tr>
<tr>
<td>Prostaglandin E₁</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>Rat anti-mouse CD62P FITC #561923</td>
<td>BD Biosciences, Oxford, UK.</td>
</tr>
<tr>
<td>RPMI 1640 media</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>0.9% Saline</td>
<td>Baxter Healthcare Ltd, UK.</td>
</tr>
<tr>
<td>Shandon™ Kwik-Diff™ staining kit</td>
<td>Thermo Fisher, Loughborough, UK.</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>Thermo Fisher, Loughborough, UK.</td>
</tr>
<tr>
<td>Sodium Dihydrogen Phosphate Dodecahydrate</td>
<td>Thermo Fisher, Loughborough, UK.</td>
</tr>
<tr>
<td>Sodium Hydrogen Carbonate</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>Sodium Hydroxide</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>Stromatol</td>
<td>Mascia Brunelli, Italy.</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>Cayman Chemical Company, Mi, USA.</td>
</tr>
<tr>
<td>Thrombin receptor activating peptide</td>
<td>Tocris Bioscience, Bristol, UK.</td>
</tr>
<tr>
<td>Tri-sodium citrate</td>
<td>Fisons Scientific Equipment, UK.</td>
</tr>
<tr>
<td>Trypticase soy broth</td>
<td>Oxoid, Hampshire, UK.</td>
</tr>
<tr>
<td>Material</td>
<td>Supplier</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Turks solution</td>
<td>Merck KGaA, Germany.</td>
</tr>
<tr>
<td>Tween 20</td>
<td>Thermo Fisher, Loughborough, UK.</td>
</tr>
<tr>
<td>Urethane</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
<tr>
<td>Xylene</td>
<td>Sigma-Aldrich LTD, Dorset, UK.</td>
</tr>
</tbody>
</table>
2.2 Animals

All animal experiments were approved by and conducted in accordance with the guidelines of the Animals (Scientific Procedures) Act (ASPA) 1986 (United Kingdom) with local ethical approval of King’s College London, or according to protocols approved by San Raffaele Scientific Institute (Milan, Italy) Institutional Animal Care and Use Committee (IACUC) and adhered strictly to the Italian Ministry of Health guidelines for the use and care of experimental animals. Animals were housed under standard conditions of 22±2°C and a 12:12 light:dark cycle. All animals were provided with food and water ad libitum and wood shavings, shredded paper and cardboard tubes were provided for environmental enrichment. All animals were provided with a minimum acclimatisation period of seven days upon arrival. Male, C57/Bl6J mice (20-25g, 8 weeks) were sourced from Envigo Laboratories (Cambridgeshire, UK). All animals were sacrificed through intra-peritoneal (i.p.) injection of 0.3mL 25% weight per volume (w/v) urethane to induce terminal anaesthesia.

2.3 Bacterial Strains

Three strains of the gram-negative bacterium *P. aeruginosa* were used in this study; RP73, a multi-drug resistant non-mucoid clinical strain, isolated 17.5 years after the onset of infection in a CF patient (Bragonzi et al., 2006), PAO1, the fully sequenced laboratory reference strain (Bragonzi et al., 2006) and NN2, a Tobramycin Resistant CF isolate, collected at the onset of chronic colonisation. (Bragonzi et al., 2006). A single strain of the gram-positive bacterium MRSA was used, USA300, which was isolated from a patient in 2000 and is the predominant cause of community acquired infections (Diep et al., 2006). Bacterial strains were kindly
2.4 Bacterial Culture Preparation

48 hours prior to use, primary overnight cultures (ONC) for all strains were prepared by inoculating trypticase soy agar (TSA) plates (1.5% w/v agar and 3% w/v trypticase soy broth (TSB) in deionised water) with a stock cryo bead for 24 hours at 37°C (Gallenkamp Hotbox size 2). 24 hours prior to use, secondary overnight cultures were prepared, inoculating 20mL TSB (3% w/v TSB in deionised water) with 2-3 colonies. Cultures were incubated for 16 hours at 37°C, under shaking at 120 rotations per minute (rpm) (Sciquip mini incu shake).

2.5 In vivo Animal Studies

2.5.1 Preparation of Bacterial Embedded Agar Beads

The infectious and inflammatory profiles associated with bacterial infection were studied using a murine model of chronic pulmonary infection. Using a modified version of the method described by Facchini et al (Facchini et al., 2014), bacterial embedded agar beads were prepared in vitro, followed by direct instillation into the lungs. Bacterial ONCs were centrifuged at 2800 g (Heraeus Labofuge 400R) for 20 minutes at 4°C. The pellet was resuspended in 1mL phosphate buffered saline (PBS). The bacteria were embedded into agar beads by mixing 1mL ONC with 9mL molten 1.5% w/v noble agar. This was then added into warmed mineral oil previously heated to 50°C under stirring conditions using a IKA C-MAG
HS7 stir plate (speed setting 3 on plate, 6 minutes). The preparation was then cooled by slowly spinning (speed setting 1) on a stir plate, on ice for 35 minutes and subsequently centrifuged at 2,800 g for 30 minutes to remove any remaining mineral oil. The preparation was washed in sterile PBS and centrifuged at 2,800 g for 10 minutes, the supernatant was then discarded and the remaining pellet resuspended in sterile PBS to achieve a final volume of 20mL. A colony forming units (CFU) determination was performed on the bead slurry by homogenising a 3mL aliquot of the beads (Ultra Turrax T2, IKA WERKE). 1 in 10 serial dilutions (in saline) were performed using a 96 well plate and appropriate dilutions were plated onto TSA plates. The bead slurry was diluted with sterile PBS to obtain the desired CFU of either 2×10^7 cfu/mL, 2×10^6 cfu/mL or 2×10^5 cfu/mL, to achieve a final dose of either 1×10^6, 1×10^5 or 1×10^4 cfu/mouse. As a control, sterile, PBS embedded agar beads were prepared using the same protocol.

2.5.2 Establishing a Model of Pulmonary Infection with \textit{P.aeruginosa} and MRSA

To define the optimum conditions for pulmonary infection with \textit{P.aeruginosa} and MRSA, male C57/Bl6J mice were exposed to 3 different infection protocols. The infection protocols used 3 different inoculum levels with different bacterial strains (\textbf{Figure 2.1}). Mice were anesthetized with inhaled 3% isoflurane using an adaptable combination system with on-board oxygen concentrator rig (Burtons Vetinary). Animals were then inoculated with 50μL of either 2×10^7 cfu/mL, 2×10^6 cfu/mL or 2×10^5 cfu/mL bacteria, strains \textit{P.aeruginosa} RP73, PAO1, NN2 or MRSA USA300, via oropharyngeal (o.a.) dosing, achieving a final dose of 1×10^6, 1×10^5 or 1×10^4 cfu/mouse. Sham control mice were inoculated with sterile PBS embedded agar beads via the o.a. route. Animals were weighed and assessed daily for signs of pain and
distress using the Body Condition Score (BCS), grading the animals from 5-1 (1: emaciated, 2: under conditioned, 3: well-conditioned, 4: over conditioned, 5: obese). Parameters assessed included animals showing reluctance to move, abnormal hunched posture, piloerection, dehydration detectable by skin tenting, lethargy and vocalisation on handling suggestive of pain. Animals that lost more than 20% of their body weight or received a BCS of less than 2 throughout the duration were humanely euthanised with 0.3mL Urethane, via i.p injection.

Figure 2.1 Protocol for Inducing Pulmonary Bacterial Infection in Mice

2.5.3 Whole Blood Platelet Quantification and Plasma Isolation

48 hours post infection (h.p.i), mice were terminally anaesthetised with 0.3mL 25% w/v Urethane via i.p. injection. Once suitably anaesthetised, 0.5-1mL blood was collected via cardiac puncture from animals anaesthetised with 0.3mL Urethane. Upon collection, blood was mixed with Acid Citrate Dextrose (ACD) at a ratio of 1-part ACD to 9-parts blood. For platelet quantification, whole blood was diluted in Stromatol (1:100) and quantified using an
improved Neubauer haemocytometer under a x40 objective and Leica DM 2000 LED upright microscope. The absolute platelet count was used to calculate the number of platelets/mL.

For plasma isolation, remaining whole blood was spun at 1700 g (Eppendorf centrifuge 5417R) for 10 minutes, and the supernatant collected and stored at -80°C.

2.5.4 Bronchoalveolar Lavage

The trachea was exposed by blunt dissection and a small incision made. A 22-gauge cannula was inserted into the trachea and 3 aliquots of 0.5mL sterile PBS were injected into the lung. The resulting fluid was withdrawn using a 1mL syringe.

2.5.5 Total Leukocyte Quantification

Bronchoalveolar lavage (BAL) fluid was used to quantify total leukocytes. Each BAL sample was diluted 1:1 in Turk’s solution. The total cell counts were then quantified using an improved Neubauer haemocytometer under a x20 objective and Leica DM 2000 LED upright microscope.

2.5.6 Differential Leukocyte Quantification

Cytospin slides (thermo scientific) were set up and a 100µL aliquot of each BAL sample was added. Samples were spun at 1000 rpm for 1 minute under slow acceleration (Shandon Cytospin 3) and allowed to air dry.Slides were subsequently stained using a Shandon™ Kwik-Diff™ staining kit and cover slipped using DPX mounting medium. Differential leukocyte
counts were quantified by counting 200 cells from a representative area of each slide, defined as 50 cells per field of view, and the percentage of neutrophils, lymphocytes, macrophages and eosinophils was determined. The total leukocyte count and the percentages of each cell type were used to determine the number of individual inflammatory leukocytes present in each BAL sample.

2.5.7 Colony Forming Unit Determination

48 h.p.i, lungs were aseptically removed and homogenized in 2mL sterile saline. Lung homogenates were serially diluted (in saline) using a 96 well plate and appropriate dilutions were plated onto TSA plates. Bacterial colonies were manually counted and the total pulmonary CFU was calculated.

2.5.8 The Effect of Tobramycin on Pulmonary Infection with *P. aeruginosa*

The optimum inoculum for pulmonary infection with *P. aeruginosa* was determined to be 1×10^6 cfu/mouse, producing an infection and inflammatory profile analogous to the clinical setting. Therefore, experiments were performed to validate the murine model of pulmonary infection with *P. aeruginosa*, using a single dose of 0.2mL/ mouse of either vehicle (saline) Tobramycin at either 10, 50, 100, 200 or 300 mg/kg, at 24 h.p.i, via *i.p.* injection. Tobramycin doses for each *P. aeruginosa* strain are listed in Table 2.1. At 48 h.p.i, blood was taken, a BAL was performed and lungs were aseptically removed and processed as described in sections 2.5.3, 2.5.4 and 2.5.7 respectively.
Chapter II: Materials and Methods

Table 2.1 Tobramycin Doses for the Murine Model of Pulmonary Infection with *P. aeruginosa*

<table>
<thead>
<tr>
<th>Bacterial Strain</th>
<th>Tobramycin Dose (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa RP73</td>
<td>50, 100, 300</td>
</tr>
<tr>
<td>P. aeruginosa PAO1</td>
<td>10, 50, 100</td>
</tr>
<tr>
<td>P. aeruginosa NN2</td>
<td>50, 100, 200</td>
</tr>
</tbody>
</table>

2.5.9 The Effect of Vancomycin on Pulmonary Infection with MRSA

The optimum inoculum for pulmonary infection with MRSA, strain USA300, was determined to be 1×10^6 cfu/mouse. Experiments were performed to validate the murine model of pulmonary infection with MRSA, strain USA300, using a single dose of 0.2mL/mouse of either vehicle (saline) or Vancomycin at either 50, 100 or 200 mg/kg, initiated at 24 h.p.i, via *i.p.* injection. At 48 h.p.i, blood was taken, a BAL was performed and lungs were aseptically removed and processed as described in sections 2.5.3, 2.5.4 and 2.5.7 respectively.

2.6 The Effect of Thrombocytopenia in a Murine Model of Pulmonary Infection with *P. aeruginosa* and MRSA

2.6.1 Establishing a Murine Model of Platelet Depletion

To investigate the role of platelets in the regulation of pulmonary infection, the depletion of circulating platelets was induced in a murine model of pulmonary infection with *P. aeruginosa* strain RP73. These experiments were performed with the assistance of collaborators at the
Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy. Male C57/Bl6 mice were anaesthetised and inoculated with P. a. strain RP73 embedded agar beads, at either 1x10^6, 1x10^5 or 1x10^4 cfu/mouse as previously described in section 2.5.2. In other separate experiments, mice were infected with 1 x 10^5 cfu/mouse MRSA strain USA300. Sham control mice were inoculated with sterile PBS embedded agar beads. 24 hours prior to infection, platelet depletion was induced via intra-muscular (i.m.) injection with 50μL 1mg/kg of an anti-GPIbα platelet depleting antibody (in saline). Control mice were administered with 50μL IgG control antibody (i.m.) in saline. The following protocol (Figure 2.2) was used to investigate the role of platelets on pulmonary bacterial infection.

<table>
<thead>
<tr>
<th>Day</th>
<th>-3 and -2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.aeruginosa RP73 and MRSA strain USA300 grown on TSA plate and cultured in nutrient broth at 37°C, 120rpm</td>
<td>-1mg/kg anti-GPIbα or IgG antibodies (i.m)</td>
<td>Preparation of bacterial and sterile PBS embedded agar beads</td>
<td>Oropharyngeal infection of male C57/Bl6J mice with 1x10^6/5/4 P.aeruginosa RP73, 1 x 10^5 MRSA strain USA300, or sterile PBS embedded beads</td>
<td>Termination
-Bronchoalveolar lavage
-Blood
-Lungs
-Kidney/ spleen</td>
</tr>
</tbody>
</table>

Figure 2.2 A Protocol for Platelet Depletion: To Investigate the Effect of Platelet Depletion in a Murine Model of Pulmonary Bacterial Infection
24 h.p.i, platelet numbers were enumerated in whole blood, as described in section 2.5.3, to ensure adequate platelet depletion of ≥85%. A BAL of the lungs was performed and lungs were aseptically removed and processed as described in sections 2.5.4 and 2.5.7 respectively. Any incidence of mortality in mice depleted of platelets or in mice with normal circulating platelet levels was recorded.

2.6.2 The Effect of Platelet Depletion on Pulmonary Haemorrhage

In order to investigate whether administration of the platelet depleting anti-GPlbα antibody has any effect on pulmonary haemorrhage following infection with *P. aeruginosa* strain RP73, haemoglobin levels present in BAL fluid were quantified following administration of either the IgG control or anti-GPlbα antibodies. A 100μL aliquot of BAL fluid was taken and the absorbance was measured using a Spectramax 340PC microplate reader at 410nm, to detect haemoglobin.

In additional separate experiments, images of individual BAL fluid samples were taken to qualitatively analyse the haemoglobin levels present in BAL fluid, to determine whether administration of the platelet depleting anti-GPlbα antibody has any effect on pulmonary haemorrhage following infection with MRSA strain USA300.

2.6.3 Spleen and Kidney Harvest for Microbiological Analysis

To investigate whether experimentally induced platelet depletion had any effect on bacterial dissemination from the lungs to other peripheral organs, the kidney and spleen were removed
and homogenized in 2mL sterile saline. Homogenates were serially diluted using a 96 well plate and appropriate dilutions were plated onto TSA plates. Bacterial colonies were manually counted and the total kidney and spleen cfu were calculated.

2.6.4 Evaluation of Biochemical Markers of Metabolic Acidosis

Throughout experimentally induced platelet depletion experiments, core body temperature was monitored using rectal probe thermometry (Homeothermic Monitor, Harvard Apparatus).

24 hours following infection with 1×10^5 cfu/mouse *P. aeruginosa* strain RP73, blood was collected, under anaesthesia, via cardiac puncture into heparin (100 units/mL) coated syringes. 65µl blood was transferred to EC8+ blood analyser cartridges and processed using a handheld i-STAT blood analyser (Abaxis VetScan iSTAT 1 analyser 300A) to quantify a panel of biochemical markers of metabolic acidosis used to detect organ dysfunction, including pH, urea, base excess, bicarbonate ions, pCO$_2$ and anion gaps.

In separate experiments, naïve mice were administered either 50µL of the IgG control or platelet depleting anti-GPIbα antibody. At 24 hours post treatment, the effects of platelet depletion on biochemical markers of metabolic acidosis were analysed as described above.

2.6.5 The Effect of Thrombocytopenia on Pulmonary Alveolar Integrity

Experiments were performed to investigate the effect of thrombocytopenia on pulmonary alveolar integrity, following infection with *P. aeruginosa* strain RP73. Thrombocytopenic mice
Chapter II: Materials and Methods

were infected with 1×10^5 cfu/mouse as described in sections 2.5.2 and 2.6.1. 23 h.p.i 100μL 0.5% Evans Blue dye was administered via intra-venous (i.v.) injection. 24 h.p.i the right lobe of the lung was removed, weighed and added to 500μL Formamide. This was incubated at 65°C for 24 hours to extract the dye. At the same time point, the left lobe of the lung was removed and weighed to determine the ‘wet weight’. This was subsequently incubated for 24 hours at 65°C. 24 hours post incubation, the left lobe lung samples were weighed, to determine the ‘dry lung weight’. The right lobe lung samples were centrifuged at 1700 g for 5 minutes to remove remaining tissue fragments and absorbance values measured at 620nm (Jenway 6300 spectrophotometer). A standard curve was used to calculate nanograms (ng) Evans Blue dye per mg lung tissue for each sample.

2.7 Mechanisms of Platelet Involvement in Infection

2.7.1 The Role of Platelet TLR4 in the Regulation of Pulmonary Infection

To investigate the role of platelet Toll-like receptor 4 (TLR4) in infection, male TLR4 knockout mice (Riffo-Vasquez et al., 2012) and C57/B16J wild type mice were infected with 1×10^5 cfu/mouse as described in section 2.5.2 and sham control mice were inoculated with sterile PBS embedded agar beads. 24 h.p.i, a BAL of the lungs was performed as described in section 2.5.4, and lungs were removed and processed as described in section 2.5.7.
2.7.1.1 Polymerase Chain Reaction Analysis of Murine TLR4 cDNA

A mutation inducing loss of function was used to generate TLR4 knockout mice. DNA was extracted from tail clips of TLR4 knockout and C57/Bl6J wild type mice. Tails clips were immersed in lysis buffer (100nM TRIS, 5mM EDTA, 0.4% SDS, 200nM NaCL, pH 8) and Proteinase K (diluted 1 in 100). Samples were subsequently heated overnight at 55°C. The lysate was then centrifuged at 5,000 g for 1 minute in order to remove the insoluble fraction. Polymerase Chain Reaction (PCR) reaction mixture was then added to samples (components indicated in Table 2.2) and left at room temperature for approximately 10 minutes. TLR4 and wild type primer sequences used for DNA amplification are listed in Table 2.3.

Table 2.2 Reaction Mixture Components and Final Concentrations Used

<table>
<thead>
<tr>
<th>Amount</th>
<th>Component</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>25μl</td>
<td>Ready Mix</td>
<td></td>
</tr>
<tr>
<td>0.5μl</td>
<td>Forward Primer</td>
<td>0.1-0.5μM</td>
</tr>
<tr>
<td>0.5μl</td>
<td>Reverse Primer</td>
<td>0.1-0.5μM</td>
</tr>
<tr>
<td>1μl</td>
<td>Template DNA (typically 10ng)</td>
<td>200pg/μL</td>
</tr>
<tr>
<td>23μl</td>
<td>Denucleated water</td>
<td></td>
</tr>
<tr>
<td>50μl</td>
<td>Total Volume</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.3 TLR4 Knockout and Wild Type Primers using for DNA Amplification

<table>
<thead>
<tr>
<th>primers</th>
<th>Anna temp</th>
<th>cycles</th>
<th>Final Primer conc</th>
<th>Mg2+</th>
<th>band size</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR4</td>
<td>67</td>
<td>35</td>
<td>0.24</td>
<td>1.5</td>
<td>1200</td>
</tr>
<tr>
<td>WT</td>
<td>67</td>
<td>35</td>
<td>0.24</td>
<td>1.5</td>
<td>1200</td>
</tr>
<tr>
<td>TLR4 KO</td>
<td>67</td>
<td>35</td>
<td>0.24</td>
<td>1.5</td>
<td>1200</td>
</tr>
<tr>
<td>KO</td>
<td>67</td>
<td>35</td>
<td>0.24</td>
<td>1.5</td>
<td>1200</td>
</tr>
</tbody>
</table>
The DNA present in each sample was subsequently amplified in a thermal cycler using 25 cycles of the protocol indicated in Table 2.4. Following DNA amplification, samples were placed on a hold cycle at 4°C.

<table>
<thead>
<tr>
<th>Cycling Parameter</th>
<th>Temperature (°C)</th>
<th>Time (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denature Template</td>
<td>94</td>
<td>1</td>
</tr>
<tr>
<td>Anneal Primers</td>
<td>55</td>
<td>2</td>
</tr>
<tr>
<td>Extension</td>
<td>72</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2.4 Cycling Parameters Used for DNA Amplification.

Molten agarose gel solution was prepared (1.5% agarose in 1x TAE buffer - 40mM Tris, 20mM Acetate and 1mM EDTA pH 8), and heated until dissolved. GelRed stain was added into the molten gel solution (1:10,000) and mixed thoroughly. The gel was then allowed cooled, to solidify. Following the DNA amplification process, the samples or standard ladder were loaded onto the agarose gel. The gel was subsequently run at 100 volts for 30 minutes. The stained gel was viewed using a standard trans illuminator at 302nm and the gel was then imaged using an ethidium bromide filter.

2.7.2 The Role of Platelet Purinergic Receptors in the Regulation of Pulmonary Infection

The purine hydrolysing enzyme, Apyrase, was used to investigate the role of purines and purinergic receptors in the regulation of pulmonary infection. 30 minutes prior to infection, mice were treated with either vehicle (saline) or 100 units/mL Apyrase (0.1mL/mouse), via i.v. injection.

Additional separate experiments were performed to further investigate the role of specific platelet purinergic receptors (P2Y₁, P2Y₁₂, P2X₁ and P2Y₁₄). 30 minutes prior to infection, mice
were administered a single dose (0.1mL/mouse) of either vehicle control (saline), a P2Y₁ antagonist, MRS2500 (3mg/kg), a P2Y₁₂ antagonist, AR-C66096 (3mg/kg), a P2X₁ antagonist, NF-279 (3mg/kg) or a P2Y₁₄ antagonist, PPTN Mesylate (10mg/kg), via i.v. injection. A second dose of PPTN was administered at 6 h.p.i.

After drug treatments, mice were infected with 1x10⁵ cfu/mouse *P.aeruginosa* strain RP73, as described in section 2.5.2. Sham control mice were inoculated with sterile PBS embedded agar beads. At 24 h.p.i, blood was taken, a BAL was performed and lungs were aseptically removed and processed as described in sections 2.5.3, 2.5.4 and 2.5.7 respectively.

To investigate the effect of platelet purinergic receptors on bacterial dissemination from the lungs to the peripheral organs, the kidney and spleen were removed, as described in section 2.6.3.

2.8 Histological Analysis of Lung Tissue

2.8.1 Analysis of Infection Induced Pulmonary Neutrophil Recruitment

Lungs from sham and 1x10⁶ cfu/mouse *P.aeruginosa* strain RP73 infected mice, prepared as described in section 2.5.2, were inflated (0.5mL) and subsequently fixed in 20mL 10% Formaldehyde (in deionised water) for 24 hours. Lung tissue samples were paraffin fixed using a Shandon Citadel 2000 Tissue Processor and the following protocol was used Table 2.5.
Table 2. 5 Protocol to Prepare Lung Tissues from Mice Infected with *P. aeruginosa*

Tissue samples were subsequently embedded into paraffin wax blocks and allowed to cool for 1 hour on a cold plate. Lungs were then sectioned, using a microtome (Microtom Heidelberg HM330), to 6µm slices onto superfrost plus slides and allowed to dry overnight. Sections were dewaxed in dewax xylene for 5 minutes and rehydrated in xylene and decreasing concentrations of ethanol for 1 minute at each concentration (100%, 90%, 70%, tap water). To block endogenous peroxidase activity, sections were immersed in 3% hydrogen peroxide in ethanol for 10 minutes and then washed 3 times with tap water. For antigen retrieval, a sodium citrate buffer (2.94g Tri-sodium citrate, 1L deionised water, 500µl tween 20) was prepared in a pressure cooker (Nordic ware) at pH 6.0 with 0.1M Sodium Hydroxide (NaOH). The sodium citrate buffer was heated on full power in a microwave (Kenwood) for 10-15 minutes, until the solution was at 100°C. The rack of microscope slides was then placed into the buffer and the lid of the pressure cooker was tightened. The pressure cooker was heated in the microwave for a further 5 minutes. Once the pressure had equalised, the pressure cooker was placed under cold tap water to remove the retrieval buffer and to cool the slides. The remaining tap water was shaken off the slides and a ring was drawn around

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% industrial methylated spirit (IMS)</td>
<td>120</td>
</tr>
<tr>
<td>100% IMS</td>
<td>360</td>
</tr>
<tr>
<td>Histoclear and IMS (1:1)</td>
<td>120</td>
</tr>
<tr>
<td>Histoclear</td>
<td>360</td>
</tr>
<tr>
<td>Paraplast</td>
<td>240</td>
</tr>
</tbody>
</table>
each lung section using a hydrophobic pap pen. To block non-specific binding, 50μL 1% bovine serum albumin (BSA) blocking buffer (in PBS) was added to each lung section for 10 minutes, before blotting dry. Slides were stained for neutrophils using 50μL of an Abcam AB6872 anti-neutrophil elastase primary antibody (1:100 in 1% BSA in PBS) or 1% BSA in PBS for control sections and incubated for 2 hours at room temperature in a humidified chamber. The primary antibody was removed by washing sections 3 times in PBS, using a plastic squeeze dispensing wash bottle. 50μL of a secondary mouse-adsorbed biotinylated anti-rat rabbit secondary antibody (1:200 in 1% BSA in PBS) was added to sections for 1 hour. During this time, streptavidin (1:200 in 1% BSA in PBS) and biotinylated Horse Radish Peroxidase (HRP), (1:200 in 1% BSA in PBS) from an ABC Vectastrain kit, were mixed to form a complex. After 1 hour, the secondary antibody was removed by washing in PBS. The streptavidin + biotinylated (HRP) was added to sections for 1 hour at room temperature, before washing. A Diaminobenzidine (DAB) developing buffer was prepared (20mL DAB developing buffer 10x stock (1M TRIS pH 7.6), 180mL deionised water, 200μL 30% hydrogen peroxide and 1mL 50mg/mL DAB stock), and slides were developed in the DAB solution for 10 minutes before washing slides in tap water. Slides were counterstained with haematoxylin Gill’s number 1 for 30 seconds, washed in tap water and immersed in acid alcohol differentiation solution for 10 seconds. Slides were then washed in tap water before dehydrating in increasing concentrations of ethanol (70%, 90%, 100%) and xylene, each for one minute. Following dehydration, slides were coverslipped using DPX mounting medium. Representative images of infected and control lung sections were captured using a Leica DM 2000 LED upright microscope, under a x40 objective.
2.8.2 Histological Analysis of Pulmonary Tissue with Haematoxylin and Eosin (H&E)

Experiments were performed to visualise the pulmonary inflammatory cell infiltrate following infection. Lungs from either sham control or infected (1x10^6 cfu/mL *P. aeruginosa* strain RP73) mice, as described in section 2.5.2, were formalin fixed, processed and embedded into paraffin wax blocks as described in section 2.8.1. Lungs were dehydrated in xylene and ethanol, as described in section 2.8.1 and immersed into tap water for 5 minutes. Slides were immersed in eosin for 10 seconds and subsequently washed in tap water 3 times. Slides were immersed in acid alcohol differentiation solution for 10 seconds, followed by washing in tap water. Samples were then immersed in haematoxylin Gill’s number 1 for 30 seconds, followed by washing in tap water. Slides were immersed in acid alcohol differentiation solution a second time, dehydrated using ethanol and xylene, and coverslipped, as described in section 2.8.1. Representative images of infected and control lung sections were captured using a Leica DM 2000 LED upright microscope, under a x40 objective.

2.9 Evaluation of Inflammatory and Platelet Activation Markers Following Infection

Experiments were performed to investigate whether inflammatory markers, IL-6 and the chemokine receptor ligand KC (CXCL1), and platelet activation markers, PF-4 and RANTES, were significantly elevated following pulmonary bacterial infection. Plasma and BAL samples were taken from sham control, *P. aeruginosa* (RP73, PAO1 and NN2) and MRSA (USA300) infected mice, as described in 2.5.3 and 2.5.4. Murine IL-6, KC, PF-4 and RANTES in samples were measured using mouse Duoset enzyme linked immunosorbent assay (ELISA) kits, according to manufacturer’s instructions (Table 2.6). 100μL of the capture antibody (in PBS (Table 2.6) was added to each well in a 96 well ELISA microplate and incubated overnight at
room temperature. Wells were washed three times with 400μL wash buffer (0.05% Tween 20 in PBS, pH 7.2-7.4) and blotted dry to remove any remaining wash buffer. Plates were blocked by adding 300μL of reagent diluent (1% BSA in PBS, pH 7.2-7.4) to each well, for 1 hour at room temperature. The plates were then washed again, as described previously. A seven-point standard curve of recombinant IL-6, KC, PF-4 and RANTES was prepared using 2-fold serial dilutions (in reagent diluent, Table 2.6), 100μL of sample or standard (diluted in reagent diluent) was added to wells and incubated for 2 hours at room temperature. Wells were washed again and 100μL of detection antibody (in reagent diluent, Table 2.6) was added to each well for 2 hours at room temperature. Wells were washed and 100μL of streptavidin-HRP (diluted in reagent diluent according to vial instructions) was added to each well for 20 minutes at room temperature, avoiding direct light. Plates were washed a final time and 100μL of substrate solution (1:1 mix of hydrogen peroxide and tetramethylbenzine) was added to each well for 20 minutes at room temperature, avoiding direct light. 50μL stop solution (2N H₂SO₄) was added to each well, whilst tapping gently to ensure thorough mixing. The optical density of each well was determined using a Spectramax 340PC microplate reader at 450nm.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Capture Antibody (μg/mL)</th>
<th>7-Point Standard (pg/mL)</th>
<th>Detection Antibody (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>2</td>
<td>1000 - 15.6</td>
<td>150</td>
</tr>
<tr>
<td>KC</td>
<td>2</td>
<td>1000 - 15.6</td>
<td>50</td>
</tr>
<tr>
<td>PF-4</td>
<td>2</td>
<td>2000 - 31.3</td>
<td>100</td>
</tr>
<tr>
<td>RANTES</td>
<td>2</td>
<td>2000 - 31.3</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Table 2.6 The Concentrations of Capture and Detection Antibodies and 7-point Standards: mouse Duoset enzyme linked immunosorbent assay (ELISA) kit
2.10 The Use of a Murine Model of Pulmonary Infection for Therapeutic Analysis

2.10.1 The Effect of HT61 Against Pulmonary Infection with *P. aeruginosa* and MRSA

Mice were anesthetised with inhaled isoflurane and inoculated with 1×10^6 cfu/mouse bacterial embedded agar beads as described in section 2.5.2. Sham control mice were inoculated with sterile PBS embedded agar beads. 24 h.p.i, mice were administered with either 0.2mL/ mouse vehicle control (0.1% Dimethyl sulfoxide (DMSO)) or with a single dose of a small quinolone derived compound, HT61 at either 0.1, 1, 5 or 10 mg/kg HT61, via *i.p.* injection. HT61 doses for each bacterial strain are listed in Table 2.7.

<table>
<thead>
<tr>
<th>Bacterial Strain</th>
<th>HT61 Dose (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa RP73</td>
<td>0.1, 1, 5</td>
</tr>
<tr>
<td>P. aeruginosa PAO1</td>
<td>0.1, 1, 5</td>
</tr>
<tr>
<td>P. aeruginosa NN2</td>
<td>0.1, 1, 5</td>
</tr>
<tr>
<td>MRSA USA300</td>
<td>0.1, 1, 10</td>
</tr>
</tbody>
</table>

Table 2.7 HT61 Doses Used in the Murine Model of Pulmonary Infection with *P. aeruginosa* and MRSA

48 h.p.i, a BAL was performed and lungs were removed and processed, as described in sections 2.5.4 and 2.5.7 respectively.
2.10.2 The Effect of HT61 and Tobramycin/ Vancomycin Combination Treatment Against Pulmonary Infection with \textit{P. aeruginosa} and MRSA

Experiments were performed to investigate whether combination therapies of HT61 with Tobramycin had any further effects on pulmonary bacterial load. Mice were anesthetised with inhaled isoflurane and inoculated with 1×10^6 cfu/mouse bacterial embedded agar beads as described in 2.5.2. Sham control mice were inoculated with sterile PBS embedded agar beads. 24 h.p.i, mice were treated with either 0.2mL/ mouse vehicle (0.1% DMSO), 50, 100, 200 or 300 mg/kg Tobramycin (for \textit{P. aeruginosa} strains), 100 mg/kg Vancomycin (for MRSA), 1 mg/kg HT61 (for all bacterial strains) or combination treatment, all administered via \textit{i.p.} injection. Singular and combination treatment doses for each bacterial strain are listed in \textbf{Table 2.8}.

<table>
<thead>
<tr>
<th>Bacterial Strain</th>
<th>Tobramycin (T) mg/kg</th>
<th>Vancomycin (V) mg/kg</th>
<th>HT61 (H) mg/kg</th>
<th>Tobramycin (T) or Vancomycin (V) (mg/kg)</th>
<th>HT61 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{P. aeruginosa} RP73</td>
<td>100, 300</td>
<td>X</td>
<td>1</td>
<td>100 T</td>
<td>1</td>
</tr>
<tr>
<td>\textit{P. aeruginosa} PAO1</td>
<td>50</td>
<td>X</td>
<td>1</td>
<td>50 T</td>
<td>1</td>
</tr>
<tr>
<td>\textit{P. aeruginosa} NN2</td>
<td>100, 200</td>
<td>X</td>
<td>1</td>
<td>100 T</td>
<td>1</td>
</tr>
<tr>
<td>MRSA USA300</td>
<td>X</td>
<td>100</td>
<td>1</td>
<td>50 V</td>
<td>1</td>
</tr>
</tbody>
</table>

\textbf{Table 2.8} Singular and Combination Treatment Doses for the Murine Model of Pulmonary Infection with \textit{P. aeruginosa} and MRSA
48 h.p.i, a BAL was performed and lungs were removed and processed, as described in sections 2.5.4 and 2.5.7 respectively.

2.11 The Role of Platelets in the Regulation of Pulmonary Infection

2.11.1 Pulmonary Platelet Recruitment Following Infection with *P. aeruginosa* Strain RP73

Experiments were performed to determine whether platelets are recruited to the lung following bacterial infection. Lungs from sham control and 1x10^6 cfu/mouse *P. aeruginosa* strain RP73 infected mice, were formalin fixed, processed and embedded into paraffin wax blocks as described previously (2.8.1). To assess platelet recruitment into different anatomical regions of the lung, sections were stained for platelets using a platelet specific anti-CD42b primary antibody (1:500), a Vector Laboratories BA100 biotinylated anti-rabbit secondary antibody (1:200), and an ABC Vectastain kit, as described in section 2.8.1.

2.12 *In vitro* Experiments

2.12.1 Murine Blood Collection

Male C57/B16J mice were terminally anaesthetised with 0.3mL 25% w/v Urethane, via *i.p.* injection. 1mL citrated blood was collected via cardiac puncture, mixing with ACD at a ratio of 1-part ACD to 9-parts blood.
2.12.2 Murine Platelet Isolation

Platelet rich plasma (PRP) was collected from citrated blood by centrifugation at 100 g for 10 minutes at 23°C. Blood was then centrifuged again at 120 g for 5 minutes at 23°C and the remaining PRP collected. Prostaglandin E1 (PGE1) (5μL 2.5 mM) was added to the PRP, which was then centrifuged again at 900 g for 6 minutes. The resulting platelet pellet was resuspended in 200μL Tyrode’s buffer (0.14M Sodium Chloride (NaCl), 0.003M Potassium Chloride (KCl), 0.0003M Sodium Dihydrogen Phosphate Dodecahydrate (Na2HPO4.12H2O), 0.01M Sodium Hydrogen Carbonate (NaHCO3), 0.02M HEPES, 0.001M Magnesium Chloride (MgCl2) and 0.005M Glucose, pH 7.3). Platelets were subsequently stained in Stromatol (1:100) and quantified on a Neubauer haemocytometer, under a x40 objective, using a Leica D 2000 led upright microscope. Platelets were diluted to a final working concentration of either 1x10^6, 1x10^7 or 1x10^8 platelets/mL in Tyrodes buffer and treated with 2mM Ca^{2+} prior to use.

2.12.3 The Effect of Platelets on Growth of *P. aeruginosa* strain RP73 *in vitro*

Co-culture experiments were performed to investigate whether platelets can have a direct effect on bacterial growth. ONCs of *P. aeruginosa* strain RP73 were prepared, as described in 2.4, and diluted to a final working concentration of 1x10^6 cfu/mL in TSB (OD600 0.0031). Murine platelets were isolated, as described in section 2.12.2, and diluted to a final working concentration of 1x10^6 platelets/mL in Tyrodes buffer. Platelets and bacteria were cultured at a volumetric ratio of 1:1, at 37°C, under shaking conditions at 120rpm. For CFU quantification, 20μL aliquots of the culture were taken periodically every 2 hours from 0 to 8
hours and 10-fold serial dilutions (in saline) were performed and plated onto TSA plates for 24 hours at 37°C.

2.12.4 Platelet Bacterial Killing Assays

To further investigate whether platelets have a direct killing effect on bacteria, co-culture experiments were performed as described in 2.12.3, using a LIVE/DEAD BacLight Bacterial Viability Kit, according to manufacturer’s instructions. For these experiments, murine platelets were diluted to a final working concentration of either 1×10^6, 1×10^7 or 1×10^8 platelets/mL in Tyrodes buffer. A culture with no platelets was prepared as a negative control. At each time point (0, 2, 4, 6 and 8 hours), 150µL aliquots were taken and centrifuged at 1700 g for 10 minutes and resuspended in 150µL deionised water. 100µL of each sample was added to black 96 well plates. 50µL 2.5uM SYTO9 (in deionised water) was added to each well, incubated for 15 minutes on ice and read at 488/20nm excitation, 528/20nm emission on a fluorescent plate reader (Synergy HT Bio-Tek). Samples were then counterstained using 50µL 15uM Propidium Iodide (PI) (in deionised water) for 15 minutes, and plates were read again at 488/20nm excitation, 645/20nm emission.

Other separate experiments were performed to ensure platelets remained viable throughout the duration of the co-culture experiments. At each time point (0, 2, 4, 6,8), 3 aliquots (50µL) of the 1×10^7 platelet-bacteria co-culture were taken and stimulated with either vehicle control (saline), 100µM ADP or 10µM thrombin receptor activating peptide (TRAP) for 30 minutes at room temperature. After incubation, 1µL anti-CD41 Phycoerythrin (PE) and 1µL anti- CD62P Fluorescein Isothiocyanate (FITC) antibodies were added to each sample, and these were left to incubate for an additional 15 minutes at room temperature. Following incubation 500µL
PBS was added to each sample. CD62P events were quantified and analysed on a Beckman Coulter Cytomics FC 500 flow cytometer. Data was collected using FITC and PE fluorescent wavelengths at 515nm and 580nm respectively. Live gating was used to specifically identify CD62P positive events on cells positive for CD41, using forward and side scatter analysing 10,000 events. Events staining positive for both CD41 and CD62P were considered to represent P-selectin expressing platelets.

2.13 *Ex vivo* Animal Studies

2.13.1 Analysis of Platelet-Leukocyte Complexes Formation *ex vivo*

Male C57BI/6 mice were anesthetised with inhaled isoflurane and inoculated with either sham or 1x10^6 cfu/mouse *P. aeruginosa* RP73 bacterial embedded agar beads as described in section 2.5.2. 24 h.p.i, citrated blood was isolated via cardiac puncture. 2μL murine whole blood was treated with saturating concentrations of the platelet specific antibody, CD41-FITC (1:10 in saline) and the neutrophil specific antibody Ly6G-PE. Blood samples were incubated with the antibodies for 30 minutes, in the dark at room temperature. After the incubation period, 500μL lysis buffer (0.015M NH₄Cl, 0.001M KHCO₃, 0.00001M EDTA) was used to lyse erythrocytes. Platelet-leukocyte complexes were quantified and analysed on a Beckman Coulter Cytomics FC 500 flow cytometer as described in section 2.13.1. Live gating was used to specifically identify CD41 expressing platelets and Ly6G expressing neutrophils, using forward and side scatter analysing 10,000 events. Events positive for both CD41 and LY6G were considered to represent platelet-neutrophil complexes.
2.14 Human in vitro Studies

2.14.1 Human Platelet Isolation

Human citrated venous blood (20 mL) was isolated from the antecubital vein of healthy volunteers (who had not taken anti-platelet drugs for 10 days prior to donation), at a ratio of 1-part ACD: 9-parts blood. Blood was centrifuged at 120 g for 20 minutes at 25°C and the resulting PRP was collected. PGE₁ was added to the PRP in excess (1:1000 into PRP) and centrifuged at 1300 g for 10 minutes at 25°C. The supernatant or platelet poor plasma (PPP) was aspirated and the remaining platelet pellet resuspended in 1mL RPMI 1640 media. 10μL 2.5mM PGE₁ (1:100) was added to the platelet suspension and the final volume was made up to 10mL in RPMI 1640. The platelet suspension was centrifuged again at 1300 g for 10 minutes at 25°C, before the supernatant was aspirated and the platelet pellet resuspended in 1mL RPMI 1640. Platelets were stained with Stromatol (1:100) and quantified using an improved Neubauer haemocytometer under a x40 objective and Leica DM 2000 LED upright microscope and diluted to a final working concentration of 1x10⁸ platelets/mL. Platelets were left for 45-60 minutes at 37°C, to allow the PGE₁ to degrade prior to use. Platelets were then treated with 2mM Ca²⁺ for functional experiments and stimulated with 100nM ADP for chemotaxis experiments.

2.14.2 Bacteria Induced Platelet Chemotaxis in vitro

Wells on a BD Falcon 24 well companion plate were blocked for 1 hour using 1mL RMPI 1640 media + 1% BSA per well. After 1 hour, the blocking buffer was aspirated and individual wells
were washed using 1mL RPMI 1640 media. Cell culture inserts (BD Falcon transparent 3μm PET membrane for 24 well plate) were added to individual wells and 600μL *P. aeruginosa* strain RP73 was added to the bottom chamber at varying concentrations (1x10^6, 1x10^5, 1x10^4 cfu/mL in RPMI 1640 media). 600μL 1μg/mL stromal cell derived factor 1α (SDF-1α) was added as a positive chemotactic control and 600μL RPMI 1640 media was added as a negative control. 250μL of washed platelets, isolated from human whole blood (ADP stimulated (100nM)) were added on top of the transwell inserts (Figure 2.3) and incubated for 90 minutes at 37°C. After the incubation period, 50μL media from each of the bottom chambers was incubated with 2μL platelet specific CD41-FITC (1:10 in saline) antibody, for 30 minutes at room temperature in the dark. After 30 minutes, 500μL PBS and 50μL flow count fluorospheres (Beckman Coulter) were added to 50μL of each sample. Flow count fluorospheres are a suspension of fluorospheres used to directly determine absolute counts on the flow cytometer. Samples were subsequently analysed and the platelets were quantified using a Beckman Coulter Cytomics FC 500 flow cytometer. Those that stained positively for the CD41 antigen were used as a measure of platelet migration.
Figure 2. 3 Diagrammatic Representation of the Bacterial Induced Platelet Chemotaxis Apparatus

2.15 Statistical Analysis

Total lung CFU is expressed as log cfu. Total lung cfu and total and differential cell counts from BAL fluid taken from in vivo infection studies, and blood samples (circulating platelets and flow cytometry analysis) were expressed as mean ± standard error of the mean (SEM). A Sharipo-Wilk normality test was performed to confirm that values came from a Gaussian distribution of data. A parametric one-way analysis of variance (ANOVA), followed by a Bonferroni’s multiple comparison post hoc test were used for comparisons of data sets. For immunohistochemistry and ELISA experiments, data were expressed as mean ± SEM and analysed using an unpaired Two-Tailed T-test. Survival curves were analysed using a Mantel-Cox test. For chemotaxis experiments, data was expressed as a chemotactic index (CI) ± SEM. Data was analysed using a one-way ANOVA, followed by a Bonferroni’s multiple comparison test between groups. All data was analysed by GraphPad Prism 6.0 and significant differences
were accepted if $p<0.05$ was observed between individual groups, when compared to either sham or vehicle control groups.
Chapter III: Results I

Establishment and Validation of a Murine Model of Pulmonary Infection
3.1 Establishing a Murine Model of Pulmonary Infection with *P. aeruginosa* and MRSA

3.1.1 Establishing a Murine Model of Pulmonary Infection with *P. aeruginosa* strain RP73

Initial titration studies were performed to determine the optimum inoculum to establish a murine model of pulmonary infection with the multidrug resistant clinical strain of *P. aeruginosa*, RP73. Mice were exposed to 3 different concentrations (1x10^4, 1x10^5 or 1x10^6 cfu/mouse) of bacterial embedded agar beads and infection and inflammatory parameters were subsequently analysed.

Murine pulmonary infection was established with all 3 tested inoculum levels, with a significant increase in pulmonary bacterial load observed at 48 h.p.i when compared to sham controls (10^4: 3.94±0.20 log cfu, 10^5: 4.25±0.57 log cfu and 10^6: 4.76±0.17 log cfu, versus sham: 0.0±0.0 log cfu, p<0.0001, Figure 3.1A).

Infection with 1x10^6 cfu/mouse *P. aeruginosa* strain RP73 induced a significant increase in pulmonary total leukocyte recruitment when compared to sham controls (10^6: 12.47±1.19x10^5 cells/mL versus sham: 1.43±0.16x10^5 cells/mL, p<0.0001, Figure 3.1B). This increase in total pulmonary leukocyte recruitment was characterised by a significant increase in neutrophils (10^6: 10.18±1.50x10^5 cells/mL versus sham: 0.04±0.01x10^5 cells/mL, p<0.0001, Figure 3.1C). In contrast, pulmonary infection with either 1x10^4 or 1x10^5 cfu/mL *P. aeruginosa* strain RP73 did not demonstrate any significant increase in either total leukocyte recruitment (10^4: 3.95±0.76x10^5 cells/mL and 10^5: 4.33±0.36x10^5 cells/mL, versus sham: 1.43±0.16x10^5 cells/mL, Figure 3.1B) or neutrophil recruitment (10^4: 2.38±0.85x10^5 cells/mL, 10^5: 2.84±0.53x10^5 cells/mL, versus sham: 0.04±0.01x10^5 cells/mL, Figure 3.1B) to the lungs, when compared to sham controls. No significant changes were observed with either macrophage.
(10^4: 1.56±0.10x10^5 cells/mL, 10^5: 1.49±1.20x10^5 cells/mL and 10^6: 2.29±0.45x10^5 cells/mL, versus sham: 1.40±0.17x10^5 cells/mL, Figure 3.1D) or lymphocyte (10^4: 0.0±0.0x10^5 cells/mL, 10^5: 0.0±10.0x10^5 cells/mL and 10^6: 0.0±0.0x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL) numbers at any tested inoculum.
Figure 3.1 Effects of *P. aeruginosa* strain RP73 on Bacterial and Inflammatory Parameters of Pulmonary Infection

Mice were infected (*o.a*) with either sham or 1x10^4, 1x10^5, 1x10^6 cfu/mouse RP73 embedded agar beads. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. (A) Pulmonary Bacterial Load, (B) Total Cells, (C) Neutrophils and (D) Macrophages, one-way ANOVA and Bonferroni’s multiple comparisons post hoc test, **** p<0.0001 versus sham, n=3-4, data are presented as mean ± SEM.
3.1.1.1 Histological Analysis of Pulmonary Tissue Following Infection with *P.aeruginosa* strain RP73

Lung samples collected 24 h.p.i were stained with H&E to determine whether infection with *P.aeruginosa* strain RP73 had any significant effect on inflammatory cell recruitment, lung architecture and alveolar integrity.

Lung histopathology indicated gross differences in both the inflammatory cell type present and the density and distribution of cells, between *P.aeruginosa* infected and sham control animals. The H&E stain of *P.aeruginosa* infected animals indicated intra-alveolar inflammation and neutrophil accumulation (Figure 3.2 iv-vi). Infection with *P.aeruginosa* induced alveolar damage and loss of alveolar integrity. In addition, representative images suggested evidence of haemorrhaging in the lungs and basement membrane thickening following infection (Figure 3.2 iv-vi). Lung sections of sham control animals however showed preservation of normal lung architecture and little or no neutrophil recruitment. The predominant cell type in the lung parenchyma of sham control mice was macrophages, with no evidence of haemorrhaging or basement membrane thickening (Figure 3.2 i-iii).
Figure 3.2 Effects of *P. aeruginosa* strain RP73 on Inflammatory Cell Recruitment, Lung Architecture and Alveolar Integrity

Mice were infected (*o.a*) with either sham or 1x10^6 cfu/mouse RP73 embedded agar beads. At 24 h.p.i, lungs were removed, fixed in 10% formaldehyde and embedded into paraffin wax blocks. Tissue sections were stained with a Haematoxylin and Eosin stain. Representative images of lung parenchyma at x40 magnification from H&E stained lungs from (i-iii) sham control and (iv-vi) 1x10^6 cfu/mL *P. aeruginosa* strain RP73 infected animals.
3.1.1.2 An Investigation into *P. aeruginosa* Strain RP73 Infection Induced Neutrophil Recruitment

Lung samples collected 24 h.p.i were stained with an anti-neutrophil elastase antibody to provide further evidence of neutrophil recruitment to the lungs post infection. Representative images of *P. aeruginosa* strain RP73 infected tissue sections indicated neutrophil accumulation and an increase in neutrophil recruitment into the airway lumen and alveolar spaces when compared to sham controls. Following quantification, a significant increase in neutrophil recruitment to the lungs was observed following infection with *P. aeruginosa* strain RP73 when compared to sham controls, as measured by the number of neutrophil elastase positive events per mm² of lung tissue (1x10⁶ cfu/mL *P. aeruginosa* strain RP73: 39456±448.2 neutrophil elastase positive events/mm², versus sham: 2962±580.8 neutrophil elastase positive events/mm², **Figure 3.3A**). The percentage area of neutrophil elastase staining was also significantly increased following infection with *P. aeruginosa* strain RP73 when compared to sham controls (1x10⁶ cfu/mL *P. aeruginosa* strain RP73: 8.99±1.5%, versus sham: 0.47±0.20%, **Figure 3.3B**), further highlighting infection induced neutrophil recruitment to the lungs.
Mice were infected \((o.a)\) with either sham or \(1 \times 10^6\) cfu/mouse RP73 embedded agar beads. At 24 h.p.i, lungs were removed, fixed in 10% formaldehyde and embedded into paraffin wax blocks. Tissue sections were stained with an anti-neutrophil elastase antibody and analysed for quantification of (A) Neutrophil Elastase positive events per mm\(^2\) and (B) Percentage area of neutrophil elastase. (C) Representative images of lung parenchyma at x40 magnification from (i) sham control and (iii) \(1 \times 10^6\) cfu/mL RP73 infected animals, (ii) and (iv) no addition of primary anti-neutrophil elastase antibody controls. Unpaired two-tailed t-test, **\(p<0.01\) versus sham, \(n=3\), data are presented as mean ± SEM.
3.1.2 Establishing a Murine Model of Pulmonary Infection with *P. aeruginosa* strain PAO1

Having established a murine model of pulmonary infection with *P. aeruginosa* strain RP73, experiments were performed to characterise additional gram-negative *P. aeruginosa* strains in the model. Mice were infected with 2 different concentrations (1x10⁵ or 1x10⁶ cfu/mouse) of the laboratory reference strain, PAO1 embedded into agar beads and infection and inflammatory parameters were subsequently analysed.

The data obtained was comparable to that observed following infection with *P. aeruginosa* strain RP73, whereby infection was established with both tested inoculum levels. A significant increase in pulmonary bacterial load was observed at 48 h.p.i, when compared to sham controls (10⁵: 4.87±0.30 log cfu and 10⁶: 5.91±0.17 log cfu, versus sham: 0.0±0.0 log cfu, p<0.0001, **Figure 3.4A**).

Infection with 1x10⁶ cfu/mouse *P. aeruginosa* strain PAO1 induced significant recruitment of both total pulmonary leukocytes (10⁶: 31.77±3.09x10⁵ cells/mL versus sham: 1.82±0.23x10⁵ cells/mL, p<0.0001, **Figure 3.4B**) and neutrophils (10⁶: 29.57±3.12x10⁵ cells/mL versus sham: 0.02±0.01x10⁵ cells/mL, p<0.0001, **Figure 3.4C**) to the lungs. Conversely, pulmonary infection with 1x10⁵ cfu/mL *P. aeruginosa* strain PAO1 had no significant increase in total leukocyte recruitment (10⁵: 4.46±0.53x10⁵ cells/mL, versus sham: 1.82±0.23x10⁵ cells/mL, **Figure 3.4B**) or neutrophil recruitment (10⁵: 1.91±0.46x10⁵ cells/mL, versus sham: 0.01±0.01x10⁵ cells/mL, **Figure 3.4C**) to the lungs, when compared to sham controls.

Pulmonary infection with *P. aeruginosa* strain PAO1 had no significant effect on the recruitment of macrophages (10⁵: 2.55±0.16x10⁵ cells/mL and 10⁶: 2.20±0.19x10⁵ cells/mL, versus sham: 1.79±0.23x10⁵ cells/mL, **Figure 3.4D**) or lymphocytes (10⁵: 0.0±10.0x10⁵ cells/mL
and 10^6: 0.0±0.0x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL) to the lungs, with no significant increase observed in both infected groups compared to sham controls.

Figure 3.4 Effects of P.aeruginosa strain PAO1 on Bacterial and Inflammatory Parameters of Pulmonary Infection

Mice were infected (o.a) with either sham, 1x10^5 or 1x10^6 cfu/mouse PAO1 embedded agar beads. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. (A) Pulmonary Bacterial Load, (B) Total Cells, (C) Neutrophils and (D) Macrophages. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, **** p<0.0001 versus sham, n=4-6, data are presented as mean ± SEM.
3.1.3 Establishing a Murine Model of Pulmonary Infection with *P. aeruginosa* strain NN2

Titration experiments were performed to characterise a Tobramycin resistant clinical isolate strain of *P. aeruginosa* in the murine model of pulmonary infection. Mice were infected with 3 different concentrations (1x10⁴, 1x10⁵ or 1x10⁶ cfu/mouse) of *P. aeruginosa* strain NN2 embedded into agar beads and infection and inflammatory parameters were subsequently analysed.

Infection with 1x10⁴, 1x10⁵ and 1x10⁶ cfu/mouse induced a significant increase in pulmonary bacterial load at 48 h.p.i, when compared to sham controls (10⁴: 1.35±0.57 log cfu, 10⁵: 4.20±0.19 log cfu and 10⁶: 6.41±0.05 log cfu, versus sham: 0.0±0.0 log cfu, p<0.0001, Figure 3.5A). In this strain, unlike RP73 and PAO1, a 0.41 log cfu increase was observed from the initial 1x10⁶ cfu/mouse inoculum.

Infection with both 1x10⁵ cfu/mouse and 1x10⁶ cfu/mouse induced significant recruitment of both total leukocytes (10⁵: 32.05±2.86x10⁵ cells/mL, p<0.01 and 10⁶: 76.9±8.65x10⁵ cells/mL, p<0.0001, versus sham: 2.74±0.51x10⁵ cells/mL, Figure 3.5B) and neutrophils (10⁵: 28.25±3.34x10⁵ cells/mL, p<0.01 and 10⁶: 74.15±8.77x10⁵ cells/mL, p<0.0001, versus sham: 0.0±0.0x10⁵ cells/mL, Figure 3.5C) to the lungs. However, no significant effects were observed on total leukocyte recruitment (10⁴: 8.06±0.99x10⁵ cells/mL, versus sham: 2.74±0.51x10⁵ cells/mL, Figure 3.5B) or neutrophil recruitment to the lungs (10⁴: 3.80±0.91x10⁵ cells/mL, versus sham: 0.0±0.0x10⁵ cells/mL, Figure 3.5C), following infection with 1x10⁴ cfu/mouse, when compared to sham controls.

Pulmonary infection with *P. aeruginosa* strain NN2 had no significant effect on the recruitment of macrophages (10⁴: 4.28±0.30x10⁵ cells/mL, 10⁵: 3.81±0.98x10⁵ cells/mL and 10⁶:
2.76±1.61x10^5 cells/mL, versus sham: 2.74±0.51x10^5 cells/mL, **Figure 3.5D** or lymphocytes to the lungs (10^4: 0.0±0.0x10^5 cells/mL, 10^5: 0.0±10.0x10^5 cells/mL and 10^6: 0.0±0.0x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL), with no significant increase observed at any tested concentration, when compared to sham controls.

![Figure 3.5 Effects of P.aeruginosa strain NN2 on Bacterial and Inflammatory Parameters of Pulmonary Infection](image)

Mice were infected (o.a) with either sham or 1x10^4, 1x10^5, 1x10^6 cfu/mouse NN2 embedded agar beads. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. (A) Pulmonary Bacterial Load, (B) Total Cells, (C) Neutrophils and (D) Macrophages. one-way ANOVA and Bonferroni’s multiple comparisons post hoc test, ** p<0.01, **** p<0.0001 versus sham, n=4, data are presented as mean ± SEM.
3.1.4 Establishing a Murine Model of Pulmonary Infection with MRSA strain USA300

Having established a murine model of pulmonary infection with the gram-negative bacterium, *P. aeruginosa*, additional experiments were performed to validate the model using a gram-positive bacterium, MRSA. Strain USA300 was used throughout this investigation, which is commonly associated with community acquired infections. Mice were infected with 3 different concentrations (1x10^4, 1x10^5 or 1x10^6 cfu/mouse) of USA300 embedded into agar beads and infection and inflammatory parameters were subsequently analysed.

Infection with 1x10^4, 1x10^5 and 1x10^6 cfu/mouse induced a significant dose-dependent increase in pulmonary bacterial load recovered at 48 h.p.i compared to sham controls (10^4: 4.53±0.07 log cfu, 10^5: 4.86±0.03 log cfu and 10^6: 5.89±0.35 log cfu, versus sham: 0.0±0.0 log cfu, p<0.0001, Figure 3.6A).

MRSA, strain USA300, at any tested inoculum had no significant increase in total leukocyte recruitment to the lungs when compared to sham controls (10^4: 11.69±8.63x10^5 cells/mL, 10^5: 14.53±9.38x10^5 cells/mL and 10^6: 26.13±12.57x10^5 cells/mL, versus sham: 1.24±0.13x10^5 cells/mL, Figure 3.6B). However, infection with 1x10^6 cfu/mouse significantly increased pulmonary neutrophil recruitment when compared to sham controls animals (10^6: 21.62±13.11x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL, p<0.01, Figure 3.6B). Conversely, infection with 1x10^4 cfu/mouse and 1x10^5 cfu/mouse had no significant effect on neutrophil recruitment to the lungs when compared to sham controls (10^4: 1.05±0.53x10^5 cells/mL and 10^5: 4.33±2.68x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL, Figure 3.6B).
Pulmonary infection with MRSA strain USA300 had no significant effect on the recruitment of macrophages (10^4: 10.64±8.10x10^5 cells/mL, 10^5: 10.20±6.70x10^5 cells/mL and 10^6: 4.51±0.61x10^5 cells/mL, versus sham: 1.23±0.13x10^5 cells/mL, Figure 3.6D) or lymphocytes to the lungs (10^4: 0.0±0.0x10^5 cells/mL, 10^5: 0.0±10.0x10^5 cells/mL and 10^6: 0.0±0.0x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL), with no significant increase observed at any tested concentration, when compared to sham controls.
Mice were infected (o.a) with either sham or 1x10^4, 1x10^5, 1x10^6 cfu/mouse MRSA embedded agar bead. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. (A) Pulmonary Bacterial Load, (B) Total Cells, (C) Neutrophils and (D) Macrophages. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, ** p<0.01, **** p<0.0001 versus sham, n=4, data are presented as mean ± SEM.
3.2 Investigating the Effects of Infection on Inflammatory Markers in BAL Fluid and Blood Plasma

3.2.1 Quantification of IL-6 Levels in BAL Fluid Following Infection with \textit{P. aeruginosa} or MRSA

IL-6 is a pro-inflammatory cytokine produced transiently by activated macrophages, monocytes and T cells, in response to infection and tissue injuries (Tanaka et al., 2014). IL-6 may be used as an early marker of infection and has been used to predict mortality in critically ill patients with organ dysfunction (Takahashi et al., 2016). We therefore sought to investigate how infection with \textit{P. aeruginosa} and MRSA influenced the concentration of IL-6 in a murine model of infection.

The concentration of IL-6 present in BAL fluid samples was significantly elevated following infection with 1×10^6 cfu/mouse \textit{P. aeruginosa} strain RP73 (RP73: 315.20±39.76 pg/mL, versus sham: 1.41±6.61 pg/mL, \textbf{Figure 3.7A}, p<0.0001), PAO1 (PAO1: 299.1±48.47 pg/mL, versus sham: -3.40±1.85 pg/mL, \textbf{Figure 3.7B}, p<0.0001) and NN2 (NN2: 477.1±48.62 pg/mL, versus sham: -4.95±0.85 pg/mL, \textbf{Figure 3.7C}, p<0.0001), when compared to sham controls. For PAO1 and NN2, the concentration of IL-6 present in the BAL fluid samples taken from sham controls was below the limit of detection.

Infection with 1×10^6 cfu/mouse MRSA strain USA300 induced a significant increase in the concentration of IL-6 in BAL fluid samples, when compared to sham controls (MRSA: 83.61±16.22 pg/mL, versus sham: -4.23±0.38 pg/mL, \textbf{Figure 3.7D}, p<0.0001). The concentration of IL-6 present in the BAL fluid samples taken from sham controls was below the limit of detection.
Figure 3.7 Effects of Infection with *P. aeruginosa* and MRSA on IL-6 Levels in BAL Fluid

Mice were infected (*o.a*) with either sham or 1x10⁶ cfu/mouse *P. aeruginosa* strain RP73, PAO1 or NN2 or MRSA strain USA300 embedded agar beads. At 48 h.p.i, a BAL of the lungs was performed. The concentration of IL-6 present in BAL fluid was measured using a murine IL-6 Duoset ELISA, DY453. (A) RP73, (B) PAO1, (C) NN2, (D) USA300, unpaired two-tailed t-test, ***p<0.0001 versus sham, n=13-24, data are presented as mean ± SEM.
3.2.2 Quantification of IL-6 Levels in Blood Plasma Following Infection with *P. aeruginosa* or MRSA

Infection with *P. aeruginosa* and MRSA induced a significant increase in the concentration of IL-6 at the site of infection in BAL fluid. Therefore, we sought to investigate whether infection with *P. aeruginosa* and MRSA would have a significant effect on the concentration of IL-6 in blood plasma.

The concentration of IL-6 present in plasma was significantly elevated following infection with 1x10^6 cfu/mouse *P. aeruginosa* strain RP73 (RP73: 49.69±11.08 pg/mL, versus sham: -6.15±2.68 pg/mL, Figure 3.8A, p<0.0001), PAO1 (PAO1: 35.07±19.41 pg/mL, versus sham: -3.53±4.36 pg/mL, Figure 3.8B, p<0.05) and NN2 (NN2: 289.3±80.89 pg/mL, versus sham: -5.19±1.33 pg/mL, Figure 3.8C, p<0.01), when compared to sham controls. For all 3 of these *P. aeruginosa* strains, the concentration of IL-6 present in the plasma taken from sham controls was below the limit of detection. Although infection with all 3 strains of *P. aeruginosa* significantly increased the concentration of IL-6 in the plasma, the increase in the concentration of IL-6 in BAL fluid was greater at the site of the infection.

Infection with 1x10^6 cfu/mouse MRSA strain USA300 had no significant effect on the concentration of IL-6 in plasma, when compared to sham controls (MRSA: -1.69±2.41 pg/mL, versus sham: 0.17±3.80 pg/mL, Figure 3.8D).
Mice were infected (o.a) with either sham or 1×10^6 cfu/mouse *P. aeruginosa* strain RP73, PAO1 or NN2 or MRSA strain USA300 embedded agar beads. At 48 h.p.i, blood was taken via cardiac puncture and plasma was isolated. The concentration of IL-6 present in plasma was measured using a murine IL-6 Duoset ELISA, DY453. (A) RP73, (B) PAO1, (C) NN2, (D) USA300, unpaired two-tailed t-test, *p*<0.05, **p*<0.01, ****p*<0.0001 versus sham, n=8-22, data are presented as mean ± SEM.
3.2.3 Quantification of KC Levels in BAL Fluid Following Infection with *P. aeruginosa* or MRSA

The murine chemokine KC (the murine analogue of human IL-8) plays a pivotal role in host defence against infection, by recruiting and activating circulating neutrophils to the site of infection, to participate in bacterial killing (Sawant et al., 2016). This has been demonstrated in several animal models, whereby KC has been shown to play a dual role in the host immune response by recruiting peripheral neutrophils and activating neutrophils to fight against infection, by the release of proteases and reactive oxygen species (Sawant et al., 2016). My earlier studies previously demonstrated infection induced pulmonary neutrophil recruitment and in this part of my work I investigated whether the concentration of KC was significantly elevated in response to bacterial infection.

As observed with the inflammatory marker IL-6, the concentration of KC present in BAL fluid was significantly elevated following infection with 1x10^6 cfu/mouse *P. aeruginosa* strain RP73 (RP73: 208.60±35.77 pg/mL, versus sham: 8.94±6.23 pg/mL, Figure 3.9A, p<0.0001) PAO1 (PAO1: 201.10±65.54 pg/mL, versus sham: 12.81±6.48 pg/mL, Figure 3.9B, p<0.01) and NN2 (NN2: 356.00±53.59 pg/mL, versus sham: 26.39±8.12 pg/mL, Figure 3.9C, p<0.0001), when compared to sham controls.

Infection with 1x10^6 cfu/mouse MRSA strain USA300 also induced a significant increase in the concentration of KC in BAL fluid samples, when compared to sham controls (MRSA: 133.70±44.25 pg/mL, versus sham: 20.39±6.67 pg/mL, Figure 3.9D).
Figure 3.9 Effects of infection with *P. aeruginosa* and MRSA on KC levels in Bal Fluid

Mice were infected (o.a) with either sham or 1x10⁶ cfu/mouse *P. aeruginosa* strain RP73, PAO1 or NN2 or MRSA strain USA300 embedded agar beads. At 48 h.p.i., a BAL of the lungs was performed. The concentration of KC present in BAL fluid was measured using a murine KC Duosset ELISA, DY406. (A) RP73, (B) PAO1, (C) NN2, (D) USA300, unpaired two-tailed t-test, *p<0.05, **p<0.01, ****p<0.0001 versus sham, n=14-22, data are presented as mean ± SEM.
3.2.4 Quantification of KC Levels in Blood Plasma Following Infection with *P. aeruginosa* or MRSA

Infection with *P. aeruginosa* and MRSA induced a significant increase in the concentration of KC at the site of infection in BAL fluid. Therefore, we sought to investigate whether infection with *P. aeruginosa* and MRSA would have a significant effect on the concentration of KC in blood plasma.

The concentration of KC present in blood plasma was significantly elevated following infection with 1x10⁶ cfu/mouse *P. aeruginosa* strain RP73 (RP73: 207.60±20.78 pg/mL, versus sham: 59.71±9.36 pg/mL, Figure 3.10A, p<0.0001) PAO1 (PAO1: 202.20±47.24 pg/mL, versus sham: 71.13±8.76 pg/mL, Figure 3.10B, p<0.01) and NN2 (NN2: 481.1±115.60 pg/mL, versus sham: 88.48±14.02 pg/mL, Figure 3.10C, p<0.01) when compared to sham controls.

Similar to the data obtained for the concentration of IL-6 in plasma, infection with 1x10⁶ cfu/mouse MRSA strain USA300 had no significant effect on the concentration of KC in plasma, when compared to sham controls (MRSA: 124.90±18.04 pg/mL, versus sham: 107.0±12.46 pg/mL, Figure 3.10D).
Mice were infected \((o.a)\) with either sham or \(1 \times 10^6\) cfu/mouse \textit{P.aeruginosa} strain RP73, PAO1 or NN2 or MRSA strain USA300 embedded agar beads. At 48 h.p.i, blood was taken via cardiac puncture and plasma was isolated. The concentration of KC present in plasma was measured using a murine KC Duoset ELISA, DY406. (A) RP73, (B) PAO1, (C) NN2, (D) USA300, unpaired two-tailed t-test, **\(p<0.01\), ****\(p<0.0001\) versus sham, \(n=8-22\), data are presented as mean ± SEM.
3.3 Validation of the Murine Model of Pulmonary Infection with \textit{P.aeruginosa} and MRSA, using Tobramycin and Vancomycin

3.3.1 Validation: Assessing the Ability of Tobramycin to Reduce Bacterial Load Post Infection with \textit{P.aeruginosa} strain RP73

Having established the optimum inoculum for pulmonary infection with 3 different strains of the gram-negative bacterium, \textit{P.aeruginosa}, additional experiments were performed to validate the model with the conventional antibiotic, Tobramycin. Mice were infected with 1\times106 cfu/mouse \textit{P.aeruginosa} strain RP73 (a multidrug resistant strain) and the effects of Tobramycin (either 50, 100, or 300 mg/kg/day, \textit{i.p.}) on infection and inflammatory parameters were subsequently analysed.

Infection with RP73 induced a significant increase in pulmonary bacterial load in vehicle treated mice when compared to sham controls (5.91±0.03 log cfu, versus sham: 0.0±0.0 log cfu, \textit{p}<0.0001, \textbf{Figure 3.11A}). Following treatment with Tobramycin, a dose-dependent reduction in pulmonary bacterial load was observed. However, only 300 mg/kg Tobramycin produced a significant reduction in pulmonary bacterial load when compared to vehicle controls (50 mg/kg: 6.13±0.04 log cfu, 100 mg/kg: 5.85±0.03 and 300 mg/kg: 4.62±0.16 log cfu, \textit{p}<0.0001, versus vehicle: 5.91±0.03 log cfu, \textbf{Figure 3.11A}).

Infection with RP73 induced a significant increase in both total leukocyte (24.13±4.26\times105 cells/mL, versus sham: 1.28±0.25\times105 cells/mL, \textit{p}<0.001, \textbf{Figure 3.11B}) and neutrophil recruitment (22.32±3.69\times105 cells/mL, versus sham: 0.02±0.02\times105 cells/mL, \textit{p}<0.0001, \textbf{Figure 3.11C}) to the lungs, when compared to sham controls. No tested dose of Tobramycin had any significant effect on pulmonary total leukocyte recruitment when compared to vehicle controls (50 mg/kg: 24.58±2.43\times105 cells/mL, 100 mg/kg: 28.53±4.98\times105 cells/mL and 300
mg/kg: 24.32±0.87x10^5 cells/mL versus vehicle: 24.13±4.26x10^5 cells/mL, Figure 3.11B).

Similarly, no significant effects of Tobramycin were observed on neutrophil (50 mg/kg: 24.06±2.45x10^5 cells/mL, 100 mg/kg: 27.04±4.41x10^5 cells/mL and 300 mg/kg: 22.77±1.04x10^5 cells/mL, versus vehicle: 22.32±3.69x10^5 cells/mL, Figure 3.11C), macrophage (50 mg/kg: 0.51±0.32x10^5 cells/mL, 100 mg/kg: 1.49±0.88x10^5 cells/mL and 300 mg/kg: 1.54±0.60x10^5 cells/mL, versus vehicle: 1.80±0.77x10^5 cells/mL, Figure 3.11D) and lymphocyte (50 mg/kg: 0.0±0.0x10^5 cells/mL, 100 mg/kg: 0.0±10.0x10^5 cells/mL and 300 mg/kg: 0.0±0.0x10^5 cells/mL, versus vehicle: 0.0±0.0x10^5 cells/mL) recruitment to the lungs, when compared to vehicle controls.
Figure 3.11 Effects of Tobramycin Following Infection with *P. aeruginosa* strain RP73

Mice were infected (*o.a*) with either sham or 1x10⁶ cfu/mouse RP73 embedded agar beads. At 24 h.p.i mice were treated with a single dose of either vehicle, 50, 100, 300 mg/kg Tobramycin (200μL, *i.p.*). A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. (A) Pulmonary Bacterial Load, (B) Total Cells (C) Neutrophils and (D) Macrophages. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *** p< 0.0001 versus sham, #### p<0.0001 versus vehicle, n=4-6, data are presented as mean ± SEM.
3.3.2 Validation: Assessing the Ability of Tobramycin to Reduce Bacterial Load Post Infection with *P. aeruginosa* strain PAO1

Similar to RP73, experiments were performed to validate the murine model of pulmonary infection with PAO1 using Tobramycin. Mice were infected with 1×10^6 cfu/mouse *P. aeruginosa* strain PAO1 (a Tobramycin susceptible strain), and the effects of Tobramycin (either 10, 50, or 100 mg/kg/day) on infection and inflammatory parameters were subsequently analysed.

PAO1 infection induced a significant increase in pulmonary bacterial load in vehicle treated mice, when compared to sham controls (5.91 ± 0.17 log cfu, versus sham: 0.0 ± 0.0 log cfu, $p<0.0001$, Figure 3.12A). Tobramycin treatment induced a dose-dependent reduction in pulmonary bacterial load, with a significant reduction in pulmonary bacterial load observed following treatment with 50mg/kg and 100mg/kg Tobramycin (50 mg/kg: 4.97 ± 0.06 log cfu, $p<0.01$ and 100 mg/kg: 4.74 ± 0.31 log cfu, $p<0.0001$, versus vehicle 5.91 ± 0.17 log cfu, Figure 3.12A), when compared to vehicle controls.

Infection with 1×10^6 cfu/mouse *P. aeruginosa* PAO1 also induced a significant increase in total leukocyte ($31.77 \pm 3.09 \times 10^5$ cells/mL, versus sham: $1.82 \pm 0.23 \times 10^5$ cells/mL, $p<0.0001$) and neutrophil recruitment ($29.57 \pm 3.12 \times 10^5$ cells/mL, versus sham: $0.02 \pm 0.01 \times 10^5$ cells/mL, $p<0.0001$) to the lungs, when compared to sham controls. Tobramycin treatment at any tested dose had no significant effect on total leukocyte recruitment when compared to vehicle controls (10 mg/kg: $33.3 \pm 4.18 \times 10^5$ cells/mL, 50 mg/kg: $27.2 \pm 3.49 \times 10^5$ cells/mL and 100 mg/kg: $24.93 \pm 3.43 \times 10^5$ cells/mL versus vehicle: $31.77 \pm 3.09 \times 10^5$ cells/mL, Figure 3.12B). Data suggested a trend depicting a decrease in total leukocytes and neutrophil recruitment to the lungs following Tobramycin treatment, although this data did not reach statistical
significance. Similarly, no tested Tobramycin dose had any significant effect on neutrophil (10 mg/kg: $30.52\pm4.83\times10^5$ cells/mL, 50 mg/kg: $21.93\pm3.68\times10^5$ cells/mL and 100 mg/kg: $19.22\pm2.07\times10^5$ cells/mL, versus vehicle: $22.32\pm3.69\times10^5$ cells/mL, **Figure 3.12C**) macrophage (10 mg/kg: $3.05\pm0.60\times10^5$ cells/mL, 50 mg/kg: $5.27\pm0.63\times10^5$ cells/mL and 100 mg/kg: $5.72\pm1.41\times10^5$ cells/mL, versus vehicle: $2.20\pm0.19\times10^5$ cells/mL, **Figure 3.12D**) or lymphocyte (10 mg/kg: $0.0\pm0.0\times10^5$ cells/mL, 50 mg/kg: $0.0\pm10.0\times10^5$ cells/mL and 100 mg/kg: $0.0\pm0.0\times10^5$ cells/mL, versus vehicle: $0.0\pm0.0\times10^5$ cells/mL) recruitment to the lungs, when compared to vehicle controls.
Figure 3.12 Effects of Tobramycin Following Infection with *P. aeruginosa* strain PAO1

Mice were infected \(o.a\) with either sham sterile or \(1 \times 10^6\) cfu/mouse PAO1 embedded agar beads. At 24 h.p.i mice were treated with a single dose of either vehicle, 10, 50, 100 mg/kg Tobramycin (200μL, *i.p.*). A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. (A) Pulmonary Bacterial Load, (B) Total Cells (C) Neutrophils and (D) Macrophages. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, **** \(p<0.0001\) versus sham, ## \(p<0.01\), ####\(p<0.0001\) versus vehicle, n=3-4, data are presented as mean ± SEM.
3.3.3 Validation: Assessing the Ability of Tobramycin to Reduce Bacterial Load Post Infection with *P. aeruginosa* strain NN2

Experiments were performed to validate a murine model of pulmonary infection with *P. aeruginosa* strain NN2 using Tobramycin. Mice were infected with 1×10^6 cfu/mouse *P. aeruginosa* strain NN2 (a Tobramycin resistant strain) and the effects of Tobramycin (either 50, 100 or 200 mg/kg/day) on infection and inflammatory parameters were subsequently analysed.

Infection with NN2 induced a significant increase in pulmonary bacterial load in vehicle treated mice, when compared to sham controls (6.65±0.08 log cfu, versus sham: 0.0±0.0 log cfu, p<0.0001, Figure 3.13A). Tobramycin treatment at 50 mg/kg induced a significant reduction in pulmonary bacterial load when compared to vehicle controls (6.13±0.22 log cfu, versus vehicle control: 6.65±0.08 log cfu, Figure 3.13A). However, no effect on pulmonary bacterial load was observed following treatment with 100 and 200 mg/kg Tobramycin when compared to vehicle controls (100 mg/kg: 6.73±0.14 log cfu and 200 mg/kg: 6.89±0.09 log cfu, versus vehicle control: 6.65±0.08 log cfu, Figure 3.13A).

Infection with 1×10^6 cfu/mouse *P. aeruginosa* NN2, induced a significant increase in pulmonary total leukocytes (49.0±10.88x10^5 cells/mL, versus sham: 1.41±0.32x10^5 cells/mL, p<0.05, Figure 3.13B) and neutrophil recruitment when compared to sham controls (48.08±10.9x10^5 cells/mL, versus sham: 0.01±0.00x10^5 cells/mL, p<0.01, Figure 3.13B). No tested doses of Tobramycin had any significant effect on pulmonary total leukocyte recruitment (50 mg/kg: 51.38±16.14x10^5 cells/mL, 100: 27.69±5.81x10^5 cells/mL and 200 mg/kg: 46.93±5.34x10^5 cells/mL, versus vehicle control: 49.00±10.88x10^5 cells/mL, Figure 3.13B), or pulmonary neutrophil recruitment (50 mg/kg: 46.77±15.03x10^5 cells/mL, 100
mg/kg: 24.43±5.07x10^5 cells/mL and 200 mg/kg: 42.23±4.81x10^5 cells/mL, versus vehicle control: 48.08±10.90x10^5 cells/mL, Figure 3.13C), when compared to vehicle controls. In contrast, every tested dose of Tobramycin appeared to increase macrophage recruitment to the lungs, however this was only significant at 50 and 200 mg/kg, when compared to vehicle controls (50 mg/kg: 4.61±1.12x10^5 cells/mL, p<0.05, 100 mg/kg: 3.14±0.81x10^5 cells/mL and 200 mg/kg: 4.69±0.55x10^5 cells/mL, p<0.05, versus vehicle, Figure 3.13D). No tested Tobramycin dose had any significant effect on lymphocyte recruitment to the lungs, when compared to vehicle controls (50 mg/kg: 0.0±0.0x10^5 cells/mL, 100 mg/kg: 0.0±10.0x10^5 cells/mL and 200 mg/kg: 0.0±0.0x10^5 cells/mL, versus vehicle: 0.0±0.0x10^5 cells/mL).
Mice were infected (o.a) with either sham or 1×10^6 cfu/mouse NN2 embedded agar beads. At 24 h.p.i mice were treated with a single dose of either vehicle, 50, 100, 200 mg/kg Tobramycin (200μL, i.p.). A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. (A) Pulmonary Bacterial Load, (B) Total Cells (C) Neutrophils and (D) Macrophages. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *p<0.05, ** p<0.01, **** p<0.0001 versus sham, #p<0.01 versus vehicle, n=3-4, data are presented as mean ± SEM.
3.3.4 Validation: Assessing the Ability of Tobramycin to Reduce Bacterial Load Post Infection with MRSA strain USA300

Having validated the *P. aeruginosa* murine models of pulmonary infection with Tobramycin, additional experiments were performed to validate the murine model of pulmonary infection with MRSA strain USA300 using the conventional antibiotic Vancomycin. Mice were infected with 1x10^6 cfu/mouse MRSA strain USA300, and the effects of Vancomycin (either 50, 100 or 200 mg/kg/day) on infection and inflammatory parameters were subsequently analysed.

Infection with MRSA induced a significant increase in pulmonary bacterial load in vehicle treated mice when compared to sham controls (4.27±0.27 log cfu, versus sham: 0.0±0.0 log cfu, p<0.0001, Figure 3.14A). Vancomycin treatment appeared to induce a dose-dependent reduction in pulmonary bacterial load when compared to vehicle controls. However, significance was only observed using 200 mg/kg Vancomycin (50 mg/kg: 3.40±0.11 log cfu, 100 mg/kg: 3.52±0.25 log cfu and 200 mg/kg 2.72±0.33 log cfu, p<0.05, versus vehicle control: 4.27±0.27 log cfu, Figure 3.14A).

Infection with 1x10^6 cfu/mouse MRSA strain USA300, had no significant increase in pulmonary total leukocytes when compared to sham controls (3.30 x 10^5 ± 0.29 cells/mL, versus sham: 1.56 x 10^5 ± 0.33 cells/mL, Figure 3.14B). However, pulmonary neutrophil recruitment was significantly increased in infected animals when compared to sham controls (0.86±0.12x10^5 cells/mL, versus sham: 0.00±0.00x10^5 cells/mL, p<0.001, Figure 3.14C). No tested dose of Vancomycin had any significant effect on pulmonary total leukocyte recruitment (50 mg/kg: 3.69±0.27x10^5 cells/mL, 100 mg/kg: 4.62±1.24x10^5 cells/mL and 200 mg/kg: 3.27±0.07x10^5 cells/mL, versus vehicle control: 3.30±0.07x10^5 cells/mL, Figure 3.14B) or pulmonary neutrophil recruitment (50 mg/kg: 1.17±0.11x10^5 cells/mL, 100 mg/kg:
0.75±0.21x10^5 cells/mL and 200 mg/kg: 0.49±0.15x10^5 cells/mL, versus vehicle control: 0.86±0.12x10^5 cells/mL, Figure 3.14C) when compared to vehicle controls. Similarly, no tested dose of Vancomycin had any significant effect on pulmonary macrophage (50 mg/kg: 2.58±0.35x10^5 cells/mL, 100 mg/kg: 2.52±0.20x10^5 cells/mL and 200 mg/kg: 2.77±0.10x10^5 cells/mL, versus vehicle: 2.48±0.35x10^5 cells/mL, Figure 3.14D) and lymphocyte recruitment when compared to vehicle controls (50 mg/kg: 0.0±0.0x10^5 cells/mL, 100 mg/kg: 0.0±10.0x10^5 cells/mL and 200 mg/kg: 0.0±0.0x10^5 cells/mL, versus vehicle: 0.0±0.0x10^5 cells/mL).
Mice were infected (o.a) with either sham or 1×10^6 cfu/mouse USA300 embedded agar beads. At 24 h.p.i mice were treated with a single dose of either vehicle, 50, 100, 200 mg/kg Vancomycin (200μL, i.p.). A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. (A) Pulmonary Bacterial Load, (B) Total Cells (C) Neutrophils and (D) Macrophages. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, ***p<0.001, **** p<0.0001 versus sham, ### p<0.001 versus vehicle, n=3-4, data are presented as mean ± SEM.
Chapter IV: Results II

The Role of Platelets in the Regulation of Pulmonary Infection
Chapter IV: Results II

4.1 Investigating Infection Induced Thrombocytopenia

Thrombocytopenia is a common finding in patients admitted to the intensive care unit (de Stoppelaar, 2014) and patients that present to the clinic with sepsis often present with thrombocytopenia (Xiang et al., 2013). This is associated with poor prognosis and increased mortality in comparison to patients with normal circulating platelet levels (Venkata et al., 2013). Therefore, we sought to investigate the effect of infection on thrombocytopenia in a murine model of pulmonary infection with \textit{P. aeruginosa} and MRSA.

Infection with 1x10^6 cfu/mouse \textit{P. aeruginosa} strain RP73 induced a significant decrease of approximately 12\% in circulating platelet numbers at 48 h.p.i. when compared to sham controls (RP73: 6.11±0.21x10^8 platelets/mL, versus sham: 6.99±0.30x10^8 platelets/mL, 12.6\% decrease, p<0.05, Figure 4.1A). Similarly, infection with 1x10^6 cfu/mouse \textit{P. aeruginosa} strain PAO1 (PAO1: 5.80±0.18x10^8 platelets/mL, versus sham: 6.63±0.18x10^8 platelets/mL, 12.7\% decrease, p<0.01, Figure 4.1B) and NN2 (NN2: 6.65±0.24x10^8 platelets/mL, versus sham: 6.65±0.24x10^8 platelets/mL, 13.7\% decrease, p<0.05, Figure 4.1C) significantly reduced circulating platelet numbers, by 12.7\% and 13.7\% respectively, when compared to sham controls. For the MRSA strain USA300, a significant decrease in circulating platelet numbers was observed at 48 h.p.i, with infection reducing platelet numbers by 14.7\%, when compared to sham controls (MRSA: 6.36±0.28x10^8 platelets/mL, versus sham: 7.76±0.29x10^8 platelets/mL, 14.7\% decrease, p<0.01, Figure 4.1D).
Figure 4.1 Effects of Infection with *P. aeruginosa* and MRSA on Circulating Platelet Levels

Mice were infected (o.a) with either sham or 1x10^6 cfu/mouse *P. aeruginosa* strain (A) RP73, (B) PAO1, (C) NN2 or (D) MRSA strain USA300 embedded agar beads. 48 h.p.i. blood was collected via cardiac puncture and platelets were quantified using an improved Neubauer haemocytometer under a x40 objective. Unpaired two-tailed t-test, * p<0.05, ** p<0.01 versus sham, n=10-19, data are presented as mean ± SEM.
4.2 Investigating *P. aeruginosa* strain RP73 Infection Induced Pulmonary Platelet Recruitment

Platelet recruitment towards bacterial products (LPS) has been demonstrated previously (Ortiz-Muñoz et al., 2014), therefore we investigated whether platelet migration to the lungs accounts for the decreased circulating platelet numbers we observed. Lung samples from sham and *P. aeruginosa* strain RP73 infected animals were collected at 48 h.p.i. and stained with a platelet-specific anti-CD42b antibody. The histological images collected showed evidence of platelet accumulation in the lung tissue following infection with RP73, when compared to sham controls (Figure 4.2Ciii). Regions that stained positively for CD42b appeared to be present in the airways, located within close proximity to bacteria and in extravascular regions of lung tissue. Conversely, in sham controls, histological images demonstrated far fewer CD42b positively stained events (Figure 4.2Ci). Tissue samples of both sham and infected mice were stained with only secondary antibody to rule out non-specific binding, thus acting as a negative control (Figure 4.2Cii and iv).

The staining was quantified to determine whether there was a significant difference in the number of CD42b positive events per mm2 of lung tissue or the percentage area of CD42b positive staining in sham versus RP73 infected tissue sections. Results demonstrated a significant increase in the number of CD42b positive events per mm2 of lung tissue following infection with RP73, when compared to sham controls (RP73: 9672±1456 platelets/mm2, versus sham: 3809±455.1 platelets/mm2, p<0.01, Figure 4.2A), which represents a significant increase in the number of platelets/mm2 of lung tissue following infection. Furthermore, a significant increase in the percentage area of CD42b positive staining was observed following infection with RP73, when compared to sham controls (RP73: 2.80 ± 0.65%, versus sham: ...
1.17±0.27%, p<0.05, **Figure 4.2B** which represents an increase in the total number of platelets recruited to the lung following infection.
Figure 4.2 Effects of Infection with *P. aeruginosa* strain RP73 on Pulmonary Platelet Accumulation

Mice were infected (o.a) with either sham or 1x10^6 cfu/mouse RP73 embedded agar beads. At 24 h.p.i, lungs were removed, fixed in 10% formaldehyde and embedded into paraffin wax blocks. Tissue sections were stained with an anti-CD42b antibody and a biotinylated anti-rabbit secondary antibody. (A) CD42b positive events per mm^2 of lung tissue (B) Percentage area of CD42b positive staining (C) Representative images of lung parenchyma at x40 magnification from CD42b stained lungs from (i-ii) sham control and (iii-iv) 1x10^6 cfu/mL *P. aeruginosa* strain RP73 infected animals. Unpaired two-tailed t-test, * p<0.05, ** p<0.01 versus sham, n=6, data are presented as mean ± SEM.
4.3 Investigating the Effects of Infection on Platelet Activation Markers in BAL Fluid and Blood Plasma

Clinically, it has been demonstrated that patients admitted to the hospital with infectious diseases have an increased expression of platelet activation markers (O’Sullivan et al., 2005), as measured by increased platelet-neutrophil complexes and surface expression of adhesion molecules, such as P-selectin (Amison et al., 2018). Furthermore, a plethora of platelet microbicidal proteins and kinocidins are released upon platelet activation, including PF-4 and RANTES (Yeaman, 2010). Therefore, we sought to investigate the effect of infection induced platelet activation, by quantification of the granular secretory products PF-4 and RANTES.

4.3.1 Quantification of PF-4 Levels in BAL fluid Following Infection with *P.aeruginosa* or MRSA

48 h.p.i. with *P.aeruginosa* or MRSA, BAL fluid was collected and the platelet granular secretory product, PF-4 was quantified. Infection with RP73 did not significantly augment levels of PF-4 in BAL fluid, however a trend suggesting elevated levels was observed, when compared to sham controls (RP73: 265.10 ± 106.30 pg/mL, versus sham: 94.14 ± 19.55 pg/mL, Figure 4.3A). Significant increases in BAL PF-4 levels were observed following infection with PAO1 (PAO1: 246.10±63.83 pg/mL, versus sham: 85.17±18.46 pg/mL, Figure 4.3B, p<0.05) and NN2 when compared to sham controls (NN2: 298.60±89.84 pg/mL, versus sham: 20.69±5.49 pg/mL, Figure 4.3C, p<0.05). Infection with MRSA strain USA300 appeared to cause platelet activation, as indicated by increased concentrations of PF-4, however this result did not reach statistical significance (MRSA: 236.70±82.74 pg/mL, versus sham: 90.55±19.01 pg/mL, Figure 4.3D).
Mice were infected \((a.o)\) with either sham or \(1 \times 10^6\) cfu/mouse *P. aeruginosa* strain RP73, PAO1 or NN2 or MRSA strain USA300 embedded agar beads. At 48 h.p.i, a BAL of the lungs was performed. The concentration of PF4 present in BAL fluid was measured using a murine PF4 Duoset ELISA, DY595. (A) RP73, (B) PAO1, (C) NN2, (D) USA300, unpaired two-tailed t-test, *p<0.05 versus sham, n=10-24, data are presented as mean ± SEM.
4.3.2 Quantification of RANTES Levels in BAL fluid Following Infection with *P. aeruginosa* or MRSA

48 h.p.i. with *P. aeruginosa* or MRSA, BAL fluid was collected and the platelet granular secretory product, RANTES was measured. These data suggested that infection with RP73 elevated levels of RANTES in BAL fluid when compared to sham controls, although this result did not reach statistical significance (RP73: 217.30±64.83 pg/mL, versus sham: 75.33±40.07 pg/mL, Figure 4.4A). A significant increase in RANTES secretion was observed in BAL fluid following infection with PAO1 (PAO1: 298.90±117.60 pg/mL, versus sham: 33.46±34.66 pg/mL, Figure 4.4B, p<0.05) and NN2 when compared to sham controls, which were below the limit of detection (NN2: 406.10±113.4 pg/mL, versus sham: -33.4±42.0 pg/mL, Figure 4.4C, p<0.001). Infection with MRSA strain USA300 induced a significant increase in BAL levels of RANTES when compared to sham controls, which were below the limit of detection (MRSA: 317.0±55.30 pg/mL, sham: -65.94±16.24 pg/mL, Figure 4.4D, p<0.0001). Consistent with the data obtained for that of PF-4, these data suggest that platelets become activated at the site of infection, indicated by increased secretion of granular contents.
Mice were infected (o.a) with either sham or 1×10^6 cfu/mouse *P. aeruginosa* strain RP73, PAO1 or NN2 or MRSA strain USA300 embedded agar beads. At 48 h.p.i, a BAL of the lungs was performed. The concentration of RANTES present in BAL fluid was measured using a murine RANTES Duoset ELISA, DY478. (A) RP73, (B) PAO1, (C) NN2, (D) USA300, unpaired two-tailed t-test, *p<0.05, ***p<0.001, ****p<0.0001 versus sham, n=15-23 data are presented as mean ± SEM.
4.3.3 Quantification of PF-4 Levels in Blood Plasma Following Infection with *P. aeruginosa* or MRSA

48 h.p.i. with *P. aeruginosa* or MRSA, plasma was isolated and the concentration of PF-4 in samples was quantified. The results collected suggested that infection with RP73 (RP73: 94.22±31.04 ng/mL, versus sham: 160.80±4.90 ng/mL, Figure 4.5A), PAO1 (PAO1: 359.02±134.78 ng/mL, versus sham: 248.94±52.33 ng/mL, Figure 4.5B) and NN2 (NN2: 461.53±112.48 ng/mL, versus sham: 399.03±56.14 ng/mL, Figure 4.5C) had no significant effect on the concentration of PF-4 in plasma, when compared to sham controls.

Similarly, infection with MRSA strain USA300 did not significantly increase PF-4 levels, when compared to sham controls (MRSA: 472.86±86.29 ng/mL, versus sham: 430.04±4.34 pg/mL, Figure 4.5D). These data suggest that PF-4 may only be released at the site of infection, since both PF4 and RANTES were significantly elevated in BAL fluid at this same time point.
Figure 4.5 Effects of Infection with *P. aeruginosa* and MRSA on PF-4 Levels in Blood Plasma

Mice were infected *(o.a)* with either sham or 1x10^6 cfu/mouse *P. aeruginosa* strain RP73, PAO1 or NN2 or MRSA strain USA300 embedded agar beads. At 48 h.p.i blood was taken via cardiac puncture and plasma was isolated. The concentration of PF-4 present in plasma was measured using a murine PF-4 Duoset ELISA, DY595. *(A)* RP73, *(B)* PAO1, *(C)* NN2, *(D)* USA300, unpaired two-tailed t-test, p>0.05 versus sham, n=8-19, data are presented as mean ± SEM.
4.4 Investigating *P. aeruginosa* strain RP73 Infection Induced Platelet-Leukocyte Complex Formation *ex vivo*

Whilst granule secretion has been used as a marker of platelet activation, the formation of platelet-leukocyte complexes has also been demonstrated as a marker of platelet activation (Pitchford et al., 2003). Therefore, we sought to investigate whether infection increases platelet activation, as measured by platelet-neutrophil complex formation in the blood, following infection with RP73.

Infection with 1×10^6 cfu/mouse RP73 induced a ~4-fold increase in circulating platelet-neutrophil complexes when compared to sham controls (RP73: 9.24±2.45%, versus sham: 2.45±0.48%, Figure 4.6A, p<0.01), indicative of platelet activation in the blood of infected mice. Infection had no significant effect on platelet MFI on platelet-neutrophil complexes, when compared to sham controls (RP73: 10.57±0.96, versus sham: 11.35±1.09, Figure 4.6B), indicative of no change in the number of platelets per neutrophil.
Figure 4.6 Effects of Infection with *P. aeruginosa* on Platelet-Leukocyte Complex Formation

Mice were infected (*o.a*) with either sham or 1x10^6 cfu/mouse RP73 embedded agar beads. At 24 h.p.i. blood was taken via cardiac puncture and the (A) percentage of platelet-neutrophil complexes and the (B) MFI on platelet-neutrophil complexes was measured using a FITC rat anti-mouse CD41 #553848 antibody and a PE rat anti-mouse Ly6g #551461 antibody and flow cytometry analysis, unpaired two-tailed t-test, **p<0.01 versus sham, n=8-12, data are presented as mean ± SEM.
4.5 Investigating Bacteria Induced Platelet Migration

Having previously demonstrated pulmonary platelet recruitment following infection *in vivo*, experiments were performed to determine whether bacteria induces platelet migration *in vitro*. Platelet migration towards SDF-1α was significantly elevated when compared to the RPMI negative controls (SDF-1α: 2.06±0.26, versus RPMI: 1.0±0.12, Figure 4.7, p<0.01). A significant increase in platelet chemotaxis towards bacteria (1x10^7 and 1x10^8 cfu/mL) was observed (10^6: 1.45±0.08, 10^7: 2.05±0.18 p<0.001, 10^8: 1.74±0.27 p<0.05, CI, Figure 4.7), when compared to the RPMI negative controls.

![Figure 4.7](image_url)

Figure 4.7 Effects of Bacteria Induced Platelet Migration

Platelets were isolated from human citrated blood and bacterial cultures of *P.aeruginosa* strain RP73 were prepared. Platelets were stimulated with 100nM ADP and added to the top well of a chemotaxis chamber. Platelet chemotaxis towards either 1μg/mL SDF-1α or RP73 was then quantified after a 90-minute incubation period and analysed as a chemotactic index. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *p*<0.05, **p**<0.01, ***p**<0.001, versus RPMI control, n=8-12, data are presented as mean ± SEM.
4.6 Establishing a Thrombocytopenic Model of Pulmonary Infection with *P. aeruginosa* strain RP73

Experimentally induced thrombocytopenia has been associated with enhanced pulmonary bacterial load and increased systemic infection in animal models of pulmonary bacterial infection with *S. aureus* and *K. pneumonia* (Youssefian et al., 2002), (de Stoppelaar, 2014). This implicates platelets in host defence against infection in the clinic and further suggests that drugs that are being developed to target platelet participation in atherosclerosis, by interfering with normal platelet function, may be detrimental to the host’s defence system (Pitchford, 2007).

The aim of this study was to investigate the effect of thrombocytopenia on bacterial induced leukocyte recruitment, bacterial growth and the systemic dissemination of bacteria, following infection with the gram-negative *P. aeruginosa*, strain RP73. In order to determine the most suitable level of infection for platelet depletion studies, mice were infected with either 1x10^6, 1x10^5 or 1x10^4 cfu/mouse RP73.

4.6.1 Investigating the Effect of Pulmonary Infection on Circulating Platelet Numbers

Similarly to the results observed in Figure 4.1, a significant decrease in circulating platelet numbers was observed 24 hours following infection with *P. aeruginosa* strain RP73, at either 1x10^4 (RP73: 5.10±0.16x10^8 platelets/mL, versus sham: 6.28±0.23x10^8 platelets/mL, Figure 4.8A, p<0.01), 1x10^5 (RP73: 5.58±0.25x10^8 platelets/mL, versus sham: 6.65±0.43x10^8 platelets/mL, Figure 4.8B, p<0.05) or 1x10^6 (RP73: 5.94±0.17x10^8 platelets/mL, versus sham: 6.77±0.42x10^8 platelets/mL, Figure 4.8C, p<0.05) cfu/mouse, when compared to sham controls.
4.6.2 Investigating the Effect of Experimentally Induced Platelet Depletion on the Circulating Platelet Numbers

In order to experimentally deplete mice of circulating platelets, mice were treated with either 1mg/kg of an anti-GPIbα platelet depleting antibody or an IgG control antibody, 24 hours prior to infection with either 1×10^4, 1×10^5 or 1×10^6 cfu/mouse *P. aeruginosa* strain RP73. The anti-GPIbα platelet depleting antibody depleted circulating platelet by approximately 80% (81.56 ± 3.01%) in all 3 studies, when compared to animals treated with the IgG control (10^4 log cfu + anti-GPIbα: $1.16 \pm 0.05 \times 10^8$ platelets/mL, versus 10^4 log cfu + IgG control: $5.10 \pm 0.16 \times 10^8$ platelets/mL, Figure 4.8A, p<0.0001), (10^5 log cfu + anti-GPIbα: $1.12 \pm 0.09 \times 10^8$ platelets/mL, versus 10^5 log cfu + IgG control: $5.58 \pm 0.25 \times 10^8$ platelets/mL, Figure 4.8B, p<0.001) and (10^6 log cfu + anti-GPIbα: $0.75 \pm 0.09 \times 10^8$ platelets/mL versus 10^6 log cfu + IgG control: $5.94 \pm 0.17 \times 10^8$ platelets/mL, Figure 4.8C, p<0.001).
Mice were treated with either 1mg/kg of anti-GPIbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or (A) 1x10⁴, (B) 1x10⁵ or (C) 1x10⁶ cfu/mouse RP73 embedded agar beads. At 24 h.p.i blood was taken via cardiac puncture and the circulating platelet count was quantified using an improved neubauer haemocytometer. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *p<0.05, **p<0.01 versus sham, ### p<0.001, #### p<0.0001 versus IgG control, n=4-10, data are presented as mean ± SEM.
4.6.3 Investigating the Effect of Platelet Depletion on Pulmonary Haemorrhage

In order to investigate whether administration of the platelet depleting anti-GPlbα antibody induced pulmonary haemorrhage, haemoglobin levels present in BAL fluid were quantified following administration of either the IgG control or anti-GPlbα antibodies.

The platelet depleting anti-GPlbα antibody did not cause any significant increase in pulmonary haemorrhage in either the sham controls (10^5 log cfu + anti-GPlbα: 0.11±0.03 versus 10^5 log cfu + IgG control: 0.04±0.00, Figure 4.9) or RP73 infected animals (10^5 log cfu + anti-GPlbα: 0.28±0.15 versus 10^5 log cfu + IgG control: 0.04±0.00, Figure 4.9), when compared to mice treated with the IgG control. Although these data did not reach statistical significance, a trend was observed suggesting the platelet depleting anti-GPlbα antibody increased the optical density of the BAL fluid, suggestive of minor pulmonary haemorrhage.
Figure 4.9 Effect of the Platelet Depleting anti-GP Ibα Antibody on Pulmonary Haemorrhage in a Thrombocytopenic Model of Pulmonary Infection with *P. aeruginosa* strain RP73

Mice were treated with either 1mg/kg of anti-GP Ibα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or 1x10^5 cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. At 24 h.p.i, a BAL of the lungs was performed and the presence of red blood cells in the lavage was quantified, using a Spectramax 340PC microplate reader at 410nm. n=3-4, data are presented as mean ± SEM.
Investigating the Effect of Experimentally Induced Platelet Depletion on Weight Loss

Severity of infection is typically associated with increased weight loss, therefore the body weights of sham and infected, IgG control treated, and platelet depleted animals were recorded prior to and post infection.

The results obtained demonstrated that following infection with the lowest inoculum of 1×10^4 cfu/mouse RP73, there was no significant difference in weight loss between any groups (sham: $0.28 \pm 0.18\%$, $10^4 \log$ cfu + IgG control: $0.41 \pm 0.19\%$, $10^4 \log$ cfu + anti-GPIbα: $0.23 \pm 0.09\%$, Figure 4.10A). Following infection with the intermediate inoculum of 1×10^5 cfu/mouse, there was no significant increase in weight loss when compared to the sham controls (sham: $0.67 \pm 0.24\%$, $10^5 \log$ cfu + IgG control: $2.66 \pm 1.31\%$, Figure 4.10B). However, experimentally induced platelet depletion was associated with a significant increase in weight loss when compared to mice with normal circulating platelet levels ($10^5 \log$ cfu + IgG control: $2.66 \pm 1.31\%$, $10^5 \log$ cfu + anti-GPIbα: $7.01 \pm 1.45\%$, Figure 4.10B, $p<0.01$).

Following infection with the highest inoculum of 1×10^6 cfu/mouse RP73, there was a significant increase in weight loss when compared to the sham controls (sham: $4.62 \pm 0.05\%$, $10^6 \log$ cfu + IgG control: $11.31 \pm 1.39\%$, Figure 4.10C, $p<0.01$), due to the severity of the infection. As observed following infection with the 1×10^5 cfu/mouse inoculum, experimentally induced platelet depletion resulted in a significant increase in weight loss compared to mice with normal circulating platelet levels ($10^6 \log$ cfu + IgG control: $11.31 \pm 1.39\%$, $10^6 \log$ cfu + anti-GPIbα: $14.27 \pm 1.91\%$, Figure 4.10C, $p<0.01$).
Mice were treated with either 1mg/kg of anti-GP Ibα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or (A) 1x10⁴, (B) 1x10⁵ or (C) 1x10⁶ cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. Body weights were recorded prior to and post infection and percentage weight loss calculated. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, **p<0.01 versus sham, ##p<0.01 versus IgG control, n=3-10, data are presented as mean ± SEM.
4.6.5 Investigating the Effect of Experimentally Induced Platelet Depletion on Pulmonary Bacterial Load

Initial titration studies were performed to determine the optimum inoculum to investigate the effect of experimentally induced platelet depletion on pulmonary bacterial load. Mice were exposed to 3 different concentrations (1x10⁴, 1x10⁵ or 1x10⁶ cfu/mouse) of RP73 embedded agar beads and infection and inflammatory parameters were subsequently analysed.

For mice infected with the lowest inoculum of 1x10⁴ cfu/mouse RP73, 24 h.p.i, the infection was cleared from the lungs, since there was no evidence of pulmonary bacterial infection in either the sham controls or the 1x10⁴ cfu/mouse RP73 infected animals (sham: 0.0±0.0 log cfu, 10⁴ log cfu + IgG: 0.0±0.0 log cfu, 10⁴ log cfu + anti-GPIbα: 0.0±0.0 log cfu, Figure 4.11A).

For the intermediate inoculum of 1x10⁵ cfu/mouse RP73, 24 h.p.i, mice inoculated with sham agar beads demonstrated no evidence of pulmonary bacterial infection (0.0±0.0 log cfu, Figure 4.11B). Mice infected with 1x10⁵ cfu/mouse with normal circulating platelet levels, demonstrated a significant increase in pulmonary bacterial load when compared to sham controls (10⁵ log cfu + IgG: 4.72±0.29 log cfu versus sham: 0.0±0.0 log cfu, p<0.001, Figure 4.11B). Furthermore, for mice infected with 1x10⁵ cfu/mouse and treated with the platelet depleting anti-GPIbα antibody, there was no significant increase in pulmonary bacterial load when compared to mice with normal circulating platelet levels (10⁵ log cfu + anti-GPIbα: 5.21±0.39 log cfu versus 10⁵ log cfu + IgG: 4.72±0.29 log cfu, Figure 4.11B). Although these data did not reach statistical significance, a small increase of 0.5 log cfu was observed in the platelet depleted anti-GPIbα treated animals compared to mice with normal circulating platelet levels.
For the highest inoculum of 1×10^6 cfu/mouse RP73, 24 h.p.i, mice inoculated with sham agar beads demonstrated no evidence of pulmonary bacterial infection (0.0±0.0 log cfu, **Figure 4.11C**). In contrast, mice infected with 1×10^6 cfu/mouse RP73 with normal circulating platelet levels, demonstrated a significant increase in pulmonary bacterial load when compared to sham controls (10^6 log cfu + IgG: 5.21±0.43 log cfu versus sham: 0.0±0.0 log cfu, p<0.0001, **Figure 4.11C**). In mice infected with 1×10^6 cfu/mouse RP73 and treated with the platelet depleting anti-GPIbα antibody, pulmonary bacterial load was significantly elevated, by approximately 1.5 logs, when compared to mice with normal circulating platelet levels (10^6 log cfu + anti-GPIbα: 6.74±0.44 log cfu versus 10^6 log cfu + IgG: 5.21±0.43 log cfu, p<0.05, **Figure 4.11C**), demonstrating in situ bacterial growth.
Mice were treated with either 1mg/kg of anti-GPⅠbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or (A) 1×10^4, (B) 1×10^5 or (C) 1×10^6 cfu/mouse RP73 embedded agar beads. At 24 h.p.i, lungs were aseptically removed, homogenised and plated for quantification of bacterial load. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *** p<0.001, **** p<0.0001 versus sham, # p<0.05 versus IgG control, n=4-10, data are presented as mean ± SEM.
4.6.6 Investigating the Effect of Experimentally Induced Platelet Depletion on Bacterial Dissemination

It has previously been demonstrated in gram-negative bacterial induced sepsis models that platelet depletion enhances bacterial dissemination (de Stoppelaar, 2014). Therefore, we sought to investigate whether experimentally induced platelet depletion has any effect on gram-negative bacterial dissemination from the lungs to other peripheral organs.

At 24 h.p.i, no evidence of bacterial dissemination to the kidney or spleen was observed in either the sham control or the lowest inoculum of 1×10^4 cfu/mouse RP73 infected animals (Kidney: sham: 0.0 ± 0.0 log cfu, 10^4 log cfu + IgG: 0.0 ± 0.0 log cfu, 10^4 log cfu + anti-GPIbα: 0.0 ± 0.0 log cfu, Figure 4.12A, and Spleen: sham: 0.0 ± 0.0 log cfu, 10^4 log cfu + IgG: 0.0 ± 0.0 log cfu, 10^4 log cfu + anti-GPIbα: 0.0 ± 0.0 log cfu, Figure 4.13A).

Following infection with the intermediate inoculum of 1×10^5 cfu/mouse RP73, at 24 h.p.i there was no evidence of bacterial dissemination to the kidney or spleen in either the sham control or the 1×10^5 cfu/mouse RP73, IgG control treated animals (Kidney: sham: 0.0 ± 0.0 log cfu, 10^5 log cfu + IgG: 0.0 ± 0.0 log cfu, Figure 4.12B and Spleen: sham: 0.0 ± 0.0 log cfu, 10^5 log cfu + IgG: 0.0 ± 0.0 log cfu, Figure 4.13B). In contrast, there was a significant increase in the bacterial load recovered from the kidney and spleen, following infection with 1×10^5 cfu/mouse RP73 in mice depleted of circulating platelets, when compared to mice with normal circulating platelet levels (Kidney: 10^5 log cfu + anti-GPIbα: 1.56 ± 0.39 log cfu versus 10^5 log cfu + IgG: 0.0 ± 0.0 log cfu, p<0.001, Figure 4.12B and Spleen: 10^5 log cfu + anti-GPIbα: 0.74 ± 0.36 log cfu versus 10^5 log cfu + IgG: 0.0 ± 0.0 log cfu, p<0.05, Figure 4.13B).

Following infection with the highest level of inoculum of 1×10^6 cfu/mouse RP73, at 24 h.p.i there was no evidence of bacterial dissemination to the kidney in the sham controls (Kidney:
Chapter IV: Results II

Infection with 1×10^6 cfu/mouse RP73 and treatment with the IgG control antibody induced minimal bacterial dissemination to the kidney and spleen following infection, when compared to the sham controls (Kidney: sham: 0.0 ± 0.0 log cfu, 10^6 log cfu + IgG: 0.96 ± 0.39 log cfu, Figure 4.12C and Spleen: sham: 0.0 ± 0.0 log cfu, 10^6 log cfu + IgG: 0.59 ± 0.31 log cfu, Figure 4.13C). Whilst the significant increase in pulmonary bacterial load observed following infection with 1×10^6 cfu/mouse RP73 in mice depleted of circulating platelets (Figure 4.11C) was accompanied by an increase in bacterial numbers in the kidney and spleen, when compared to mice with normal circulating platelet levels, although this did not reach statistical significance (Kidney: 10^6 log cfu + anti-GPIba: 2.64 ± 0.43 log cfu versus 10^6 log cfu + IgG: 0.96 ± 0.39 log cfu, Figure 4.12C and Spleen: 10^6 log cfu + anti-GPIba: 2.65 ± 0.53 log cfu versus 10^6 log cfu + IgG: 0.59 ± 0.31 log cfu, Figure 4.13C).
Mice were treated with either 1mg/kg of anti-GP Ibα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or (A) 1 x 10^4, (B) 1 x 10^5 or (C) 1 x 10^6 cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. At 24 h.p.i, the kidney was aseptically removed, homogenised and plated for quantification of bacterial load. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, # p<0.05 versus IgG control, n=4-10, data are presented as mean ± SEM.
Figure 4.13 Effects of Experimentally Induced Platelet Depletion on Bacterial Dissemination to the Spleen in a Thrombocytopenic Model of Pulmonary Infection with *P. aeruginosa* strain RP73

Mice were treated with either 1mg/kg of anti-GP Ibα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or (A) 1x10⁴, (B) 1x10⁵ or (C) 1x10⁶ cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. At 24 h.p.i, the spleen was aseptically removed, homogenised and plated for quantification of bacterial load. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, # p<0.05 versus IgG control, n=4-10, data are presented as mean ± SEM.
4.6.7 Investigating the Effect of Experimentally Induced Platelet Depletion on Pulmonary Leukocyte Recruitment

It has been demonstrated previously that platelets are essential for pulmonary leukocyte recruitment in allergic inflammation (Pitchford et al., 2003), therefore we sought to investigate whether experimentally induced platelet depletion had any effect on pulmonary leukocyte recruitment following infection with *P. aeruginosa* strain RP73.

Infection with the lowest inoculum of 1x10^4 cfu/mouse increased pulmonary total leukocyte and neutrophil recruitment when compared to sham controls, although this data did not reach statistical significance (Total leukocytes: 10^4 log cfu + IgG: 3.04±0.79x10^5 cells/mL, versus sham: 1.23±0.29x10^5 cells/mL, **Figure 4.14A**, and Neutrophils: 10^4 log cfu + IgG: 0.20±0.08x10^5 cells/mL, versus sham: 0.00±0.00x10^5 cells/mL, **Figure 4.15A**). In mice experimentally depleted of platelets and infected with 1x10^4 cfu/mouse RP73, no significant effect on pulmonary total leukocyte and neutrophil recruitment was observed (Total leukocytes: 10^4 log cfu + anti-GPIbα: 3.49±0.70x10^5 cells/mL, versus 10^4 log cfu + IgG: 3.04±0.79x10^5 cells/mL, **Figure 4.14A** and Neutrophils: 10^4 log cfu + anti-GPIbα: 0.34±0.09x10^5 cells/mL, versus 10^4 log cfu + IgG: 0.20±0.08x10^5 cells/mL, **Figure 4.15A**), when compared to mice with normal circulating platelet levels.

24 h.p.i with 1x10^4 cfu/mouse RP73, no significant increase in pulmonary macrophage or lymphocyte recruitment was observed when compared to sham controls (Macrophages: 10^4 log cfu + IgG: 2.83±0.72x10^5 cells/mL, versus sham: 1.22±0.28x10^5 cells/mL, **Figure 4.16A** and Lymphocytes: 10^4 log cfu + IgG: 0.0±0.0x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL). Similarly, experimentally induced platelet depletion had no significant effect on pulmonary macrophage or lymphocyte recruitment at 24 h.p.i with 1x10^4 cfu/mouse RP73.
Chapter IV: Results II

(Macrophages: 10^4 log cfu + anti-GP Ibα: $3.15 \pm 0.61 \times 10^5$ cells/mL, versus 10^4 log cfu + IgG: $2.83 \pm 0.72 \times 10^5$ cells/mL, Figure 4.16A, and Lymphocytes: 10^4 log cfu + anti-GP Ibα: $0.0 \pm 0.0 \times 10^5$ cells/mL, versus 10^4 log cfu + IgG: $0.0 \pm 0.0 \times 10^5$ cells/mL), when compared to mice with normal circulating platelet levels.

Infection with the intermediate inoculum of 1×10^5 cfu/mouse induced a significant increase in pulmonary total leukocyte and neutrophil recruitment (Total leukocytes: 10^5 log cfu + IgG: $5.0 \pm 0.40 \times 10^5$ cells/mL, versus sham: $1.39 \pm 0.11 \times 10^5$ cells/mL, Figure 4.14B, p<0.001 and Neutrophils: 10^5 log cfu + IgG: $1.66 \pm 0.22 \times 10^5$ cells/mL, versus sham: $0.02 \pm 0.01 \times 10^5$ cells/mL, Figure 4.15B, p<0.001), when compared to sham controls. In mice experimentally depleted of platelets and infected with 1×10^5 cfu/mouse RP73, a significant decrease in pulmonary total leukocyte and neutrophil recruitment was observed (Total leukocytes: 10^5 log cfu + anti-GP Ibα: $3.03 \pm 0.51 \times 10^5$ cells/mL, versus 10^5 log cfu + IgG: $5.0 \pm 0.40 \times 10^5$ cells/mL, Figure 4.14B, p<0.01, and Neutrophils: 10^5 log cfu + anti-GP Ibα: $0.91 \pm 0.26 \times 10^5$ cells/mL, versus 10^5 log cfu + IgG: $1.66 \pm 0.22 \times 10^5$ cells/mL, p<0.05, Figure 4.15B), when compared to mice with normal circulating platelet levels.

24 h.p.i with 1×10^5 cfu/mouse RP73, a significant increase in pulmonary macrophage recruitment was observed when compared to sham controls (Macrophages: 10^5 log cfu + IgG: $3.34 \pm 0.26 \times 10^5$ cells/mL, versus sham: $1.37 \pm 0.11 \times 10^5$ cells/mL, Figure 4.16B, p<0.001). Experimentally induced platelet depletion significantly decreased macrophage recruitment to the lungs (Macrophages: 10^5 log cfu + anti-GP Ibα: $2.11 \pm 0.33 \times 10^5$ cells/mL, versus 10^5 log cfu + IgG: $3.34 \pm 0.26 \times 10^5$ cells/mL, Figure 4.16A, p<0.05), when compared to sham controls.

Neither infection with 1×10^5 cfu/mouse RP73 or experimentally induced platelet depletion had any significant effect on lymphocyte recruitment to the lungs (Lymphocytes: 10^5 log cfu
+ anti-GPlbα: 0.0±0.0x10^5 cells/mL, 10^5 log cfu + IgG: 0.0±0.0x10^5 cells/mL and sham: 0.0±0.0x10^5 cells/mL), when compared to sham controls and mice with normal circulating platelet levels.

Infection with the highest inoculum of 1x10^6 cfu/mouse induced a significant increase in pulmonary total leukocyte and neutrophil recruitment (Total leukocytes: 10^6 + IgG: 34.42±11.07x10^5 cells/mL, versus sham: 3.48±1.07x10^5 cells/mL, Figure 4.14C, p<0.05 and Neutrophils: 10^6 log cfu + IgG: 14.88±2.96x10^5 cells/mL, versus sham: 0.64±0.32x10^5 cells/mL, Figure 4.15C, p<0.001), when compared to sham controls. In mice experimentally depleted of platelets and infected with 1x10^6 cfu/mouse RP73, a decrease in pulmonary total leukocyte and neutrophil recruitment was observed when compared to mice with normal circulating platelet levels, although this only reached statistical significance for the neutrophils (Total leukocytes: 10^6 log cfu + anti-GPlbα: 14.60±3.16x10^5 cells/mL, versus 10^6 log cfu + IgG: 34.42±11.07x10^5 cells/mL, Figure 4.14C and Neutrophils: 10^6 log cfu + anti-GPlbα: 5.41±1.96x10^5 cells/mL, versus 10^6 log cfu + IgG: 14.88±2.96x10^5 cells/mL, p<0.05, Figure 4.15C).

24 h.p.i with 1x10^6 cfu/mouse RP73, there was no significant difference in either macrophage or lymphocyte recruitment to the lungs when compared to sham controls (Macrophages: 10^6 log cfu + IgG: 3.31±0.55x10^5 cells/mL, versus sham: 2.82±0.75x10^5 cells/mL, Figure 4.16C and Lymphocytes: 10^6 log cfu + IgG: 0.0±0.0x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL). Similarly, in mice depleted of circulating platelets there was no significant effect in either macrophage or lymphocyte recruitment to the lungs (Macrophages: 10^6 log cfu + anti-GPlbα: 2.83±0.60x10^5 cells/mL, versus 10^6 log cfu + IgG: 3.31±0.55x10^5 cells/mL, Figure 4.16C and...
Lymphocytes: 10^6 log cfu + anti-GPIbα: 0.0±0.0x10^5 cells/mL, versus 10^6 log cfu + IgG: 0.0±0.0x10^5 cells/mL), when compared to mice with normal circulating platelet levels.

Mice were treated with either 1mg/kg of anti-GPIbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or (A) 1x10^4, (B) 1x10^5 or (C) 1x10^6 cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. At 24 h.p.i, a BAL of the lungs was performed for inflammatory cell quantification. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, * p<0.05, *** p<0.001 versus sham, ## p<0.01 versus IgG control, n=4-8, data are presented as mean ± SEM.
Figure 4.15 Effects of Experimentally Induced Platelet Depletion on Pulmonary Neutrophil Recruitment in a Thrombocytopenic Model of Pulmonary Infection with *P. aeruginosa* strain RP73

Mice were treated with either 1mg/kg of anti-GPlbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or (A) 1x10^4, (B) 1x10^5 or (C) 1x10^6 cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. At 24 h.p.i, a BAL of the lungs was performed for neutrophil quantification. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *** p<0.001 versus sham, # p<0.05 versus IgG control, n=4-8, data are presented as mean ± SEM.
Mice were treated with either 1mg/kg of anti-GP Ibα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or (A) 1x10^4, (B) 1x10^5 or (C) 1x10^6 cfu/mouse P. aeruginosa strain RP73 embedded agar beads. At 24 h.p.i, a BAL of the lungs was performed for macrophage quantification. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *** p<0.001 versus sham, # p<0.05 versus IgG control, n=4-8, data are presented as mean ± SEM.
4.6.8 Investigating the Effect of Experimentally Induced Platelet Depletion on Mortality

Previous studies, using experimental models of bacterial derived sepsis, have demonstrated experimentally induced platelet depletion enhances mortality (de Stoppelaar, 2014). Therefore, we investigated the effect of experimentally induced platelet depletion on mortality, following infection with \textit{P. aeruginosa} strain RP73.

No significant differences in mortality were observed following infection with the lowest inoculum level of 1×10^4 cfu/mouse RP73, in groups experimentally depleted of platelets and in mice with normal circulating platelet levels ($10^4 \log$ cfu + anti-GPIbα: 0%, versus $10^4 \log$ cfu + IgG: 0%, \textit{Figure 4.17A}).

Following infection with the intermediate inoculum level of 1×10^5 cfu/mouse RP73, a significant increase of 20% was observed in mortality rate in mice depleted of platelets, when compared to mice with normal circulating platelet levels ($10^5 \log$ cfu + anti-GPIbα: 20%, versus $10^5 \log$ cfu + IgG: 0%, \textit{Figure 4.17B}, p<0.05).

In mice infected with the highest inoculum level of 1×10^6 cfu/mouse RP73 and experimentally depleted of platelets, a significant increase of 40% was observed in mortality rate at 24 h.p.i., when compared to mice with normal circulating platelet levels ($10^6 \log$ cfu + anti-GPIbα: 40%, versus $10^6 \log$ cfu + IgG: 0%, \textit{Figure 4.17C}, p<0.05).

The 40% mortality rate observed following experimental depletion of platelets and infection with 1×10^6 cfu/mouse demonstrated a more severe pulmonary infection and was associated with a worsened phenotype. Therefore, in order to refine and reduce severity of the model, the optimum level of inoculum for future experimentally induced platelet depletion studies was determined to be 1×10^5 cfu/mouse. This level of inoculum was associated with a reduced
mortality rate when compared to that observed with the 1×10^6 cfu/mouse inoculum level, and the pulmonary infection was well established unlike that observed with the 1×10^4 cfu/mouse inoculum level.
Figure 4.17 Effects of Experimentally Induced Platelet Depletion on Mortality in a Thrombocytopenic Model of Pulmonary Infection with *P. aeruginosa* strain RP73

Mice were treated with either 1mg/kg of anti-GP1bα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or (A) 1x10⁴, (B) 1x10⁵ or (C) 1x10⁶ cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. Survival numbers were collected following infection. Mantel-Cox test, * p<0.05 versus IgG control, n=4-10. Survival plotted as survived= 0, dead= 1.
4.6.9 Investigating the Effect of Experimentally Induced Platelet Depletion on Cause of Death

The previous findings in this study suggested that experimental induced platelet depletion coverts the non-lethal, localised infection to one with a more severe phenotype, displaying systemic infection and increased mortality. Furthermore, it has previously been demonstrated that normal circulating platelet numbers are requisite in protecting against organ damage during gram-negative sepsis (de Stoppelaar, 2014). For this reason, core body temperatures and biochemical markers of metabolic acidosis were monitored in sham controls and 1×10^5 cfu/mouse infected, IgG control treated and platelet depleted animals, to ascertain possible causes of death in these mice.

The results obtained demonstrated that there was no significant difference in the percentage loss in body temperature between the sham controls (-0.82±0.71%), 1×10^5 cfu/mouse RP73 infected, with normal circulating platelet levels (0.84±0.74%) and 1×10^5 cfu/mouse RP73 infected and anti-GPIbα platelet depleted (-0.11 ± 0.76 %) groups (Figure 4.18).

Subtle increases in biochemical markers of metabolic acidosis were observed following infection with 1×10^5 cfu/mouse RP73 in animals depleted of circulating platelets, when compared to the IgG control treated animals, as measured by slight changes in urea ($10^5 \log$ cfu + IgG control: 5.72±0.37 mmol/L, versus $10^5 \log$ cfu + anti-GPIbα: 9.08±3.32 mmol/L, Figure 4.19), pH ($10^5 \log$ cfu + IgG control: 7.15±0.03, versus $10^5 \log$ cfu + anti-GPIbα: 7.07±0.04, Figure 4.19), base excess ($10^5 \log$ cfu + IgG control: -12.88±0.91 mmol/L, versus $10^5 \log$ cfu + anti-GPIbα: -16.61±1.49 mmol/L, Figure 4.19), Hydrogen Carbonate (HCO3⁻) ($10^5 \log$ cfu + IgG control: 16.58±0.87 mmol/L, versus $10^5 \log$ cfu + anti-GPIbα: 12.91±1.04 mmol/L, Figure 4.19) and partial pressure of carbon dioxide (PCO2) ($10^5 \log$ cfu + IgG control: 44.37±1.38 mmHg,
versus 10^5 log cfu + anti-GPlbα: 41.15 ± 3.07 mmHg, Figure 4.19). These data suggest markers consistent with metabolic acidosis as has previously been published (Sand et al., 2015).

These data obtained for this experiment, suggest that the platelet depleting anti-GPlbα antibody caused a decrease in both Haematocrit (Hct) (Hct: Sham + IgG control: $38.0 \pm 2.0\%$ packed cell volume (PCV), versus sham + anti-GPlbα: $19.5 \pm 3.18\%$PCV and 10^5 log cfu + IgG control: $37.67 \pm 1.20\%$PCV, versus 10^5 log cfu + anti-GPlbα: $19.0 \pm 1.15\%$PCV, Figure 4.19) and Haemoglobin (Hb) (Hb: Sham + IgG control: 12.93 ± 0.68 g/dL, versus sham + anti-GPlbα: 6.65 ± 1.10 g/dL and 10^5 log cfu + IgG control: 12.80 ± 0.41 g/dL, versus 10^5 log cfu + anti-GPlbα: 6.45 ± 0.39 g/dL, Figure 4.19) when compared to IgG control treated animals.
Figure 4.18 Effects of Experimentally Induced Platelet Depletion on Change in Temperature in a Thrombocytopenic Model of Pulmonary Infection with *P. aeruginosa* strain RP73

Mice were treated with either 1mg/kg of anti-GPlbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or 1x10^5 cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. Core body temperatures were recorded prior to and post infection and the percentage loss in body temperature was calculated. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, p>0.05 versus sham, p>0.05 versus IgG control, n=4-6, data are presented as mean ± SEM.
Table 4.19 Effects of Experimentally Induced Platelet Depletion on Changes in Biochemical Markers of Metabolic Acidosis in a Thrombocytopenic Model of Pulmonary Infection with *P. aeruginosa* strain RP73

<table>
<thead>
<tr>
<th></th>
<th>Sham IgG Control</th>
<th>Sham anti-GPIbα</th>
<th>P.α RP73 IgG Control</th>
<th>P.α RP73 anti-GPIbα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea, mmol/L</td>
<td>5.6 ± 0.38</td>
<td>5.80 ± 0.05</td>
<td>5.72 ± 0.37</td>
<td>9.08 ± 3.32</td>
</tr>
<tr>
<td>pH</td>
<td>7.14 ± 0.03</td>
<td>7.12± 0.01</td>
<td>7.15 ± 0.03</td>
<td>7.07 ± 0.04</td>
</tr>
<tr>
<td>Base Excess, mmol/L</td>
<td>-12.0 ± 2.35</td>
<td>-14.03 ± 0.58</td>
<td>-12.88 ± 0.91</td>
<td>-16.61 ± 1.49</td>
</tr>
<tr>
<td>HCO₃⁻, mmol/L</td>
<td>16.38 ± 1.92</td>
<td>14.13 ± 0.58</td>
<td>16.58 ± 0.87</td>
<td>12.91 ± 1.04</td>
</tr>
<tr>
<td>Glucose, mmol/L</td>
<td>12.45 ± 1.38</td>
<td>12.50 ± 1.01</td>
<td>11.27 ± 0.71</td>
<td>10.25 ± 0.79</td>
</tr>
<tr>
<td>Na⁺, mmol/L</td>
<td>146.0 ± 0.41</td>
<td>145.67 ± 0.58</td>
<td>145.67 ± 0.61</td>
<td>141.33 ± 0.84</td>
</tr>
<tr>
<td>K⁺, mmol/L</td>
<td>3.83 ± 0.34</td>
<td>4.43 ± 0.10</td>
<td>4.38 ± 0.30</td>
<td>4.93 ± 0.51</td>
</tr>
<tr>
<td>Cl⁻, mmol/L</td>
<td>116.0 ± 1.78</td>
<td>119.67 ± 0.76</td>
<td>115.83 ± 1.08</td>
<td>121.67 ± 1.43</td>
</tr>
<tr>
<td>PCO₂, mmHg</td>
<td>49.18 ± 2.71</td>
<td>44.37 ± 1.38</td>
<td>48.90 ± 2.56</td>
<td>41.15 ± 3.07</td>
</tr>
<tr>
<td>TCO₂, mmol/L</td>
<td>18.50 ± 2.10</td>
<td>15.33 ± 0.76</td>
<td>18.16 ± 0.98</td>
<td>14.33 ± 1.24</td>
</tr>
<tr>
<td>AnGAP, mmol/L</td>
<td>17.25 ± 0.85</td>
<td>16.07 ± 0.58</td>
<td>17.33 ± 0.56</td>
<td>15.50 ± 0.72</td>
</tr>
<tr>
<td>Hct, %PCV</td>
<td>38.0 ± 2.0</td>
<td>19.5 ± 3.18 *****</td>
<td>37.67 ± 1.20</td>
<td>19.00 ± 1.15 ****</td>
</tr>
<tr>
<td>Hb, g/dL</td>
<td>12.93 ± 0.68</td>
<td>6.65 ± 1.10 ***</td>
<td>12.80 ± 0.41</td>
<td>6.45 ± 0.39 ****</td>
</tr>
</tbody>
</table>

Figure 4.19 Effects of Experimentally Induced Platelet Depletion on Changes in Biochemical Markers of Metabolic Acidosis in a Thrombocytopenic Model of Pulmonary Infection with *P. aeruginosa* strain RP73

Mice were treated with either 1mg/kg of anti-GPIbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or 1x10⁵ cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. Blood was taken via cardiac puncture, transferred to EC8+ blood analyser cartridges and processed using a handheld i-STAT blood analyser. HCO₃⁻ (Hydrogen Carbonate), PCO₂ (partial pressure carbon dioxide), TCO₂ (total carbon dioxide), AnGAP (Anion Gap), Hct (Haematocrit), Hb (Haemoglobin), PCV (packed cell volume). One-way ANOVA and Bonferroni’s multiple comparisons post hoc test ***p<0.001 ****p<0.0001 versus IgG control, n=4–6, data are presented as mean ± SEM.
4.6.10 Investigating the Effect of Experimentally Induced Thrombocytopenia on Pulmonary Alveolar Integrity

Experiments were performed to investigate the effect of experimentally induced thrombocytopenia on pulmonary alveolar integrity, following infection with *P. aeruginosa* strain RP73. Results demonstrated a significant increase in Evans Blue extravasated from lung tissue in RP73 infected mice depleted of circulating platelets, when compared to sham mice depleted of circulating platelets (sham + anti-GPIbα: 675.4±173.3 ng Evans Blue/ mg lung tissue, versus 10^5 RP73 + anti-GPIbα: 3737.0±742.3 ng Evans Blue/ mg lung tissue, p<0.001, **Figure 4.20**). Furthermore, results demonstrated a significant increase in Evans Blue extravasated from lung tissue in RP73 infected mice depleted of circulating platelets, when compared to RP73 infected mice with normal circulating platelet numbers (10^5 RP73 + anti-GPIbα: 944.5±110.6 ng Evans Blue/ mg lung tissue, versus 10^5 RP73 + anti-GPIbα: 3737.0±742.3 ng Evans Blue/ mg lung tissue, p<0.01, **Figure 4.20**).
Mice were treated with either 1mg/kg of anti-GPlbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or 1x10⁵ cfu/mouse *P.aeruginosa* strain RP73 embedded agar beads. At 23 h.p.i mice were administered 0.5% Evans Blue (*i.v.*). Lungs were removed, weighed and added to 500μL Formamide, which was subsequently incubated for 24 hours at 65°C. 24 hours post incubation absorbance values were measured at 620nm and a standard curve was used to calculate nanograms (ng) Evans Blue dye per mg lung tissue. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, **p<0.001** versus sham + anti-GPlbα, **# p<0.01** versus RP73 + IgG control, n=4 data are presented as mean ± SEM.
4.7 Establishing a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300

Having established a thrombocytopenic model of pulmonary infection with the gram-negative *P. aeruginosa* strain RP73, we aimed to establish the model with the gram-positive MRSA strain USA300, to determine whether my findings could be reproduced with a different bacterial species. The optimum level of inoculum for experimentally induced platelet depletion studies with *P. aeruginosa* strain RP73 was determined to be 1×10^5 cfu/mouse therefore this level of inoculum was used to establish a thrombocytopenic model of pulmonary infection with the gram-positive MRSA strain USA300.

4.7.1 Investigating the Effect of Experimentally Induced Platelet Depletion on the Circulating Platelet Count

In order to experimentally induce platelet depletion, mice were treated (*i.m*) with either 1mg/kg anti-GPIbα platelet depleting antibody or IgG control antibody, 24 hours prior to infection with 1×10^5 cfu/mouse MRSA strain USA300. Infection with 1×10^5 cfu/mouse reduced circulating platelet count when compared to sham controls, although these data did not reach statistical significance (MRSA + IgG: $9.18 \pm 0.60 \times 10^8$ platelets/mL, versus sham: $10.30 \pm 1.05 \times 10^8$ platelets/mL, *Figure 4.21*).

The anti-GPIbα platelet depleting antibody significantly reduced circulating platelets by ~96%, compared to the infected IgG control treated animals ($10^5 \log$ cfu + anti-GPIbα: $0.37 \pm 0.03 \times 10^8$ platelets/mL, versus IgG control: $9.18 \pm 0.60 \times 10^8$ platelets/mL, *Figure 4.21*, $p<0.0001$).
Mice were treated with either 1mg/kg of anti-GPlbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or 1x10^5 cfu/mouse MRSA strain USA300 embedded agar beads. At 24 h.p.i blood was taken via cardiac puncture and the circulating platelet count was quantified using an improved neubauer haemocytometer. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, ### p<0.0001 versus IgG control, n=4-6, data are presented as mean ± SEM.

4.7.2 Investigating the Effect of Experimentally Induced Platelet Depletion on Weight Loss

The body weights of sham and infected, IgG control treated and platelet depleted animals were recorded pre and post infection. 1x10^5 cfu/mouse USA300 infected, IgG control treated animals demonstrated a slight increase in weight loss when compared to the sham controls (sham: -0.54±0.23%, 10^5 log cfu + IgG control: 0.15±0.61 %, Figure 4.22), although this did not reach statistical significance. In addition, following infection with 1x10^5 cfu/mouse USA300, animals depleted of circulating platelets showed a further increase in weight loss compared to the infected IgG control treated animals (10^5 log cfu+ IgG control: 0.15±0.61%, 10^5 log cfu
+ anti-GPIbα: 1.80±0.46%, **Figure 4.22**, although these data also did not reach statistical significance.

![Graph showing weight loss in percentage](image)

Figure 4.22 Effects of Experimentally Induced Platelet Depletion on Weight Loss in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300

Mice were treated with either 1mg/kg of anti-GPIbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or 1x10^5 cfu/mouse MRSA strain USA300 embedded agar beads. Body weights were recorded prior to and post infection and percentage weight loss calculated. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, p>0.05 versus sham, p>0.05 versus IgG control, n=4-6, data are presented as mean ± SEM.
Chapter IV: Results II

4.7.3 Investigating the Effect of Platelet Depletion on Pulmonary Haemorrhage

In order to investigate whether administration of the platelet depleting anti-GPlbα antibody has any effect on pulmonary haemorrhage following infection with MRSA, red blood cells present in BAL fluid were qualitatively analysed following administration of either the IgG control or anti-GPlbα antibodies.

Results indicated that the platelet depleting anti-GPlbα antibody appeared to increase pulmonary haemorrhage, as indicated by the red colouration of BAL samples in both the sham and 1x10^5 cfu/mouse MRSA infected animals, compared to the infected IgG controls (Figure 4.23).

![Figure 4.23 Effects of the Platelet Depleting anti-GPlbα Antibody on Pulmonary Haemorrhage in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300](image)

Mice were treated with either 1mg/kg of anti-GPlbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or 1x10^5 cfu/mouse MRSA strain USA300 embedded agar beads. At 24 h.p.i, a BAL of the lungs was performed and the presence of red blood cells in the lavage was qualitatively analysed. n=3-4, data are presented as mean ± SEM.
4.7.4 Investigating the Effect of Experimentally Induced Platelet Depletion on Pulmonary Bacterial Load

Mice were treated with either IgG control antibody or the platelet depleting anti-GPIbα antibody and infected with 1×10^5 cfu/mouse USA300 to determine the effect of platelet depletion on pulmonary bacterial load. 24 hours following infection, mice inoculated with sham agar beads demonstrated no evidence of pulmonary bacterial infection (0.0 ± 0.0 log cfu, Figure 4.2). In contrast, mice infected with 1×10^5 cfu/mouse USA300 and treated with an IgG control antibody, demonstrated a significant increase in pulmonary bacterial load when compared to sham controls ($10^5 \log$ cfu + IgG: 3.01 ± 0.23 log cfu, versus sham: 0.0 ± 0.0 log cfu, $p<0.0001$, Figure 4.24). This was further increased in mice infected with 1×10^5 cfu/mouse USA3000 depleted of circulating platelets, with a significant increase of approximately 0.9 logs, when compared to the infected IgG controls ($10^5 \log$ cfu + anti-GPIbα: 3.92 ± 0.29 log cfu, versus $10^5 \log$ cfu + IgG: 3.01 ± 0.23 log cfu, $p<0.05$, Figure 4.24).
Mice were treated with either 1mg/kg of an anti-GPIbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or 1x10^5 cfu/mouse MRSA strain USA300 embedded agar beads. At 24 h.p.i, lungs were aseptically removed, homogenised and plated for quantification of bacterial load. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, **** p<0.0001 versus sham, # p<0.05 versus IgG control, n=4-6, data are presented as mean ± SEM.

Figure 4.24 Effects of Experimentally Induced Platelet Depletion on Pulmonary Bacterial Load in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300
4.7.5 Investigating the Effect of Experimentally Induced Platelet Depletion on Bacterial Dissemination to the Kidney and Spleen

In order to investigate whether experimentally induced platelet depletion induced bacterial dissemination from the lungs to other peripheral organs, the cfu content of the kidney and spleen was quantified.

At 24 h.p.i, no evidence of bacterial dissemination to the kidney was observed in sham controls (sham: 0.0±0.0 log cfu, Figure 4.25A). Following infection with 1×10^5 cfu/mouse USA300 and in mice depleted of circulating platelets, an incidence of bacterial dissemination to the kidney was observed, although these data did not reach statistical significance when compared to the infected IgG controls (10^5 log cfu + anti- GPIbα: 1.98±0.89 log cfu, versus 10^5 log cfu + IgG: 0.72±0.45 log cfu, Figure 4.25A).

No evidence of bacterial dissemination to the spleen was observed in shams (sham: 0.0±0.0 log cfu, Figure 4.25B), although there was a significant increase in bacterial dissemination to the spleen in infected animals depleted of circulating platelets (10^5 log cfu + anti- GPIbα: 3.00±0.34 log cfu, versus 10^5 log cfu + IgG: 1.40±0.63 log cfu, p<0.05, Figure 4.25B).
Figure 4.25 Effects of Experimentally Induced Platelet Depletion on Bacterial Dissemination to the Kidney and Spleen in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300

Mice were treated with either 1mg/kg of anti-GPIbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or 1x10^5 cfu/mouse MRSA strain USA300 embedded agar beads. At 24 h.p.i, the kidney and spleen were aseptically removed, homogenised and plated for quantification of bacterial load. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, # p<0.05 versus IgG control, n=4-6, data are presented as mean ± SEM.

4.7.6 Investigating the Effect of Experimentally Induced Platelet Depletion on Pulmonary Leukocyte Recruitment

As gram-negative bacteria induced leukocyte recruitment was platelet dependent, we sought to investigate whether experimentally induced platelet depletion had any effect on pulmonary leukocyte recruitment following infection with the gram-positive MRSA strain USA300.
Infection with 1x10^5 cfu/mouse, increased pulmonary total cell recruitment when compared to sham controls, although this data did not reach statistical significance (10^5 log cfu + IgG: 2.23±0.38x10^5 cells/mL, versus sham: 1.60±0.40x10^5 cells/mL, Figure 4.26A). For animals depleted of circulating platelets, there was no significant effect on pulmonary total cell recruitment when compared to mice with normal circulating platelet levels (10^5 log cfu + anti-GPIbα: 2.73±0.22x10^5 cells/mL, versus 10^5 log cfu + IgG: 2.23±0.38x10^5 cells/mL, Figure 4.26A).

Infection with 1x10^5 cfu/mouse significantly elevated pulmonary neutrophil recruitment when compared to sham controls (10^5 log cfu + IgG: 0.42±0.04x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL, Figure 4.26B, p<0.001), which was significantly attenuated in platelet depleted mice (10^5 log cfu + anti-GPIbα: 0.29±0.03x10^5 cells/mL, versus 10^5 log cfu + IgG: 0.42±0.04x10^5 cells/mL, p<0.05, Figure 4.26B), further highlighting the importance of platelets in pulmonary leukocyte recruitment.

No significant effects were observed in platelet depleted mice on macrophage (10^5 log cfu + IgG: 1.84±0.42x10^5 cells/mL, versus 10^5 log cfu + anti-GPIbα: 2.43±0.19x10^5 cells/mL, Figure 4.26C) and lymphocyte numbers (10^5 log cfu + IgG: 0.0±0.0x10^5 cells/mL, versus 10^5 log cfu + anti-GPIbα: 0.0±0.0x10^5 cells/mL, Figure 4.26C), when compared to IgG control treated mice.
Figure 4.26 Effects of Experimentally Induced Platelet Depletion on Pulmonary Leukocyte Recruitment in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300

Mice were treated with either 1mg/kg of anti-GP Ibα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or 1x10^5 cfu/mouse MRSA strain USA300 embedded agar beads. At 24 h.p.i, a BAL of the lungs was performed for total and differential leukocyte quantification. (A) Total cells, (B) Neutrophils, (C) Macrophages. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *** p<0.001 versus sham, # p<0.05 versus IgG control, n=4-6, data are presented as mean ± SEM.
4.7.7 Investigating the Effect of Experimentally Induced Platelet Depletion on Mortality

Having demonstrated that depletion of circulating platelets enhances mortality following infection with *P. aeruginosa* strain RP73, we investigated whether this phenomenon was replicated following infection with MRSA strain USA300.

In mice infected with 1×10^5 cfu/mouse USA300 and experimentally depleted of platelets, we observed no significant difference in mortality at 24 h.p.i (0%) when compared to the infected IgG controls (0%).

4.7.8 Investigating the Effect of Experimentally Induced Platelet Depletion on Changes in Biochemical Markers of Metabolic Acidosis

Results obtained in section 4.6.9 demonstrated subtle increases in biochemical markers of metabolic acidosis following infection with 1×10^5 cfu/mouse *P. aeruginosa* RP73 in platelet depleted mice. Therefore, we measured changes in biochemical markers of metabolic acidosis following infection with MRSA strain USA300.

Results demonstrated subtle increases in biochemical markers of metabolic acidosis following infection with 1×10^5 cfu/mouse MRSA strain USA300 in mice depleted of platelets, when compared to the IgG control treated animals, as measured by slight changes in base excess ($10^5 \log \text{cfu} + \text{IgG control}: -13.17 \pm 0.70 \text{ mmol/L}, 10^5 \log \text{cfu} + \text{anti-GPIbα}: -15.53 \pm 0.65 \text{ mmol/L}, \text{Figure 4.27}$), HCO$_3^-$ ($10^5 \log \text{cfu} + \text{IgG control}: 16.65 \pm 0.57 \text{ mmol/L}, 10^5 \log \text{cfu} + \text{anti-GPIbα}: 13.62 \pm 0.59 \text{ mmol/L, Figure 4.27}$) and PCO2 ($10^5 \log \text{cfu} + \text{IgG control}: 55.25 \pm 3.99 \text{ mmHg}, 10^5 \log \text{cfu} + \text{anti-GPIbα}: 48.48 \pm 3.11 \text{ mmHg, Figure 4.27}$).
In contrast to the data obtained in section 4.6.9, which suggested that the platelet depleting anti-GPIIbα antibody caused a decrease in both Hct and Hb, the results from this experiment suggested platelet depletion had no significant decrease in Hct (Hct: Sham + IgG control: 41.0±1.83 %PCV, versus sham + anti-GPIIbα: 19.5±3.18 %PCV and 10^5 log cfu + IgG control: 37.67±1.20 %PCV, versus 10^5 log cfu + anti-GPIIbα: 38.5±1.83 %PCV, **Figure 4.27**) and Hb (Hb: Sham + IgG control: 13.95±0.61 g/dL, versus sham + anti-GPIIbα: 13.08 ± 0.69 g/dL and 10^5 log cfu + IgG control: 12.70±0.66 g/dL, 10^5 log cfu + anti-GPIIbα: 10.32±1.01 g/dL, **Figure 4.27**) when compared to the IgG controls.

In order to investigate these results further, naïve mice were administered either IgG control or platelet depleting anti-GPIIbα antibody and the effects of platelet depletion on Hct and Hb were determined at 24 hours post treatment. The results from this experiment further support that platelet depletion had no significant decrease in Hct (Hct: IgG control: 39.5±1.50 %PCV, versus anti-GPIIbα: 40.5±3.50 %PCV) and Hb (Hb: IgG control: 13.25±0.65 g/dL, versus anti-GPIIbα: 13.80±1.20 g/dL), when compared to IgG controls.
Mice were treated with either 1mg/kg of anti-GPIbα platelet depleting antibody or IgG control antibody 24 hours prior to infection with either sham or 1x10⁵ cfu/mouse MRSA strain USA300 embedded agar beads. Blood was taken via cardiac puncture, transferred to EC8+ blood analyser cartridges and processed using a handheld i-STAT blood analyser. HCO₃⁻ (Hydrogen Carbonate), PCO₂ (partial pressure carbon dioxide), TCO₂ (total carbon dioxide), AnGAP (Anion Gap), Hct (Haematocrit), Hb (Haemoglobin), PCV (packed cell volume). n=4-6, data are presented as mean ± SEM.

<table>
<thead>
<tr>
<th></th>
<th>Sham IgG Control</th>
<th>Sham anti-GPIbα</th>
<th>MRSA USA300 IgG Control</th>
<th>MRSA USA300 anti-GPIbα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea, mmol/L</td>
<td>8.75 ± 0.51</td>
<td>8.23 ± 0.25</td>
<td>8.92 ± 0.44</td>
<td>7.5 ± 0.55</td>
</tr>
<tr>
<td>pH</td>
<td>7.08 ± 0.02</td>
<td>7.08 ± 0.03</td>
<td>7.09 ± 0.03</td>
<td>7.08 ± 0.01</td>
</tr>
<tr>
<td>Base Excess, mmol/L</td>
<td>-12.25 ± 0.48</td>
<td>-14.75 ± 1.32</td>
<td>-13.17 ± 0.70</td>
<td>-15.53 ± 0.65</td>
</tr>
<tr>
<td>HCO₃⁻, mmol/L</td>
<td>17.88 ± 0.49</td>
<td>15.1 ± 1.02</td>
<td>16.65 ± 0.57</td>
<td>13.62 ± 0.59</td>
</tr>
<tr>
<td>Glucose, mmol/L</td>
<td>14.6 ± 1.19</td>
<td>13.23 ± 0.42</td>
<td>12.62 ± 0.82</td>
<td>12.12 ± 0.30</td>
</tr>
<tr>
<td>Na⁺, mmol/L</td>
<td>141.5 ± 0.5</td>
<td>140.8 ± 0.48</td>
<td>141.7 ± 0.49</td>
<td>141.8 ± 0.31</td>
</tr>
<tr>
<td>K⁺, mmol/L</td>
<td>4.62 ± 0.53</td>
<td>4.66 ± 0.26</td>
<td>5.34 ± 0.37</td>
<td>5.23 ± 0.46</td>
</tr>
<tr>
<td>Cl⁻, mmol/L</td>
<td>109.5 ± 0.29</td>
<td>111.8 ± 1.44</td>
<td>111.7 ± 0.95</td>
<td>113.3 ± 0.74</td>
</tr>
<tr>
<td>PCO₂, mmHg</td>
<td>60.4 ± 3.64</td>
<td>50.75 ± 2.02</td>
<td>55.25 ± 3.99</td>
<td>48.48 ± 3.11</td>
</tr>
<tr>
<td>TCO₂, mmol/L</td>
<td>19.75 ± 0.48</td>
<td>17.0 ± 1.08</td>
<td>18.5 ± 0.62</td>
<td>15.75 ± 0.81</td>
</tr>
<tr>
<td>AnGAP, mmol/L</td>
<td>18.75 ± 0.48</td>
<td>19.0 ± 0.41</td>
<td>18.33 ± 0.42</td>
<td>19.06 ± 0.50</td>
</tr>
<tr>
<td>Hct, %PCV</td>
<td>41.0 ± 1.83</td>
<td>38.5 ± 2.02</td>
<td>37.33 ± 1.96</td>
<td>30.33 ± 2.96</td>
</tr>
<tr>
<td>Hb, g/dL</td>
<td>13.95 ± 0.61</td>
<td>13.08 ± 0.69</td>
<td>12.7 ± 0.66</td>
<td>10.32 ± 1.01</td>
</tr>
</tbody>
</table>

Figure 4.27 Effects of Experimentally Induced Platelet Depletion on Changes in Biochemical Markers of Metabolic Acidosis in a Thrombocytopenic Model of Pulmonary Infection with MRSA strain USA300
4.8 Investigating the Mechanisms of Platelet Involvement in Infection

4.8.1 The Role of Platelet TLR4 in the Regulation of Pulmonary Infection

Platelets express functional TLRs, which participate in platelet responsiveness to bacterial components such as LPS, and are known to be involved in LPS mediated inflammation (Hoshino et al., 1999). We investigated whether platelet TLR4 was involved in inflammatory leukocyte recruitment in response to pulmonary infection. Male C57/Bl6J wild type and TLR4 knockout mice were infected with 1×10^5 cfu/mouse with *P. aeruginosa* strain RP73 and the effects on bacteria induced leukocyte recruitment and bacterial growth were determined.

Significant increases in pulmonary bacterial load were observed at 24 h.p.i, in both C57/Bl6J wild type and TLR4 knockout mice, when compared with sham controls (10^5 log cfu + C57/Bl6J wild type: 4.98 ± 0.03 log cfu, 10^5 log cfu + TLR4 knockout: 4.74 ± 0.25 log cfu and sham: 0.0 ± 0.0 log cfu, $p<0.0001$, Figure 4.28A). However, TLR4 knockout did not induce a significant increase in pulmonary bacterial load when compared to C57/Bl6J wild type mice (10^5 log cfu + C57/Bl6J wild type: 4.98 ± 0.03 log cfu, 10^5 log cfu + TLR4 knockout: 4.74 ± 0.25 log cfu and sham: 0.0 ± 0.0 log cfu, Figure 4.28A).

Infection of both C57/Bl6J wild type and TLR4 knockout mice with 1×10^5 cfu/mouse RP73 induced a significant increase in pulmonary total leukocyte recruitment, when compared to sham controls (10^5 log cfu + C57/Bl6J wild type: $82.0 \pm 25.42 \times 10^5$ cells/mL, versus sham + C57/Bl6J wild type: $2.53 \pm 0.41 \times 10^5$ cells/mL, and 10^5 log cfu + TLR4 knockout: $69.67 \pm 15.92 \times 10^5$ cells/mL, versus sham + TLR4 knockout: $3.13 \pm 0.07 \times 10^5$ cells/mL, Figure 4.28B). However, no significant difference in pulmonary total leukocyte recruitment was observed between infected C57/Bl6J wild type and TLR4 knockout mice (10^5 log cfu + C57/Bl6J wild type:
82.0±25.42x10^5 cells/mL, versus 10^5 log cfu + TLR4 knockout: 69.67±15.92x10^5 cells/mL, Figure 4.28B).

This pattern was reflected in neutrophils, where infection of C57/Bl6J wild type and TLR4 knockout mice with 1x10^5 cfu/mouse RP73 increased pulmonary neutrophil recruitment when compared to sham controls (10^5 log cfu + C57/Bl6J wild type: 76.70±24.94x10^5 cells/mL, versus sham + C57/Bl6J wild type: 0.0±0.0x10^5 cells/mL, p<0.05 and 10^5 log cfu + TLR4 knockout: 57.16±16.18x10^5 cells/mL, versus sham + TLR4 knockout: 0.0±0.0x10^5 cells/mL, Figure 4.28C). Whilst a trend suggesting a decrease in neutrophil recruitment in infected TLR4 knockout mice was observed compared to C57/Bl6J mice, this did not reach statistical significance (10^5 log cfu + C57/Bl6J wild type: 76.70±24.94x10^5 cells/mL, versus 10^5 log cfu + TLR4 knockout: 57.16±16.18x10^5 cells/mL, Figure 4.28C).

Infection of TLR4 knockout mice with 1x10^5 cfu/mouse RP73 induced a significant increase in macrophage recruitment when compared to sham TLR4 knockout controls (10^5 log cfu + TLR4 knockout: 12.7±0.39x10^5 cells/mL, versus sham + TLR4 knockout: 2.03±0.80x10^5 cells/mL, p<0.01, Figure 4.28D). In addition, there was a significant increase in pulmonary macrophage recruitment in 1x10^5 cfu/mouse infected TLR4 knockout compared to C57/Bl6J wild type mice (Macrophages: 10^5 log cfu + C57/Bl6J wild type: 5.35±2.54x10^5 cells/mL, versus 10^5 log cfu + TLR4 knockout: 12.75±0.39x10^5 cells/mL, p<0.05, Figure 4.28D). No significant increase in pulmonary lymphocyte recruitment was observed in either wild type or TLR4 knockout mice, when compared to sham controls (Lymphocytes: 10^5 log cfu + C57/Bl6J wild type: 0.0±0.0x10^5 cells/mL, versus sham + C57/Bl6J wild type: 0.0±0.0x10^5 cells/mL and 10^5 log cfu + TLR4 knockout: 0.0±0.0x10^5 cells/mL, versus sham + TLR4 knockout: 0.0±0.0x10^5 cells/mL).
C57/Bl6J wild type and TLR4 knockout mice were infected (o.a) with either sham or 1x10^5 cfu/mouse *P.aeruginosa* strain RP73 embedded agar beads. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 24 h.p.i. Pulmonary Bacterial Load (A), Total Cells (B), Neutrophils (C) and Macrophages (D). One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *p<0.05, ** p<0.01, **** p<0.0001 versus sham/wild type, n=3, data are presented as mean ± SEM.
4.8.1.1 PCR Analysis of Murine TLR4 cDNA

In order to confirm that the TLR4 knockout mice used in section 4.8.1 were indeed knockout mice, DNA was extracted from murine tails and PCR analysis was performed. The results obtained demonstrated that the DNA extracted from TLR4 knockout mice showed a band at >1000Kb (Figure 4.29), indicating that the gene knockout is present in these mice, whilst no band was present in the DNA extracted from C57/Bl6J wild type mice, suggesting that these control mice did not contain the gene knockout.

Figure 4.29 PCR Analysis of TLR4 Knockout and C57/Bl6J Wild Type DNA

DNA was extracted from tail clips of TLR4 knockout and C57/Bl6J wild type mice. PCR was performed on the samples using a PCR Reaction Kit (Sigma Aldrich R2648 20RXN) according to manufacturer’s instructions. (A) Agarose gel for TLR4 knockout primers (B) Agarose gel for TLR4 knockout and C57/Bl6J wild type mice.
4.8.2 The Role of Platelet Purinergic Receptors in the Regulation of Pulmonary Infection

As the worsened phenotype observed in platelet depleted mice was not reproduced in the TLR4 knockout mice, other potential platelet receptors involved in the regulation of pulmonary infection were investigated.

Previous work has demonstrated that allergen induced pulmonary leukocyte recruitment is dependent upon the purinergic receptor P2Y₁ (Amison et al., 2017). Furthermore, a protective role for the P2Y₁ receptor has been suggested following infection with *P. aeruginosa* (Geary et al., 2005). Therefore, the role of purines and purinergic receptors in the regulation of pulmonary infection was investigated.

4.8.2.1 Investigating the Effect of Apyrase Treatment on Circulating Platelet Count

Apyrase is a purine hydrolysing enzyme, which converts ATP and ADP into inactive AMP, thus preventing activation of the platelet purinergic receptors.

100 units/mL Apyrase was administered to mice 30 minutes prior to infection with 1x10⁵ cfu/mouse RP73 and the effect on the circulating platelet count was determined. Infection with 1x10⁵ cfu/mouse reduced circulating platelet count when compared to sham controls, although these data did not reach statistical significance (10⁵ log cfu + vehicle: 6.19±0.28x10⁸ platelets/mL, versus sham: 7.00±0.28x10⁸ platelets/mL, Figure 4.30). Animals infected and treated with Apyrase showed slightly increased circulating platelet counts when compared to vehicle controls, although these data also did not reach statistical significance (10⁵ log cfu + vehicle: 6.19±0.28x10⁸ platelets/mL, versus 10⁵ log cfu + Apyrase: 6.77±0.28x10⁸ platelets/mL, Figure 4.30).
Mice were infected (p.o.) with either sham or 1x10⁵ cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. 30 minutes prior to infection, mice were treated with either 100 units/mL Apyrase or vehicle control. At 24 h.p.i blood was taken via cardiac puncture and the circulating platelet count was quantified using an improved neubauer haemocytometer. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, p>0.05 versus vehicle, n=9-10, data are presented as mean ± SEM.

4.8.2.2 Investigating the Effect of Apyrase Treatment on Weight Loss

1x10⁵ cfu/mouse RP73 infected, vehicle control treated animals showed a slight increase in weight loss when compared to sham controls (sham: 0.89±0.37%, 10⁵ log cfu + vehicle control: 3.13±0.61%, Figure 4.31). In addition, following infection with 1x10⁵ cfu/mouse RP73, Apyrase treatment was associated with a further increase in weight loss when compared to sham controls (sham: 0.89±0.37%, 10⁵ log cfu + Apyrase: 4.76±0.76%, p<0.001, Figure 4.31).
Figure 4.31 Effects of Apyrase on Weight Loss in a Murine Model of Pulmonary Infection with *P. aeruginosa* strain RP73

Mice were infected (o.a) with either sham or 1×10^5 cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. 30 minutes prior to infection, mice were treated with either 100 units/mL Apyrase or vehicle control. Body weights were recorded prior to and 24 h.p.i and percentage weight loss calculated. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, ***$p<0.001$ versus sham, n=10, data are presented as mean ± SEM.
4.8.2.3 Investigating the Effect of Apyrase Treatment on Pulmonary Bacterial Load and Leukocyte Recruitment

A significant increase in pulmonary bacterial load was observed at 24 h.p.i when compared to sham controls (10^5 log cfu + vehicle control: 4.83±0.10 log cfu, versus sham: 0.0 ± 0.0 log cfu, p<0.0001, Figure 4.32A). 100 units/mL Apyrase significantly increased pulmonary bacterial load when compared to vehicle control treated animals (10^5 log cfu + vehicle control: 4.83±0.10 log cfu, versus 10^5 log cfu + Apyrase: 5.28±0.12 log cfu, p<0.01, Figure 4.32A), indicating in situ bacterial growth, similar to that observed in animals depleted of circulating platelets.

Infection with RP73 induced a significant increase in pulmonary total leukocyte recruitment, when compared to sham controls (10^5 log cfu + vehicle control: 10.55±1.49x10^5 cells/mL, versus sham: 1.43±0.11x10^5 cells/mL, p<0.001, Figure 4.32B). 100 units/mL Apyrase significantly reduced infection induced pulmonary total leukocyte recruitment compared to vehicle control treated animals (10^5 log cfu + vehicle control: 10.55±1.49x10^5 cells/mL, versus 10^5 log cfu + Apyrase: 5.39±0.57x10^5 cells/mL, p<0.01, Figure 4.32B).

This was reflected in neutrophil numbers, where a significant increase in pulmonary neutrophil recruitment was observed following infection with 1x10^5 cfu/mouse compared to sham controls (10^5 log cfu + vehicle control: 9.14±1.47x10^5 cells/mL, versus sham: 0.01±0.01x10^5 cells/mL, p<0.0001, Figure 4.32C). This was significantly reduced in animals pre-treated with 100 units/mL Apyrase (10^5 log cfu + vehicle control: 9.14±1.47x10^5 cells/mL versus 10^5 log cfu + Apyrase: 3.94±0.64x10^5 cells/mL, p<0.001, Figure 4.32C). No significant changes in macrophages (Macrophages: 10^5 log cfu + vehicle control: 0.95±0.35x10^5 cells/mL, 10^5 log cfu + Apyrase: 0.65±0.26x10^5 cells/mL, versus sham: 0.98±0.27x10^5 cells/mL, Figure
4.32D) or lymphocytes (Lymphocytes: 10^5 log cfu + vehicle control: $0.0 \pm 0.0 \times 10^5$ cells/mL, 10^5 log cfu + Apyrase: $0.0 \pm 0.0 \times 10^5$ cells/mL, versus sham: $0.0 \pm 0.0 \times 10^5$ cells/mL, Figure 4.32D) were observed in any groups.

These data suggest a potential role of platelet purinergic receptors in the regulation of the host response to infection in the mouse.
Mice were infected (o.a) with either sham or 1x10^5 cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. 30 minutes prior to infection, mice were treated with either 100 units/mL Apyrase or vehicle control. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 24 h.p.i. Pulmonary Bacterial Load (A), Total Cells (B), Neutrophils (C) and Macrophages (D). One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *** p<0.001, **** p<0.0001 versus sham, ## p<0.01 versus vehicle control, n=8-10, data are presented as mean ± SEM.
4.8.2.4 Investigating the Effect of Apyrase Treatment on Bacterial Dissemination to the Kidney and Spleen

As Apyrase treatment reflected the phenomena of platelet depletion observed on bacterial load and inflammatory leukocyte recruitment, we assessed whether this was also reflected on the systemic dissemination of bacteria.

At 24 h.p.i, no evidence of bacterial dissemination to the kidney or spleen was observed in sham or vehicle control animals (sham: 0.0±0.0 log cfu, and 10^5 log cfu + vehicle: 0.0±0.0 log cfu, Figure 4.33A and Figure 4.33B). However, treatment with Apyrase induced a significant increase in bacterial dissemination to both the kidney and spleen, when compared to vehicle control treated animals (Kidney: 10^5 + Apyrase: 1.07 ± 0.45 log cfu, versus 10^5 + vehicle: 0.0 ± 0.0 log cfu, $p<0.01$, Figure 4.33A and Spleen: 10^5 log cfu + Apyrase: 0.52±0.26 log cfu, versus 10^5 log cfu + vehicle: 0.0±0.0 log cfu, $p<0.05$, Figure 4.33B).
Figure 4.33 Effects of Apyrase on Bacterial Dissemination to the Kidney and Spleen in a Murine Model of Pulmonary Infection with *P. aeruginosa* strain RP73

Mice were infected (o.a) with either sham or 1x10^5 cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. 30 minutes prior to infection, mice were treated with either 100 units/mL Apyrase or vehicle control. At 24 h.p.i, the kidney and spleen were aseptically removed, homogenised and plated for quantification of bacterial load. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, * p<0.05, ** p<0.01 versus vehicle control, n=9-10, data are presented as mean ± SEM.
4.8.2.5 Investigating the Effect of Purinergic Receptor Antagonists on Pulmonary Bacterial Load and Leukocyte Recruitment

To further investigate the role of specific platelet purinergic receptors, mice were treated with either a P2Y₁ antagonist, MRS2500, a P2Y₁₂ antagonist, AR-C66096, a P2X₁ antagonist, NF-279 or a P2Y₁₄ antagonist, PPTN, and the effects on pulmonary bacterial load and leukocyte recruitment were observed.

A significant increase in pulmonary bacterial load was observed at 24 h.p.i when compared to sham controls (10⁵ log cfu + vehicle control: 4.69±0.11 log cfu, versus sham: 0.0 ± 0.0 log cfu, p<0.0001, **Figure 4.34A**). Treatment with the P2Y₁₄ receptor antagonist, PPTN, significantly increased pulmonary bacterial load when compared to the vehicle controls (10⁵ log cfu + PPTN: 5.30±0.15 log cfu, p<0.05, 10⁵ log cfu + MRS2500: 4.57±0.18 log cfu, 10⁵ log cfu + AR-C66096: 4.79±0.16 log cfu, 10⁵ log cfu + NF-279: 4.99±0.25 log cfu, versus vehicle: 4.69±0.11 log cfu, **Figure 4.34A**).

Infection with 1x10⁵ cfu/mouse RP73 significantly increased total leukocyte recruitment to the lungs compared to sham controls (10⁵ log cfu + vehicle control: 12.04±1.33x10⁵ cells/mL, versus sham: 1.75±0.36x10⁵ cells/mL, p<0.05, **Figure 4.34B**). This was significantly reduced following treatment with MRS2500, AR-C66096 and PPTN (10⁵ log cfu + MRS2500: 3.74±1.36x10⁵ cells/mL, p<0.01, 10⁵ log cfu + AR-C66096: 7.13±1.41x10⁵ cells/mL, p<0.05, 10⁵ log cfu + NF-279: 7.44±1.82x10⁵ cells/mL, 10⁵ log cfu + PPTN: 6.39±0.52x10⁵ cells/mL, p<0.05, versus 10⁵ log cfu + vehicle: 12.04±1.33x10⁵ cells/mL, **Figure 4.34B**) when compared to vehicle controls. This pattern was reflected in neutrophils, where treatment with MRS2500 and PPTN significantly reduced neutrophil recruitment to the lungs, when compared to vehicle controls (10⁵ log cfu + MRS2500: 3.59±1.12x10⁵ cells/mL, p<0.001, 10⁵ log cfu + AR-C66096: 3.63±1.18x10⁵ cells/mL, p<0.001, 10⁵ log cfu + NF-279: 7.44±1.82x10⁵ cells/mL, p<0.05, versus 10⁵ log cfu + vehicle: 12.04±1.33x10⁵ cells/mL, **Figure 4.34B**).
6.25±1.26x10^5 cells/mL, 10^5 log cfu + NF-279: 6.31±1.57x10^5 cells/mL, 10^5 log cfu + PPTN:
4.96±0.37x10^5 cells/mL, p<0.05, versus 10^5 log cfu + vehicle: 10.28±1.20x10^5 cells/mL, Figure 4.34C). No significant difference in pulmonary macrophage (10^5 log cfu + MRS2500:
2.13±0.59x10^5 cells/mL, 10^5 log cfu + AR-C66096: 0.88±0.16x10^5 cells/mL, 10^5 log cfu + NF-
279: 1.12±0.31x10^5 cells/mL, 10^5 log cfu + PPTN: 1.44±0.22x10^5 cells/mL, versus 10^5 log cfu +
vehicle: 1.76±0.24x10^5 cells/mL, Figure 4.34D) or lymphocyte (10^5 log cfu + MRS2500:
0.0±0.0x10^5 cells/mL, 10^5 log cfu + AR-C66096: 0.0±0.0x10^5 cells/mL, 10^5 log cfu + NF-279:
0.0±0.0x10^5 cells/mL, 10^5 log cfu + PPTN: 0.0±0.0x10^5 cells/mL, versus 10^5 log cfu + vehicle:
0.0±0.0x10^5 cells/mL) recruitment was observed between any groups.
Mice were infected (o.a) with either sham or \(1 \times 10^5\) cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. 30 minutes prior to infection, mice were administered a single dose of either vehicle, a P2Y\(_1\) antagonist, MRS2500 (3mg/kg), a P2Y\(_{12}\) antagonist, AR-C66096 (3mg/kg), a P2X\(_1\) antagonist, NF-279 (3mg/kg) or a P2Y\(_{14}\) antagonist, PPTN Mesylate (10mg/kg) (i.v). A second dose of PPTN was administered at 6 h.p.i. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 24 h.p.i. Pulmonary Bacterial Load (A), Total Cells (B), Neutrophils (C) and Macrophages (D). One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, * \(p<0.05\), **** \(p<0.0001\) versus sham, #\(p<0.05\), ## \(p<0.01\), #### \(p<0.001\) versus vehicle control, n=6-8, data are presented as mean ± SEM.

Figure 4.34 Effects of Purinergic Receptor Antagonists on Pulmonary Bacterial Load and Leukocyte Recruitment in a Murine Model of Pulmonary Infection with *P. aeruginosa* strain RP73
4.8.2.6 Investigating the Effect of Purinergic Receptor Antagonists on Bacterial Dissemination to the Kidney and Spleen

As inhibition of the platelet purinergic P2Y_{14} receptor reflected the phenomena of platelet depletion observed on bacterial load and inflammatory leukocyte recruitment, we assessed whether this was also reflected on the systemic dissemination of bacteria.

At 24 h.p.i, no evidence of bacterial dissemination to the kidney or spleen was observed in sham animals, or in mice treated with vehicle control or MRS2500 (sham: 0.0±0.0 log cfu, 10^5 log cfu + vehicle: 0.0±0.0 log cfu, 10^5 log cfu + MRS2500: 0.0±0.0 log cfu, Figure 4.35A and Figure 4.35B). However, treatment with PPTN induced an increase in bacterial dissemination to the kidney and spleen, although these data reached statistical significance only for the kidney (Kidney: 10^5 log cfu + AR-C66096: 0.16±0.16 log cfu, 10^5 log cfu + NF-279: 0.36±0.24 log cfu, 10^5 log cfu + PPTN: 1.00±0.40 log cfu, p<0.01 and Spleen: 10^5 log cfu + AR-C66096: 0.32±0.21 log cfu, 10^5 log cfu + NF-279: 0.25±0.25 log cfu, 10^5 log cfu + PPTN: 0.55±0.37 log cfu, Figure 4.35A and Figure 4.35B) when compared to vehicle controls.
Figure 4.35 Effects of Purinergic Receptor Antagonists on Bacterial Dissemination to the Kidney and Spleen in a Murine Model of Pulmonary Infection with *P. aeruginosa* strain RP73

Mice were infected (o.a) with either sham or 1x10⁵ cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. 30 minutes prior to infection, mice were administered a single dose of either vehicle, a P2Y₁ antagonist, MRS2500 (3mg/kg), a P2Y₁₂ antagonist, AR-C66096 (3mg/kg), a P2X₁ antagonist, NF-279 (3mg/kg) or a P2Y₁₄ antagonist, PPTN Mesylate (10mg/kg) (i.v). A second dose of PPTN was administered at 6 h.p.i. At 24 h.p.i, the kidney and spleen were aseptically removed, homogenised and plated for quantification of bacterial load. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, ### p<0.01 versus vehicle control, n=6-8, data are presented as mean ± SEM.
4.8.3 Investigating the Effect of Platelets on Growth of P.aeruginosa strain RP73 in vitro

From the in vivo experiments performed, experimentally induced platelet depletion was associated with an increase in pulmonary bacterial load. Animals infected with the higher inoculum of 1×10^6 cfu/mL RP73 demonstrated a significant 1.5 log increase when compared to the IgG control treated animals. (Figure 4.1). Interestingly, this particular strain of P.aeruginosa has previously demonstrated a similar log cfu increase over the same time period in in vitro cultures (Bragonzi et al., 2012).

For this reason, platelet-bacteria co-culture experiments were performed to determine whether platelets modulate bacterial growth kinetics in vitro. 1×10^6 cfu/mL RP73 was incubated both in the presence and absence of 1×10^6 platelets/mL and aliquots of the co-culture were taken periodically over an 8-hour time period.

My results demonstrated that bacteria cultured in the presence of 1×10^6/mL platelets demonstrated a significant decrease in bacterial growth at both 6 (Bacteria alone: log 8.49 ± 0.22 cfu/mL, versus bacteria + platelets: log 7.74 ± 0.42 cfu/mL, $p<0.05$, Figure 4.36) and 8 hours (Bacteria alone: log 8.91 ± 0.19 cfu/mL, versus bacteria + platelets: log 7.80 ± 0.28 cfu/mL, $p<0.001$, Figure 4.36), when compared to bacterial cultures in the absence of platelets.
Investigating the Effect of Platelets on Death of *P. aeruginosa* strain RP73 *in vitro*

As my previous experiments highlighted the ability of platelets to modulate bacterial growth kinetics *in vitro*, we performed additional experiments to determine whether this was via increased bacterial death *in vitro*. A LIVE/DEAD BacLight bacterial viability kit was therefore used to monitor the viability of bacteria as a function of membrane integrity of the cell. For these experiments, 1x10^6 cfu/mL RP73 was incubated with and without platelets at either 1x10^6, 1x10^7 or 1x10^8 platelets/mL. Aliquots were taken periodically over an 8-hour time period and bacteria with a compromised cell membrane were considered dead and stained red with the DNA stain PI.

*Figure 4.36 Effect of Platelets on Growth of *P. aeruginosa* strain RP73 *in vitro***

In vitro cultures of 1x10^6 cfu/mL *P. aeruginosa* strain RP73 were prepared alone or in the presence of 1x10^6 platelets/mL at a 1:1 ratio. Aliquots were taken at 0, 2, 4, 6 and 8 hours and viable colony forming units were quantified on TSA plates. Unpaired two-tailed t-test, *p*<0.05, ***p*<0.001 versus bacterial control cultures, *n*=6, data are presented as mean ± SEM.
My findings suggested that incubation of 1×10^7 platelets/mL significantly enhanced bacterial death of *P. aeruginosa* strain RP73 at 6 hours when compared to bacterial cultures in the absence of platelets (Bacteria alone: 724.1 ± 35.5 RFU PI, versus bacteria + 10^7 platelets: 880.30 ± 24.17 RFU PI, *p* < 0.05, Figure 4.37A). Similarly, incubation of 1×10^7 platelets/mL enhanced bacterial death of *P. aeruginosa* strain RP73 at 8 hours compared to bacterial cultures in the absence of platelets, although these data did not reach statistical significance. (Bacteria alone: 639.0 ± 54.37 RFU PI, versus bacteria + 10^7 platelets: 827.50 ± 24.54 RFU PI, Figure 4.37A).

The RFU of PI decreased between 6 and 8 hours. Therefore, to assess whether the platelets remained viable after prolonged culture with bacteria, aliquots of the 10^7 co-culture were taken periodically between 0 and 8 hours and stimulated with either vehicle, 100µM ADP or 10µM TRAP and the percentage of CD62P positive events was quantified, as a functional marker of platelet viability. Platelets remained viable at 8 hours, since the percentage of CD62P positive events continued to increase. Furthermore, there appeared to be no difference between vehicle control, ADP and TRAP stimulated platelets, perhaps suggesting that the platelets have already reached their maximum activated state in the presence of bacteria (vehicle: 52.79%, ADP: 51.88% and TRAP 54.75%, Figure 4.37B).
Cultures of 1×10^6 cfu/mL *P. aeruginosa* strain RP73 were prepared alone or in the presence of either 1×10^6, 1×10^7 or 1×10^8 platelets/mL. Aliquots were taken at 0, 2, 4, 6 and 8 hours and stained with 2.5uM SYTO9 and 15uM Propidium Iodide. Samples were read on a fluorescent plate reader at 488/20nm excitation and either 528/20nm or 645/20nm emission. (A) Relative fluorescent units of PI. Platelets were stimulated with either 100µM ADP, 10µM TRAP or vehicle to determine the percentage CD62P positive events (B), using a Beckman Coulter Cytomics FC 500 flow cytometer. One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *p*<0.05, 10^7 platelets versus bacterial control cultures.
Chapter V: Results III

The Use of a Murine Model of Pulmonary Infection for Therapeutic Analysis
5.1 Investigating the Effect of HT61 in Model of Pulmonary Infection with the Gram-Negative *P. aeruginosa*

One approach to provide improved treatments for infectious diseases is the use of enhancer compounds, which act by restoring sensitivity of resistant bacteria to currently available antibiotics. Hu and colleagues (Hu et al., 2010) have developed such a drug, the antibiotic enhancer, HT61, a small quinolone derived compound as an exemplar of this novel approach. HT61 has previously been reported to show efficacy against gram-positive bacteria, particularly MRSA and MSSA, *in vitro* (Hu et al., 2010). Therefore, the aim of this work was to determine the effect of HT61, as a singular treatment, *in vivo*, using a murine model of pulmonary infection with the gram-negative bacterial species, *P. aeruginosa*

5.1.1 Investigating the Effect of HT61 in a Model of Pulmonary Infection with *P. aeruginosa* strain RP73

Mice were inoculated with either sham or 1x10^6 cfu/mouse RP73 embedded agar beads and treated with a singular dose of HT61 at either 0.1, 1 or 5 mg/kg HT61 to determine the efficacy of HT61 as a singular treatment. The effect on pulmonary leukocyte recruitment and pulmonary bacterial load was determined.

Data from these experiments indicated that infection with 1x10^6 cfu/mouse *P. aeruginosa* strain RP73 induced a significant increase in pulmonary bacterial load when compared to sham controls (6.16±0.22 log cfu, versus sham: 0.0±0.0 log cfu, p<0.0001, Figure 5.1A). Furthermore, HT61 treatment demonstrated no significant attenuation of bacterial load at any tested dose when compared to vehicle controls (0.1 mg/kg: 5.91±0.12 log cfu, 1 mg/kg:...
Infection with 1x10^6 cfu/mouse RP73 induced a significant increase in total leukocyte (28.7±2.63x10^5 cells/mL, versus sham: 1.98±0.01x10^5 cells/mL, p<0.01, Figure 5.1B) and neutrophil (26.96±3.11x10^5 cells/mL, versus sham: 0.06±0.01x10^5 cells/mL, p<0.01, Figure 5.1C) recruitment to the lungs when compared to sham controls. HT61 treatment at any tested dose had no significant reduction in total leukocyte recruitment (0.1 mg/kg: 25.33±2.14x10^5 cells/mL, 1 mg/kg: 33.0±1.0x10^5 cells/mL, 5 mg/kg: 25.97±2.84 x10^5 cells/mL, versus vehicle: 28.7±2.63x10^5 cells/mL, Figure 5.1B) or neutrophil recruitment to the lungs (0.1 mg/kg: 23.79±2.13x10^5 cells/mL, 1 mg/kg: 31.61±1.21x10^5 cells/mL, 5 mg/kg: 24.13±2.88x10^5 cells/mL, versus vehicle: 26.96±3.11x10^5 cells/mL, Figure 5.1C) compared to vehicle controls. Data from this study indicated that infection with RP73 had no significant effect on macrophage (vehicle: 1.74±0.48x10^5 cells/mL, versus sham: 1.40±0.26x10^5 cells/mL, Figure 5.1D) or lymphocyte (vehicle: 0.0±0.0x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL) recruitment to the lungs compared to sham controls. This was consistent with macrophage recruitment following HT61 treatment, whereby HT61 treatment had no significant effect on macrophages at any dose tested (0.1 mg/kg: 1.54±0.12x10^5 cells/mL, 1 mg/kg: 1.40±0.21x10^5 cells/mL, 5 mg/kg: 1.84±0.16x10^5 cells/mL, versus vehicle: 1.74±0.48x10^5 cells/mL, Figure 5.1D) or lymphocyte (0.1 mg/kg: 0.0±0.0x10^5 cells/mL, 1 mg/kg: 0.0±0.0x10^5 cells/mL, 5 mg/kg: 0.0±0.0x10^5 cells/mL, versus vehicle: 0.0±0.0x10^5 cells/mL) recruitment to the lungs when compared to vehicle controls.
Figure 5.1 Effects of HT61 as a Singular Treatment on Infection with *P. aeruginosa* strain RP73

Mice were infected (o.a) with either sham or 1x10^6 cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. 24 hours post infection, mice were administered with either 0.1, 1 or 5 mg/kg HT61 or vehicle, via i.p injection. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. Pulmonary Bacterial Load (A), Total Cells (B), Neutrophils (C) and Macrophages (D). One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, ** p<0.01, **** p<0.0001 versus sham, n=2-4, data are presented as mean ± SEM.
5.1.2 Investigating the Effect of HT61 in a Model of Pulmonary Infection with *P. aeruginosa* strain PAO1

Having determined the effect of HT61, as a singular treatment, against infection with a multidrug resistant *P. aeruginosa* strain, RP73, HT61 was tested against a Tobramycin susceptible strain, *P. aeruginosa*, strain PAO1. The effect of HT61 on pulmonary leukocyte recruitment and pulmonary bacterial load was determined.

Infection with 1x10^6 cfu/mouse PAO1 induced a significant increase in pulmonary bacterial load when compared to sham controls (5.56±0.31 log cfu, versus sham: 0.0±0.0 log cfu, p<0.0001, Figure 5.2A). HT61 treatment demonstrated no significant attenuation of bacterial load at any tested dose when compared to vehicle controls (0.1 mg/kg: 6.98±0.17 log cfu, 1 mg/kg: 5.74±0.14 log cfu and 5 mg/kg: 5.74±0.33 log cfu, versus vehicle: 5.56±0.31 log cfu, Figure 5.2A).

Infection with 1x10^6 cfu/mouse PAO1 induced a significant increase in total leukocyte (26.93±0.52x10^5 cells/mL, versus sham: 1.98±0.01x10^5 cells/mL, p<0.001, Figure 5.2B) and neutrophil (23.60±1.11x10^5 cells/mL, versus sham: 0.01±0.01x10^5 cells/mL, p<0.001, Figure 5.2C) recruitment to the lungs when compared to sham controls. HT61 treatment had no significant effect on total leukocyte number at any dose tested (0.1 mg/kg: 31.15±3.63x10^5 cells/mL, 1 mg/kg: 23.5±1.78x10^5 cells/mL, 5 mg/kg: 22.80±6.03x10^5 cells/mL, versus vehicle: 26.9±0.52x10^5 cells/mL, Figure 5.2B) or neutrophil recruitment to the lungs (0.1 mg/kg: 27.72±2.85x10^5 cells/mL, 1 mg/kg: 20.57±1.89x10^5 cells/mL, 5 mg/kg: 19.44±5.14x10^5 cells/mL, versus vehicle: 23.60±1.11x10^5 cells/mL, Figure 5.2C) when compared to vehicle controls. Additionally, infection with PAO1 had no significant effect on macrophage (vehicle: 3.43±1.29x10^5 cells/mL, versus sham: 1.70±0.20x10^5 cells/mL, Figure 5.2D) or lymphocyte
results III

(vehicle: $0.0\pm0.0\times10^5$ cells/mL, versus sham: $0.0\pm0.0\times10^5$ cells/mL) recruitment to the lungs when compared to sham controls. This was consistent with HT61 treatment, whereby no tested doses of HT61 had a significant effect on macrophage (0.1 mg/kg: $3.43\pm0.80\times10^5$ cells/mL, 1 mg/kg: $3.58\pm0.26\times10^5$ cells/mL, 5 mg/kg: $3.40\pm0.88\times10^5$ cells/mL, versus vehicle: $3.43\pm1.29\times10^5$ cells/mL, Figure 5.2D) or lymphocyte (0.1 mg/kg: $0.0\pm0.0\times10^5$ cells/mL, 1 mg/kg: $0.0\pm0.0\times10^5$ cells/mL, 5 mg/kg: $0.0\pm0.0\times10^5$ cells/mL, versus vehicle: $0.0\pm0.0\times10^5$ cells/mL) recruitment to the lungs when compared to vehicle controls.
Chapter V: Results III

Figure 5.2 Effects of HT61 as a Singular Treatment on Infection with *P. aeruginosa* strain PAO1

Mice were infected (o.a) with either sham or 1x10^6 cfu/mouse *P. aeruginosa* strain PAO1 embedded agar beads. 24 hours post infection, mice were administered with either 0.1, 1 or 5 mg/kg HT61 or vehicle, via *i.p* injection. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. Pulmonary Bacterial Load (A), Total Cells (B), Neutrophils (C) and Macrophages (D). One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *** p<0.001, **** p<0.0001 versus sham, n=3-4, data are presented as mean ± SEM.
5.1.3 Investigating the Effect of HT61 in a Model of Pulmonary Infection with *P. aeruginosa* strain NN2

Having determined the efficacy of HT61 against infection with a multidrug resistant *P. aeruginosa* strain, RP73 and a Tobraycin susceptible strain of *P. aeruginosa*, PAO1, HT61 was tested against a Tobraycin resistant strain of *P. aeruginosa*, NN2. The effect of HT61 on pulmonary leukocyte recruitment and pulmonary bacterial load was determined.

Infection with 1×10^6 cfu/mouse NN2 induced a significant increase in pulmonary bacterial load when compared to sham controls (4.85±0.18 log cfu, versus sham: 0.0±0.0 log cfu, p<0.0001, Figure 5.3A). HT61 treatment demonstrated no significant attenuation of bacterial load at any tested dose when compared to vehicle controls (0.1 mg/kg: 5.34±0.32 log cfu, 1 mg/kg: 5.12±0.43 log cfu and 5 mg/kg: 5.8±0.69 log cfu, versus vehicle: 4.85±0.18 log cfu, Figure 5.3A).

Infection with 1×10^6 cfu/mouse NN2 induced a significant increase in total leukocyte (13.13±1.86x10⁵ cells/mL, versus sham: 1.93±0.18x10⁵ cells/mL, p<0.01, Figure 5.3B) and neutrophil (10.45±1.53x10⁵ cells/mL, versus sham: 0.0±0.0x10⁵ cells/mL, p<0.01, Figure 5.3C) recruitment to the lungs when compared to sham controls. HT61 treatment at any tested dose had no significant reduction in either total leukocyte (0.1 mg/kg: 12.30±2.60x10⁵ cells/mL, 1 mg/kg: 11.58±1.51x10⁵ cells/mL, 5 mg/kg: 11.73±2.89x10⁵ cells/mL, versus vehicle: 13.13±1.86x10⁵ cells/mL, Figure 5.3B) or neutrophil recruitment to the lungs (0.1 mg/kg: 10.63±2.49x10⁵ cells/mL, 1 mg/kg: 9.70±1.19x10⁵ cells/mL, 5 mg/kg: 9.70±2.91x10⁵ cells/mL, versus vehicle: 10.45±1.53x10⁵ cells/mL, Figure 5.3C) when compared to vehicle controls. Additionally, infection with NN2 had no significant effect on macrophage or (vehicle: 2.40±0.24x10⁵ cells/mL, versus sham: 1.93±0.18x10⁵ cells/mL, Figure 5.3D) lymphocyte
(vehicle: 0.0±0.0x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL) recruitment to the lungs when compared to sham controls. The data obtained suggested HT61 treatment at any tested dose had no significant effect on macrophage (0.1 mg/kg: 1.71±0.50x10^5 cells/mL, 1 mg/kg: 1.88±0.43x10^5 cells/mL, 5 mg/kg: 2.02±0.42x10^5 cells/mL, versus vehicle: 2.40±0.24x10^5 cells/mL, Figure 5.3D) or lymphocyte (0.1 mg/kg: 0.0±0.0x10^5 cells/mL, 1 mg/kg: 0.0±0.0x10^5 cells/mL, 5 mg/kg: 0.0±0.0x10^5 cells/mL, versus vehicle: 0.0±0.0x10^5 cells/mL) recruitment to the lungs when compared to vehicle controls.
Mice were infected (o.a) with either sham or 1x10⁶ cfu/mouse P. aeruginosa strain NN2 embedded agar beads. 24 hours post infection, mice were administered with either 0.1, 1 or 5 mg/kg HT61 or vehicle, via i.p injection. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. Pulmonary Bacterial Load (A), Total Cells (B), Neutrophils (C) and Macrophages (D). One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, ** p<0.01, **** p<0.0001 versus sham, n=3-4, data are presented as mean ± SEM.
5.2 Investigating the Effect of HT61 in a Model of Pulmonary Infection with the Gram-Positive MRSA

5.2.1 Investigating the Effect of HT61 in a Model of Pulmonary Infection with MRSA strain USA300

The data suggested HT61, as a singular treatment, had no significant effect on infection with gram-negative *P. aeruginosa*, although HT61 has previously been reported to show efficacy against gram-positive bacteria, particularly MRSA and MSSA, *in vitro* (Hu et al., 2010). Therefore, we sought to investigate the effect of this compound on the gram-positive bacterial species, MRSA, strain USA300, *in vivo*.

Infection with 1×10^6 cfu/mouse USA300, induced a significant increase in pulmonary bacterial load when compared to sham controls (4.62±0.31 log cfu, versus sham: 0.0±0.0 log cfu, p<0.0001, Figure 5.4A). HT61 treatment demonstrated no significant attenuation of bacterial load at any tested dose when compared to vehicle controls (0.1 mg/kg: 4.36±0.19 log cfu, 1 mg/kg: 4.27±0.19 log cfu and 10 mg/kg: 3.92±0.22 log cfu, versus vehicle: 4.62±0.31 log cfu, Figure 5.4A). Although no significant effect was observed, these data indicated a trend towards a dose dependent reduction in pulmonary bacterial load with increasing doses of HT61.

Furthermore, infection with 1×10^6 cfu/mouse USA300 induced a significant increase in total leukocyte (4.99±0.73x10^5 cells/mL, versus sham: 2.01±0.32x10^5 cells/mL, p<0.001, Figure 5.4B) and neutrophil recruitment to the lungs (2.78±0.61x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL, p<0.0001, Figure 5.4C) when compared to sham controls. HT61 treatment at any tested dose had no significant reduction in total leukocyte recruitment (0.1 mg/kg: 4.04±0.28x10^5 cells/mL, 1 mg/kg: 5.29±0.39x10^5 cells/mL, 10 mg/kg: 4.17±0.48x10^5...
cells/mL, versus vehicle: 4.99±0.73x10^5 cells/mL, Figure 5.4B) to the lungs when compared to vehicle controls. At the highest tested dose of 10mg/kg, HT61 significantly reduced neutrophil recruitment to the lungs when compared to vehicle controls (0.1 mg/kg: 1.84±0.26x10^5 cells/mL, 1 mg/kg: 1.79±0.37x10^5 cells/mL and 10 mg/kg: 0.69±0.12x10^5 cells/mL p<0.001, versus vehicle: 2.78±0.61x10^5 cells/mL, Figure 5.4C).

Infection with MRSA strain USA300 had no significant effect on either macrophage (vehicle: 2.33±0.39x10^5 cells/mL, versus sham: 2.01±0.32x10^5) or lymphocyte (vehicle: 0.0±0.0x10^5 cells/mL, versus sham: 0.0±0.0x10^5) recruitment to the lungs when compared to vehicle controls. This was consistent with HT61 treatment, whereby no tested dose had a significant effect on either macrophage (0.1 mg/kg: 2.20±0.30x10^5 cells/mL, 1 mg/kg: 3.34±0.18x10^5 cells/mL, 10 mg/kg: 3.47±0.41x10^5 cells/mL, versus vehicle: 2.33±0.39x10^5 cells/mL, Figure 5.4D) or lymphocyte (0.1 mg/kg: 0.0±0.0x10^5 cells/mL, 1 mg/kg: 0.0±0.0x10^5 cells/mL, 10 mg/kg: 0.0±0.0x10^5 cells/mL, versus vehicle: 0.0±0.0x10^5 cells/mL) recruitment to the lungs when compared to vehicle controls.
Figure 5.4 Effects of HT61 as a Singular Treatment on Infection with MRSA strain USA300

Mice were infected (o.a) with either sham or 1x10^6 cfu/mouse MRSA strain USA300 embedded agar beads. 24 hours post infection, mice were administered with either 0.1, 1 or 10 mg/kg HT61 or vehicle, via i.p injection. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. Pulmonary Bacterial Load (A), Total Cells (B), Neutrophils (C) and Macrophages (D). One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, *** p<0.001, **** p<0.0001 versus sham, ### p<0.001 versus vehicle, n=6-8, data are presented as mean ± SEM.
5.3 Investigating the Effect of HT61 and Tobramycin Combination Therapy in a Model of Pulmonary Infection with Gram- Negative *P. aeruginosa*

The data in this chapter suggests that HT61 has no significant anti-microbial effect, when administered as a singular treatment. *In vitro* studies however have demonstrated an enhancement of the activity of older generation antibiotics (gentamicin, neomycin and chlorhexidine) when used in combination with HT61 (Hu, 2013) (Hu, 2010) against MRSA. The aim of this work was to determine whether the novel enhancer compound HT61 is able to potentiate the effect of low doses of Tobramycin or Vancomycin on attenuating the pulmonary bacterial load induced by the gram-negative *P. aeruginosa* and the gram-positive MRSA.

5.3.1 Investigating the Effect of HT61 and Tobramycin in a Model of Pulmonary Infection with *P. aeruginosa* RP73

Initial experiments were performed to determine whether combination treatment with HT61 and Tobramycin significantly attenuates pulmonary bacterial infection with a multidrug resistant strain of *P. aeruginosa*, RP73, compared to singular treatment alone.

Infection with 1x10^6 cfu/mouse RP73 induced a significant increase in pulmonary bacterial load when compared to sham control animals (5.54±0.01 log cfu, versus sham: 0.0±0.0 log cfu, p<0.0001, Figure 5.5A). Singular treatments of 100 mg/kg Tobramycin (5.56±0.01 log cfu) or 1 mg/kg HT61 (5.65±0.02 log cfu) had no significant reduction in bacterial load when compared to vehicle controls (5.54±0.01 log cfu, Figure 5.5A). However, following combination treatment with 100 mg/kg Tobramycin and 1 mg/kg HT61, bacterial load was significantly reduced (4.51±0.12 log cfu, p<0.0001, Figure 5.5A) when compared to vehicle controls.
controls (5.54±0.01 log cfu). A similar significant reduction in bacterial load was observed following treatment with 300 mg/kg Tobramycin (4.36±0.07 log cfu, p<0.0001, Figure 5.5A).

Infection with 1x10^6 cfu/mouse RP73 induced a significant increase in total leukocyte (6.35±0.72x10^5 cells/mL, versus sham: 3.40±0.06x10^5 cells/mL, p<0.05, Figure 5.5B) and neutrophil recruitment to the lungs (5.34±0.40x10^5 cells/mL, versus sham: 0.10±0.02x10^5 cells/mL, p<0.0001, Figure 5.5C) when compared to sham controls.

These data demonstrated that singular treatments of 100 or 300 mg/kg Tobramycin or 1 mg/kg HT61 had no significant reduction in total leukocyte recruitment to the lungs when compared to vehicle controls (100 mg/kg Tobramycin: 4.23±1.05x10^5 cells/mL, 300 mg/kg Tobramycin: 6.45±0.46x10^5 cells/mL, 1 mg/kg HT61: 7.37±0.58x10^5 cells/mL versus vehicle: 6.35±0.72x10^5 cells/mL, Figure 5.5B). Similarly, combination therapy of Tobramycin and HT61 caused no significant reduction in total leukocyte recruitment to the lungs (5.88 x 10^5 ± 0.26 cells/mL, versus vehicle: 6.35 x 10^5 ± 0.72 cells/mL, Figure 5.5B) when compared to vehicle controls.

Furthermore, both singular and combination therapies had no significant reduction in neutrophil recruitment to the lungs compared to vehicle controls (100 mg/kg Tobramycin: 3.16±1.03x10^5 cells/mL, 300 mg/kg Tobramycin: 4.76±0.29x10^5 cells/mL, 1 mg/kg HT61: 6.62±0.51x10^5 cells/mL, combination therapy: 4.38±0.20x10^5 cells/mL, versus vehicle: 5.34±0.40x10^5 cells/mL, Figure 5.5C).

Infection with 1x10^6 cfu/mouse RP73 induced a significant decrease in macrophage recruitment (1.01±0.32x10^5 cells/mL, versus sham: 3.30±0.08x10^5 cells/mL, p<0.0001, Figure 5.5D) to the lungs, when compared to sham controls. Both singular and combination
therapies had no significant reduction in macrophage (100 mg/kg Tobramycin: 1.10±0.05x10^5 cells/mL, 300 mg/kg Tobramycin: 1.69±0.18x10^5 cells/mL, 1 mg/kg HT61: 0.76±0.08x10^5 cells/mL, combination therapy: 1.68±0.10x10^5 cells/mL, versus vehicle: 1.01±0.32x10^5 cells/mL, Figure 5.5D) or lymphocyte (100 mg/kg Tobramycin: 0.0±0.0x10^5 cells/mL, 300 mg/kg Tobramycin: 0.0±0.0x10^5 cells/mL, 1 mg/kg HT61: 0.0±0.0x10^5 cells/mL, combination therapy: 0.0±0.0x10^5 cells/mL, versus vehicle: 0.0±0.0x10^5 cells/mL) recruitment to the lungs when compared to vehicle controls.
Mice were infected (o.a) with either sham or 1x10^6 cfu/mouse *P. aeruginosa* strain RP73 embedded agar beads. 24 hours post infection, mice were administered with singular treatments of either 100 or 300 mg/kg Tobramycin or 1 mg/kg HT61, combination therapy of 1 mg/kg HT61 and 100 mg/kg Tobramycin or vehicle, via i.p injection. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. Pulmonary Bacterial Load (A), Total Cells (B), Neutrophils (C) and Macrophages (D). One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, * p<0.05, **** p<0.0001 versus sham, #### p<0.0001 versus vehicle, n=4-6, data are presented as mean ± SEM.

Figure 5.5 Effects of Combination Therapy of HT61 and Tobramycin on Infection with *P. aeruginosa* strain RP73
5.3.2 Investigating the Effect of HT61 and Tobramycin in a Model of Pulmonary Infection with *P. aeruginosa* PAO1

Combination therapy with HT61 and Tobramycin significantly attenuated infection with RP73. We therefore performed additional experiments to determine whether combination therapy with HT61 and Tobramycin also significantly attenuates pulmonary bacterial infection with *P. aeruginosa* strain PAO1, a Tobramycin susceptible strain.

Infection with 1×10^6 cfu/mouse PAO1 induced a significant increase in pulmonary bacterial load when compared to sham controls (4.70±0.13 log cfu, versus sham: 0.0±0.0 log cfu, p<0.0001, Figure 5.6A). Singular treatments of 50 mg/kg Tobramycin (5.06±0.11 log cfu) or 1 mg/kg HT61 (4.97±0.06 log cfu) had no significant reduction in bacterial load compared to vehicle controls (4.70±0.13 log cfu, Figure 5.6A). Similarly, combination therapy with 50 mg/kg Tobramycin and 1 mg/kg HT61, had no significant reduction in pulmonary bacterial load (5.0±0.06 log cfu, Figure 5.6A) when compared to vehicle controls (4.70±0.13 log cfu).

These data suggested that infection with 1×10^6 cfu/mouse PAO1 induced a significant increase in total leukocyte (9.70±1.06x10^5 cells/mL, versus sham: 1.40±0.22x10^5 cells/mL, p<0.0001, Figure 5.6B) and neutrophil recruitment to the lungs (6.65±0.94x10^5 cells/mL, versus sham: 0.0±0.00x10^5 cells/mL, p<0.0001, Figure 5.6C) when compared to sham controls.

Singular treatments with 50 mg/kg Tobramycin or 1 mg/kg HT61 and combination therapy had no significant reduction in total leukocyte (50 mg/kg Tobramycin: 8.96±0.37x10^5 cells/mL, 1 mg/kg HT61: 8.10±0.39x10^5 cells/mL, combination therapy: 7.19±0.49x10^5 cells/mL, versus vehicle: 9.70±1.06x10^5 cells/mL, Figure 5.6B) or neutrophil recruitment to the lungs when compared to vehicle controls (50 mg/kg Tobramycin: 6.16±0.65x10^5 cells/mL,
1 mg/kg HT61: 4.77±0.74x10^5 cells/mL, combination therapy: 4.06±0.67x10^5 cells/mL, versus vehicle: 6.65±0.94x10^5 cells/mL, Figure 5.6C).

Infection with 1x10^6 cfu/mouse PAO1 had no significant effect on macrophage (3.07±0.44x10^5 cells/mL, versus sham: 1.39±0.22x10^5 cells/mL, Figure 5.6D) or lymphocyte (0.0±0.0x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL) recruitment to the lungs, when compared to sham controls. Furthermore, both singular and combination therapies had no significant effect on macrophage (50 mg/kg Tobramycin: 2.69±0.33x10^5 cells/mL, 1 mg/kg HT61: 3.55±0.33x10^5 cells/mL, combination therapy: 3.62±0.52x10^5 cells/mL, versus vehicle: 3.07±0.44x10^5 cells/mL, Figure 5.6D) or lymphocyte (50 mg/kg Tobramycin: 0.0±0.0x10^5 cells/mL, 1 mg/kg HT61: 0.0±0.0x10^5 cells/mL, combination therapy: 0.0±0.0x10^5 cells/mL, versus vehicle: 0.0±0.0x10^5 cells/mL) recruitment to the lungs when compared to vehicle controls.
Mice were infected (o.a) with either sham or 1x10⁶ cfu/mouse *P. aeruginosa* strain PAO1 embedded agar beads. 24 hours post infection, mice were administered with singular treatments of either 50 mg/kg Tobramycin or 1 mg/kg HT61, combination therapy of 1 mg/kg HT61 and 50 mg/kg Tobramycin or vehicle, via i.p injection. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. Pulmonary Bacterial Load (A), Total Cells (B), Neutrophils (C) and Macrophages (D). One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, **** p<0.0001 versus sham, n=3-4, data are presented as mean ± SEM.
5.3.3 Investigating the Effect of HT61 and Tobramycin in a Model of Pulmonary Infection with \textit{P. aeruginosa} NN2

Experiments were performed to determine whether combination therapy with HT61 and Tobramycin significantly attenuates pulmonary bacterial infection with a Tobramycin resistant strain of \textit{P. aeruginosa}, compared to singular treatment alone.

Infection with 1×10^6 cfu/mouse NN2 induced a significant increase in pulmonary bacterial load when compared to sham controls (6.64 ± 0.28 log cfu, versus sham: 0.0 ± 0.0 log cfu, $p<0.0001$, Figure 5.7A). Singular treatments of 100 mg/kg Tobramycin (6.02 ± 0.13 log cfu), 200 mg/kg Tobramycin (6.63 ± 0.32 log cfu), or 1 mg/kg HT61 (6.61 ± 0.26 log cfu) had no significant reduction in bacterial load when compared to vehicle controls (6.64 ± 0.28 log cfu, Figure 5.7A). However, following combination therapy of 100 mg/kg Tobramycin and 1 mg/kg HT61, a significant synergistic reduction in bacterial load was observed (5.49 ± 0.33 log cfu, $p<0.05$, Figure 5.7A) when compared to vehicle controls (6.64 ± 0.28 log cfu).

Infection with 1×10^6 cfu/mouse NN2 induced a significant increase in total leukocyte ($4.53 \pm 0.21 \times 10^5$ cells/mL, versus sham: $0.17 \pm 0.0 \times 10^5$ cells/mL, $p<0.01$, Figure 5.7B) and neutrophil recruitment to the lungs ($4.46 \pm 0.19 \times 10^5$ cells/mL, versus sham: $0.0 \pm 0.0 \times 10^5$ cells/mL, $p<0.01$, Figure 5.7C) when compared to sham controls.

Singular treatments of 100 and 200 mg/kg Tobramycin and 1 mg/kg HT61 and combination therapy of 100 mg Tobramycin and 1 mg/kg HT61 had no significant reduction in total leukocyte (100 mg/kg Tobramycin: $2.37 \pm 0.31 \times 10^5$ cells/mL, 200 mg/kg Tobramycin: $3.76 \pm 0.46 \times 10^5$ cells/mL, 1 mg/kg HT61: $4.07 \pm 0.99 \times 10^5$ cells/mL, combination therapy: $2.84 \pm 1.24 \times 10^5$ cells/mL, versus vehicle: $4.53 \pm 0.21 \times 10^5$ cells/mL, Figure 5.7B) and neutrophil recruitment (100 mg/kg Tobramycin: $2.07 \pm 0.29 \times 10^5$ cells/mL, 200 mg/kg Tobramycin: $3.48 \pm 0.82 \times 10^5$ cells/mL, combination therapy: $2.24 \pm 0.55 \times 10^5$ cells/mL, versus vehicle: $4.53 \pm 0.21 \times 10^5$ cells/mL, Figure 5.7C).
3.73±0.43×10^5 cells/mL, 1 mg/kg HT61: 3.69±0.91×10^5 cells/mL, combination therapy: 2.25±1.13×10^5 cells/mL, versus vehicle: 4.46±0.19×10^5 cells/mL, Figure 5.7C) to the lungs when compared with vehicle controls.

Infection with 1×10^6 cfu/mouse NN2 had no significant effect on macrophage (0.07±0.02×10^5 cells/mL, versus sham: 0.17±0.00×10^5 cells/mL, Figure 5.7D) or lymphocyte (0.0±0.0×10^5 cells/mL, versus sham: 0.0±0.00×10^5 cells/mL) recruitment to the lungs, when compared to sham controls. Singular treatment of 100 mg/kg Tobramycin had no significant effect on macrophage recruitment to the lungs when compared to vehicle controls (100 mg/kg Tobramycin: 0.30±0.03×10^5 cells/mL, Figure 5.7D). However, singular treatments of 200 mg/kg Tobramycin or 1 mg/kg HT61 and combination therapy of 100 mg/kg Tobramycin and 1 mg/kg HT61 had a significant increase in macrophage recruitment to the lungs when compared to vehicle controls (200 mg/kg Tobramycin: 0.39±0.02×10^5 cells/mL, 1 mg/kg HT61: 0.38±0.08×10^5 cells/mL, combination therapy: 0.60±0.12×10^5 cells/mL, versus vehicle: 0.07±0.02×10^5 cells/mL, Figure 5.7D). Both singular and combination therapies had no significant effect on lymphocyte recruitment to the lungs when compared to vehicle controls (100 mg/kg Tobramycin: 0.0±0.0×10^5 cells/mL, 200 mg/kg Tobramycin: 0.0±0.0×10^5 cells/mL, 1 mg/kg HT61: 0.0±0.0×10^5 cells/mL, combination therapy: 0.0±0.0×10^5 cells/mL, versus vehicle: 0.0±0.0×10^5 cells/mL).
Figure 5.7 Effects of Combination Therapy of HT61 and Tobramycin on Infection with *P. aeruginosa* strain NN2

Mice were infected (*o.a*) with either sham or 1x10⁶ cfu/mouse *P. aeruginosa* strain NN2 embedded agar beads. 24 hours post infection, mice were administered with singular treatments of either 100 or 200 mg/kg Tobramycin or 1 mg/kg HT61, combination therapies of 1 mg/kg HT61 and 100 mg/kg Tobramycin or vehicle, via i.p injection. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. Pulmonary Bacterial Load (**A**), Total Cells (**B**), Neutrophils (**C**) and Macrophages (**D**). One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, ** p<0.01, **** p<0.0001 versus sham, # p<0.05, ## p<0.01 versus vehicle, n=3-4, data are presented as mean ± SEM.
5.4 Investigating the Effect of HT61 and Vancomycin Combination Therapy in a Model of Pulmonary Infection with Gram-Positive MRSA

5.4.1 Investigating the Effect of HT61 and Vancomycin in a Model of Pulmonary Infection with MRSA strain USA300

A synergistic effect and a significant attenuation of pulmonary bacterial load was observed following combination therapy of HT61 and Tobramycin against two out of the three tested *P. aeruginosa* strains. Therefore, additional experiments were performed to determine whether this effect could be replicated against a gram-positive species of bacteria, MRSA, strain USA300.

Infection with 1×10^6 cfu/mouse USA300 induced a significant increase in pulmonary bacterial load when compared to sham controls ($5.57\pm0.11 \log \text{ cfu}$, versus sham: $0.0\pm0.0 \log \text{ cfu}$, $p<0.0001$, Figure 5.8A). Single treatments of 100 mg/kg Vancomycin ($5.81\pm0.30 \log \text{ cfu}$) or 1 mg/kg HT61 ($6.03\pm0.36 \log \text{ cfu}$) had no significant reduction in bacterial load when compared to vehicle controls ($5.57\pm0.11 \log \text{ cfu}$, Figure 5.8A). Furthermore, combination therapy of 100 mg/kg Vancomycin and 1 mg/kg HT61, had no significant reduction in pulmonary bacterial load ($5.92\pm0.13 \log \text{ cfu}$, Figure 5.8A) when compared to vehicle controls ($5.57\pm0.11 \log \text{ cfu}$).

Infection with 1×10^6 cfu/mouse USA300 induced a significant increase in total leukocyte ($27.90\pm7.92\times10^5 \text{ cells/mL}$, versus sham: $2.01\pm0.30\times10^5 \text{ cells/mL}$, $p<0.01$, Figure 5.7B) and neutrophil recruitment to the lungs ($24.31\pm6.73\times10^5 \text{ cells/mL}$, versus sham: $0.04\pm0.03\times10^5 \text{ cells/mL}$, $p<0.01$, Figure 5.8C) when compared to sham controls.

Both singular treatments of 100 mg/kg Vancomycin and 1 mg/kg HT61 and combination therapy produced no significant reduction in total leukocyte recruitment to the lungs, when
compared to vehicle controls (100 mg/kg Vancomycin: 19.93±5.84x10^5 cells/mL, 1 mg/kg HT61: 20.18±1.98x10^5 cells/mL, combination therapy: 17.30±4.14x10^5 cells/mL, versus vehicle: 27.90±7.92x10^5 cells/mL, **Figure 5.8B**).

This was also reflected by the neutrophil quantification, whereby both singular treatments and combination therapy had no significant reduction on neutrophil recruitment to the lungs when compared to vehicle controls (100 mg/kg Vancomycin: 16.82±6.12x10^5 cells/mL, 1 mg/kg HT61: 17.82±1.61x10^5 cells/mL, combination therapy: 15.0±3.74x10^5 cells/mL, versus vehicle: 24.31±6.73x10^5 cells/mL, **Figure 5.8C**).

Infection with 1x10^6 cfu/mouse USA300 had no significant effect on macrophage (3.59±1.21x10^5 cells/mL, versus sham: 1.98±0.32x10^5 cells/mL, **Figure 5.8D**) or lymphocyte (0.0±0.0x10^5 cells/mL, versus sham: 0.0±0.0x10^5 cells/mL) recruitment to the lungs when compared to sham controls. Furthermore, both singular and combination therapy had no significant effect on macrophage (100 mg/kg Vancomycin: 3.11±0.41x10^5 cells/mL, 1 mg/kg HT61: 2.46±0.56x10^5 cells/mL, combination therapy: 2.31±0.42x10^5 cells/mL, versus vehicle: 3.59±1.21x10^5 cells/mL, **Figure 5.8D**) or lymphocyte recruitment (100 mg/kg Vancomycin: 0.0±0.0x10^5 cells/mL, 1 mg/kg HT61: 0.0±0.0x10^5 cells/mL, combination therapy: 0.0±0.0x10^5 cells/mL, versus vehicle: 0.0±0.0x10^5 cells/mL) to the lungs, when compared to vehicle controls.
Mice were infected \((o.a)\) with either sham or \(1\times10^6\) cfu/mouse MRSA strain USA300 embedded agar beads. 24 hours post infection, mice were administered with singular treatments of either 100 mg/kg Vancomycin or 1 mg/kg HT61, combination therapy of 1 mg/kg HT61 and 100 mg/kg Vancomycin or vehicle, via \(i.p\) injection. A BAL of the lungs was performed for inflammatory cell quantification and lungs were aseptically removed, homogenised and plated for quantification of bacterial load at 48 h.p.i. Pulmonary Bacterial Load (A), Total Cells (B), Neutrophils (C) and Macrophages (D). One-way ANOVA and Bonferroni’s multiple comparisons post hoc test, ** \(p<0.01\), **** \(p<0.0001\) versus sham, \(n=4\), data are presented as mean ± SEM.
Chapter VI

Discussion
6.1 Establishment and Validation of a Murine Model of Pulmonary Infection

Initial experiments were required to establish a murine model of pulmonary infection using three strains of *P. aeruginosa* and one strain of MRSA, to produce an infection and inflammatory profile representative of a chronic pulmonary infection observed in the clinic.

Experimental models may be established in order to investigate infection and inflammatory parameters, and the underlying signalling pathways associated with chronic pulmonary infections. *P. aeruginosa* is an opportunistic pathogen that exploits immunocompromised hosts. *P. aeruginosa* is frequently associated with the CF lung and the establishment of chronic infection, and is also a common cause of acute lower-respiratory tract infections in critically ill patients. Intrapulmonary infection with *P. aeruginosa* was initially profiled *in vivo* as it is plays a critical role in the development and progression of multiple pulmonary diseases (Van Heeckeren et al., 1997) (Growcott et al., 2011) (Bragonzi et al., 2012). My findings demonstrated that pulmonary instillation of 1x10^6 cfu/mouse *P. aeruginosa* embedded into agar beads resulted in the establishment of a non-lethal localised infection. The establishment of infection is one of the major challenges in experimental models of pulmonary infection, with previous studies demonstrating that both aerosol and direct tracheal instillation have resulted in the establishment of a transient pulmonary infection (Cash et al., 1979). Literature has suggested that the establishment of a chronic pulmonary infection can be achieved only if mice are inoculated with bacteria embedded in an immobilising agent such as agar, agarose, or seaweed alginate (Facchini et al., 2014) (Bragonzi, 2010). Therefore, bacteria were embedded into agar beads for the induction of an infection in my studies. 1x10^6 cfu/mouse was chosen as the optimum inoculum for pulmonary infection studies with *P. aeruginosa* strains RP73, PAO1 and NN2 producing the desired infection profile. Similar studies
performed by (Facchini et al., 2014), demonstrated that infection with 1×10^6 cfu/mouse *P. aeruginosa* RP73 resulted in a bacterial burden of 1.3×10^6 cfu/lung recovered from the lungs, however this data represented the sum of the bacterial burden present in both BAL fluid and the lungs and was determined at 3 d.p.i. Other dose-dependent infection studies using PAO1 embedded into agar beads have indicated that a dose in the range of 10^6-10^7 cfu/mouse established an infection associated with low mortality, thus showing consistency with my findings (Bragonzi, 2010).

The emergence of community acquired MRSA, as distinct from hospital strains, has been reported in Australasia, Europe, and North America (Durrington and Summers, 2008). MRSA strain USA300 is a major source of community acquired infections and has been implicated in epidemiologically outbreaks of skin and soft tissue infections in healthy individuals (Diep et al., 2006) (Klevens et al., 2007). I therefore investigated the infection and inflammatory parameters associated with intrapulmonary infection with MRSA strain USA300. Similar to the results obtained for *P. aeruginosa*, intrapulmonary infection with MRSA induced a non-lethal, localised infection, associated with a neutrophilic infiltrate. Studies performed by others (Cigana et al., 2018) have demonstrated that infection with 1×10^6 cfu/mouse USA300 produced a similar inflammatory profile, although infection in this model was associated with a high mortality occurring within 4 days. Mortality was not directly quantified in my model however, at 48 h.p.i no mortality was observed.

Pulmonary bacterial infections are typically characterised by an inflammatory response dominated by a neutrophilic infiltrate in the airways (Courtney et al., 2004) (Houston et al., 2013). Consistent with clinical observations, the findings shown in this study highlighted a clear pro-inflammatory effect of both *P. aeruginosa* and MRSA infection as measured by a
significant increase in both neutrophils and cytokines in the BAL fluid and lung tissue of infected mice when compared to sham controls. An inflammatory infiltrate primarily neutrophilic in nature in response to infection is consistent with published literature in a rat model of chronic respiratory infection with \textit{P. aeruginosa} (Cash et al., 1979) and in murine models of pulmonary infection with \textit{P. aeruginosa} (Bayes et al., 2016) (Tam et al., 1999) (Van Heeckeren et al., 2002) (Van Heeckeren et al., 2006) (Bragonzi, 2010), compared to the presence of alveolar macrophages in sham controls. These findings are further supported following infection with RP73, whereby the inflammatory infiltrate in the airway lumen and alveolar spaces is predominantly composed of neutrophils (80%), (Facchini et al., 2014), although the inflammatory profile in this case was characterised at 7 days post infection. Moreover, the histological features and the increase in neutrophils observed in BAL fluid are consistent with data published by others (Boyer et al., 2005) (Growcott et al., 2011) (Liu et al., 2013) (Gregory et al., 2007) at the same time point following infection with PAO1 in mice and rats.

Inflammatory markers, including IL-6 and IL-8, are significantly elevated in chronic neutrophilic inflammation (Carpagnano et al., 2003) and infection (Takahashi et al., 2016). IL-6 contributes to host defence through stimulation of the acute phase response and haematopoiesis (Tanaka et al., 2014) and IL-8 is involved in neutrophil activation and recruitment (Sawant et al., 2016). The findings shown in this study suggested that pulmonary infection with \textit{P. aeruginosa} and MRSA is associated with significant increases in the pro-inflammatory cytokines IL-6 and KC (the murine analogue of human IL-8). These data are consistent with studies performed by others (Van Heeckeren et al., 2000), whereby \textit{P. aeruginosa} infected mice had a rapid, transient rise in IL-6, KC and absolute neutrophil counts in BAL fluid. Similarly, others (Cigana et al., 2018) have demonstrated a significant
increases in BAL levels of IL-6 following infection with clinical isolates of *S. aureus*. Interestingly, the significant rise in the neutrophil chemoattractant KC correlated with the rise in neutrophils observed in this model, perhaps suggesting a mechanism underlying neutrophil recruitment, although this requires further investigation.

The standard of care therapy for patients with pulmonary infections with *P. aeruginosa*, such as CF, involves the use of aminoglycoside and β-lactam antibiotics (Marier et al., 2003). Aggressive treatment regimens using aerosolised Tobramycin have been shown to improve the quality of life of patients, reducing symptoms of acute pulmonary exacerbations (Marier et al., 2003) (Scheinberg and Shore, 2005). Following establishment of the murine model of pulmonary infection, I aimed to validate the model using drugs used clinically to treat pulmonary infections with *P. aeruginosa* and MRSA.

For mice infected with the multidrug resistant strain of *P. aeruginosa*, RP73, high doses of Tobramycin (~300 mg/kg) were required to significantly attenuate pulmonary bacterial load at 48 h.p.i. Additionally, for the remaining strains of *P. aeruginosa* complete eradication of *P. aeruginosa* was not achieved, although, this may be due to the dosing regimen used in my studies as only a single treatment was administered. In comparison, single intratracheal treatments with conventional formulations of Tobramycin had no significant effect against *P. aeruginosa* infection in rats, although multiple doses of Tobramycin have previously shown efficacy (Marier et al., 2003). Similarly, previous studies using a murine model of *P. aeruginosa* PAO1 pneumonia have indicated a 4 log reduction in pulmonary bacterial load following *i.p* treatment of 150 mg/kg/day of Tobramycin (Louie et al., 2013). Although in this instance, Tobramycin was administered on a humanised dosing scheme administered every 4 hours over a 24-hour time period. This suggests that altering the dosing regimen in my model may
improve the efficacy of Tobramycin in this model, whereby multiple doses may increase penetration of the antibiotic, improve pulmonary function and eradicate the colonisation of *P. aeruginosa*. Other research suggests that the combination of Tobramycin with additional antibiotics, such as Meropenem may also enhance the reduction in bacterial burden (Louie et al., 2013).

Tobramycin treatment appeared to reduce the inflammatory infiltrate in response to infection with PAO1, although these data did not reach statistical significance. This result may be an indirect effect on inflammation as a result of Tobramycin reducing the pulmonary bacterial burden. These findings are supported by a clinical study, which demonstrated that inhaled Tobramycin therapy eradicated *P. aeruginosa* infection from the lower airways in 74% of patients and significantly reduced airway neutrophilic inflammation (Chuchalin et al., 2009).

Moreover, other literature has suggested through both clinical studies and experimental models that Tobramycin treatment failed to reduce bacterial numbers yet significantly reduced *P. aeruginosa* exoenzyme activity (Grimwood et al., 1993), which contributes to lung injury frequently observed during pulmonary infection. These results suggest that Tobramycin may improve pulmonary function by decreasing *P. aeruginosa* exoenzyme expression, regardless of any other antimicrobial effect. Whilst research has demonstrated that Tobramycin reduces pro-inflammatory cytokines, including IL-8, IL-6 and TNF-α, in *P. aeruginosa* infected CF patients (Husson et al., 2005), this was not quantified in my model.

Vancomycin has been considered to be the reference standard of therapy for the treatment of infections with MRSA (Tang et al., 2015), hence I validated the murine model of pulmonary infection with MRSA using this antibiotic. My results demonstrated that Vancomycin
treatment at 200 mg/kg significantly attenuated pulmonary infection with MRSA at 48 h.p.i, in agreement with results obtained in the literature using a murine model of pulmonary infection with MRSA embedded into agar beads (Harada et al., 2013). In these experiments a 2.5 log reduction in pulmonary bacterial load was obtained at 3 days post infection, although Vancomycin treatment was administered at 50 mg/kg i.p. every 12 hours (Harada et al., 2013), perhaps explaining the more dramatic decrease in pulmonary bacterial burden when compared to those observed in these studies. This study further highlights that the optimum dosing regimen and formulation of antibiotic are essential in order to achieve the greatest possible reduction in bacterial load.

After validation of these models, subsequent research was performed to investigate the role of platelets in the regulation of pulmonary infection and host defence, as described in the next section.

6.2 The Role of Platelets in the Regulation of Pulmonary Infection and Host Defence

The role of platelets in haemostatic and thrombotic processes has been extensively documented in response to vascular injury (Brass, 2010) (Kuijpers et al., 2004) (Li et al., 2010) (Rivera et al., 2009) (Andrews and Berndt, 2004). More recently however, platelets have received increasing attention for their role in the pathophysiology of inflammation, infection and immunity (Pitchford et al., 2003) (Bunescu et al, 2004) (Gresele et al., 1993) (Ortiz-Muñoz et al., 2014) (Van den Boogaard et al., 2015) (de Stoppelaar, 2014) (Wuescher et al., 2015) (Amison et al., 2015) (Amison et al., 2018).
Chapter VI: Discussion

Thrombocytopenia is a common finding in patients with sepsis (de Stoppelaar, 2014) (Hurley et al., 2016), and is a well-known biomarker for disease severity (Gafter-Gvili et al., 2011) (Claushuis et al., 2016) (Goto et al., 2018). A low platelet count is associated with an adverse outcome and strongly impaired host defence system, significantly enhancing morality in critically ill patients (Xiang et al., 2013) (Claushuis et al., 2016) (Goto et al., 2018). Initial experiments were therefore performed to determine whether systemic thrombocytopenia occurs during pulmonary infection with \textit{P. aeruginosa} or MRSA. Here, I demonstrated that intrapulmonary infection with both \textit{P. aeruginosa} and MRSA induced a mild peripheral thrombocytopenia, demonstrated by a significant decrease in circulating platelet numbers. In comparison, other experimental models have verified platelet consumption in a mouse model of invasive \textit{S. pyogenes} infection. At 12 and 18 h.p.i, mice exhibited significantly decreased circulating platelet numbers (Hurley et al., 2016) when compared to the initial time of infection. Collectively, these data provide evidence that platelets rapidly respond to infection and support the clinical observation that patients with sepsis display thrombocytopenia.

There are several proposed mechanisms to explain the occurrence of infection induced thrombocytopenia, including platelet sequestration (Aster, 1966) and direct platelet activation during acute inflammation, resulting in a shortened platelet lifespan (Taytard et al., 1986). Previous research has stated that platelets are recruited to sites of inflammation (Pitchford et al., 2003) (Lax et al., 2017) (Boilard et al., 2010), and there is now compelling evidence to suggest that individual platelets can migrate towards bacterial products (Ortiz-Muñoz et al., 2014) (Czapiga et al., 2005) and act as cellular scavengers, migrating towards and collecting deposited bacteria (Gaertner et al., 2017).
It was therefore hypothesized that the occurrence of peripheral thrombocytopenia in response to infection may occur as a consequence of platelet activation and accumulation of activated platelets in lung tissue. It has been demonstrated that platelets are the first and most abundant inflammatory cell type recruited in response to infection (Kerrigan, 2015). Therefore, experiments were performed to investigate whether platelet activation and accumulation occurred in lung tissue at 24 h.p.i. A significant increase in extravascular pulmonary platelet accumulation was observed following infection with 1×10^6 cfu/mouse *P. aeruginosa*, providing a plausible mechanism to explain the observed systemic thrombocytopenia. This is in agreement with published literature demonstrating pulmonary platelet accumulation following exposure to *E. coli* endotoxin (Itoha et al., 1996) and platelet accumulation in the liver sinusoids and hepatic circulation in response to infection with *S. pyogenes* (Hurley et al., 2016) and *E. coli* (Gaertner et al., 2017). Moreover, an in vitro chemotaxis model was developed to determine whether platelets are able to directly migrate towards bacterial stimuli. Further supporting my in vivo findings, the chemotaxis assay validated platelet migration across a membrane towards bacteria, further describing the potential for platelet accumulation at sites of infection.

Numerous reports have indicated that platelets possess direct antimicrobial functions, acting as a source of an array of antimicrobial peptides (Yang et al., 2015) (Yeaman, 2010) (Krijgsveld et al., 2000) (Tang et al., 2002) (Kraemer et al., 2011) (Dewitte et al., 2017) (Ali et al., 2017), which are released from internal granules upon platelet activation. Furthermore, experimental models of pulmonary infection have demonstrated platelet activation in response to bacterial infection, with an array of bacterial species including *S. aureus*, *S. pyogenes* and *K. pneumoniae* (Youssefian et al., 2002) (Hurley et al., 2016) (Shannon, 2015) (de Stoppelaar, 2014) (de Stoppelaar et al., 2015). Platelet activation induced by bacteria has
resulted in marked increases in P-selectin surface expression (Youssefian et al., 2002), platelet-neutrophil complexes (Hurley et al., 2016) and PF-4 secretion from platelet granules (de Stoppelaar, 2014). Consistent with bacterial induced platelet activation observed in the literature (Youssefian et al., 2002) (Hurley et al., 2016) (Shannon, 2015) (de Stoppelaar, 2014) (Kahn et al., 2013), my results demonstrated enhanced platelet activation in response to infection with 1x10^6 cfu/mouse P.aeruginosa, as measured by significant increases in platelet-neutrophil complexes and BAL levels of RANTES and PF-4 released in infected mice. Intriguingly, plasma levels of PF-4 were not significantly elevated, perhaps indicating PF-4 is only released at the site of the infection. This is consistent with other findings (Amison et al., 2018), whereby it was demonstrated that PF-4 is only significantly elevated at the site of infection. It is worth noting that platelet-neutrophil complexes have been reported to increase during early sepsis but decreased significantly during late sepsis (Hurley et al., 2016). This perhaps suggests that platelets have reached their maximum activation state and become exhausted in response to infection, although this requires further investigation. As platelet-neutrophil complexes were only quantified at 24 h.p.i in my model, it would therefore be interesting to monitor this at a later time point.

Platelets express an array of cell surface receptors allowing both direct and indirect interactions with bacteria (Dewitte et al., 2017) (Deppermann and Kubes, 2016). Platelets express functional Toll-like receptors (TLR2, TLR4), which recognise bacterial peptidoglycans and LPS in gram-positive and gram-negative pathogens respectively (Andonegguí et al., 2005) (Aslam et al., 2016). In addition, platelets variably express GPIbα, FcyRIIa, αIβ3 receptors (Bennett, 2005) (Karas et al., 1982) (Lopez, 1994), which facilitate direct and indirect interactions with bacteria. This provides a plausible mechanism that may contribute to bacterial induced platelet activation in numerous infectious diseases, including sepsis, CF and
multiple organ dysfunction syndrome (MODS) (Russwurm et al., 2002) (Ogura et al., 2001) (O’Sullivan et al., 2005) (Gawaz et al., 1997), which has been suggested to precede platelet recruitment (Hurley et al., 2016).

To further investigate the role of platelets in infection and host defence, I established an experimentally induced platelet depletion model with pulmonary infection using *P.aeruginosa* and MRSA, adapted from a well-documented model originally described by (Cash et al., 1979), and used regularly to date (Facchini et al., 2014) (Bayes et al., 2016) (Van Heeckeren et al., 2000). In order to produce profound platelet depletion, an anti-GPIbα platelet depleting antibody was utilised to deplete mice of circulating platelets. This method of platelet depletion significantly reduced circulating platelet numbers and has been used previously in the literature in both models of infection (de Stoppelaar, 2014) (Asaduzzaman et al., 2009) and inflammation (Amison et al., 2018). In addition, peripheral blood leukocyte populations remained unaltered by this method of platelet depletion, although these data were not shown. Alternative methods of platelet depletion have also been utilised in order to render animals thrombocytopenic in the literature, including an anti-mouse CD42b antibody (Kahn et al., 2013), anti-platelet anti-serum and bulsulfan (Pitchford et al., 2003) (Amison et al., 2015). Other methods of platelet depletion have been associated with inherent problems regarding long-term infection and chronic disease, including α1β3 inducing anaphylactic shock in mice (Wuescher et al., 2015). My rationale for choosing the anti- GPIbα platelet depleting antibody was due to reports in the literature that mice receiving this antibody do not display pulmonary oedema, haemorrhage or weight loss beyond 10% (Amison et al., 2018) (Xiang et al., 2013). However, the results were suggestive of minor pulmonary haemorrhage in response to administration of the anti-GPIbα platelet depleting antibody in both sham and infected groups. Indeed, other groups have reported that thrombocytopenia results in lung
haemorrhage following exposure to both inflammatory (Goerge et al., 2008) and infectious stimuli (de Stoppelaar, 2014), consistent with my findings. In these studies, very low platelet count mice demonstrated severe haemorrhaging in the lungs following infection with *K.pneumonaie*, whereas infected low platelet count mice revealed sites of haemorrhage albeit to a much lesser extent than in very low platelet count mice (de Stoppelaar, 2014). Similarly, other published research has reported that *i.v* administration of the anti-GPIbα platelet depleting antibody, which lowered platelet count to less than 2.5%, induced severe lung haemorrhage, however 10-15% of normal platelet counts was sufficient to prevent inflammatory bleeding (Goerge et al., 2008). This suggests that the level of platelet depletion in my studies may account for the observed haemorrhaging in the lungs in platelet depleted groups.

Consistent with my preliminary pulmonary infection studies (discussed in section 6.1), mice experimentally depleted of circulating platelets were initially infected with 1x10^6 cfu/mouse *P.aeruginosa*. Here I provided compelling evidence to suggest that platelet depletion in mice enhances the pathogenicity of pulmonary infection with *P.aeruginosa*, with an increased weight loss, increased mortality and higher pulmonary bacterial burden observed. Compared to non-thrombocytopenic mice, pulmonary bacterial load significantly increased by 1.5 logs over the course of 24 hours, whilst the mortality rate observed in these mice was greatly elevated (40%). In order to refine and reduce severity of the model, thrombocytopenic mice were infected with the lower inocula of 1x10^4 and 1x10^5 cfu/mouse *P.aeruginosa*. Intriguingly, the 1x10^4 cfu/mouse level of inoculum was completely cleared by 24 hours, whilst 1x10^5 cfu/mouse was associated with an increased pulmonary bacterial load (0.5 logs) and mortality rate (20%) when compared to non-thrombocytopenic mice, albeit to a lesser extent than that of the 1x10^6 cfu/mouse inoculum. Having established a thrombocytopenic infection model
with *P. aeruginosa*, thrombocytopenic mice were infected with 1x10⁵ cfu/mouse MRSA. Similarly, platelet depletion in this model resulted in a higher bacterial burden and increased weight loss, suggesting that platelets protect against both gram-negative and gram-positive bacterial species.

Similar studies using experimentally induced thrombocytopenic infection models have demonstrated an enhanced total bacterial burden per mouse following infection with *S. aureus*, strain USA300 (Wuescher et al., 2015). However, a novel experimental model of conditional platelet depletion based on the Cre-recombinase cell ablation system was used to obtain these data (Wuescher et al., 2015), therefore a direct comparison with my data which used a different method of platelet depletion cannot be performed. Consistent with my findings, experimentally induced thrombocytopenia has been shown to dramatically impair host defence during infection, increasing mortality and enhancing bacterial growth during both *Klebsiella* and *Streptococcus*-induced pneumonia (de Stoppelaar, 2014) (van den Boogaard et al., 2015) and also in LPS-induced endotoxemia (Xiang et al., 2013). In contrast, it has been reported that weight loss in response to infection with *S. pyogenes* is less aggressive and less bacteria were recovered from the lungs of platelet depleted animals (Kahn et al., 2013). In these studies, an anti-CD42b antibody (*i.p*) was used to render mice thrombocytopenic to 15% of their normal circulating platelet levels and infection was induced using a bacterial culture of 1.5-3x10⁷ cfu *S. pyogenes* (*i.p*) (Kahn et al., 2013), perhaps suggesting that different bacterial provocations and different methods of platelet depletion may elicit a different response. Moreover, I demonstrated that the removal of circulating platelets from the 1x10⁵ and 1x10⁶ infection models converts the infection from non-lethal and non-systemic, to one displaying the presence of systemic infection in both the kidneys and spleen. Similarly in the literature, mice experimentally depleted of circulating platelets
are associated with higher systemic bacterial loads in the blood and distal organs in *pneumococcal* pneumonia (van den Boogaard et al., 2015), *Klebsiella*-derived pneumonia (de Stoppelaar, 2014) and *S.aureus* bacteraemia (Wuescher et al., 2015). In addition, research has stated that bacterial sepsis and organ failure is exacerbated in mice experimentally depleted of circulating platelets. Significant increases in the inflammatory cytokines IL-10, IL-6, IFN-γ and TNF-α were observed in mice experimentally depleted of circulating platelets, cytokines which are frequently associated with sepsis lethality and play important roles in the development of ARDS (Wuescher et al., 2015) (de Stoppelaar, 2014) (Xiang et al., 2013). These studies provide compelling evidence to suggest that thrombocytopenic mice succumbed to infection much more rapidly than non-thrombocytopenic mice.

Metabolic acidosis is a common finding in patients with sepsis and is indicative of MODS (Kellum, 2004). Having observed an increase in mortality in platelet depleted animals, I investigated the potential cause of death in these animals by assessing biochemical markers of metabolic acidosis present in the blood following infection with *P.aeruginosa 1x10^5* cfu/mouse. Consistent with my previous findings, the data suggested the conversion of a phenotype associated with localised infection to one displaying systemic infection, as demonstrated by subtle increases in key biochemical markers of metabolic acidosis, including pCO₂, base excess and HCO₃⁻. Whilst these data did not show any significant differences, the absolute values observed were comparable with previously published murine models of septic infection (Sand et al., 2015), which have been known to correlate with MODS (Kellum, 2004), providing a potential cause of mortality in these mice. The degree of change observed in biochemical markers of metabolic acidosis may have been more pronounced in mice that failed to reach the 24-hour end point, although further work is required to determine whether this is the primary cause of death.
Previous studies have suggested that thrombocytopenia leads to increased permeability of pulmonary vessels in several models, and platelets are important regulators of pulmonary endothelial barrier function and integrity (Middleton et al., 2016) (Ho-Tin-Noé et al., 2011) (Weyrich and Zimmerman, 2013). My observations suggested that pulmonary vascular permeability was enhanced in infected mice depleted of circulating platelets. However, pulmonary oedema was not a consequence of the anti-GPIbα antibody, consistent with findings published by (Amison et al., 2018). Indeed, this has been demonstrated in other experimental models; in mice with LPS-induced ALI, severe thrombocytopenia was associated with alveolar haemorrhage whereas animals with the same degree of thrombocytopenia without LPS-induced lung inflammation did not spontaneously bleed into the lungs (Goerge et al., 2008). This is consistent with my findings whereby haemorrhaging was observed in infected mice depleted of circulating platelets. This suggests that platelets are required for maintenance of the endothelial barrier and this may be mediated by platelet and endothelial selectins, since studies have demonstrated P-selectin deficient mice displayed enhanced bacterial outgrowth in their lungs and distant organs (de Stoppelaar, 2014). That said, the intrapulmonary administration of Evan’s Blue dye could have been used as a more representative measure of pulmonary alveolar integrity, since bacteria are disseminating from the lungs to the distal organs in my model. These data suggest that platelets may play a requisite role in maintaining the integrity of the pulmonary vasculature under basal conditions, preventing bacterial dissemination from the lung to the distal organs.

Platelets have previously been reported to contribute towards pulmonary neutrophil recruitment in response to infection in animal models of sepsis (Asaduzzaman et al., 2009), in addition to leukocyte recruitment induced by allergic and non-allergic insults (Pitchford et al., 2003) (Kornerup et al., 2010) (Amison et al., 2015) (Amison et al., 2017). This was consistent
with my findings, whereby I observed a significant decrease in pulmonary neutrophil recruitment in platelet depleted mice. Although, other studies have reported that thrombocytopenia did not influence lung inflammation or neutrophil recruitment in response to infection (Kahn et al., 2013) (de Stoppelaar, 2014), whereby there was no significant difference in pulmonary neutrophil accumulation between thrombocytopenic and non-thrombocytopenic mice. This suggests a platelet-independent recruitment of neutrophils to the lung and perhaps explains why I observed partial neutrophil recruitment in response to infection in my studies. However, another explanation could also be through the increased haemorrhaging of the lungs observed in infected mice depleted of circulating platelets, resulting in vascular leakage into the lung tissue distorting the cellular infiltrate response to infection.

Neutrophils are the first line of innate defence against infection, directly engulfing and killing bacteria in blood and tissues during infection (Clark et al., 2007), whilst they can also release dense web-like structures of DNA, called NETs, which possess proteolytic activity (Yost et al., 2015) (Clark et al., 2007). These NETs have been shown to exhibit antimicrobial activity by trapping and killing bacteria during infection (McDonald et al., 2012) (Clark et al., 2007) (Caudrillier et al., 2012). This observed reduction in pulmonary neutrophil recruitment may therefore account for the worsened phenotype observed in platelet depleted mice, through decreased NETosis. However, the role of platelets in inducing NET formation from neutrophils was not assessed in this model and requires further evaluation.

Numerous studies have stated that platelets and platelet signalling factors, including PAF, can induce NET formation (Kraemer et al., 2011) (Yost et al., 2015) (McDonald et al., 2012) following platelet activation via platelet TLR4 in response to a bacterial trigger, such as LPS.
(Clark et al., 2007). For example, in sepsis, activation of platelet TLR4 is a potent stimulus for neutrophil activation and NETosis (Caudrillier et al., 2012). Intriguingly (Clark et al., 2007) have demonstrated that platelets are requisite for LPS-induced neutrophil NET formation, since high concentrations of LPS were unable to induce NET formation from neutrophils directly. In comparison, depletion of circulating platelets was shown to prevent the release of NETs and enhance bacterial dissemination in an E.coli infection model (McDonald et al., 2012), highlighting that the release of intravascular NETs is dependent on contact dependent platelet-neutrophil interactions. Similarly, studies (Kraemer et al., 2011) have shown that human platelets express and release type 1 beta-defensins in response to infection, which are responsible for NET formation (Kraemer et al., 2011). These data may provide a possible additional mechanism by which platelets may be involved in indirect killing of bacteria.

Interestingly, the in situ bacterial growth rate observed in the P.aeruginosa RP73 model (1.5 logs per 24 hours) is comparable to that reported for the same strain in in vitro cultures over the same time period (Bragonzi et al., 2012). This led to the hypothesis that platelets may act independent of neutrophils to limit bacterial growth and serve an additional function of direct host defence against infection, given that platelets have previously been shown to interact directly with bacteria independent of neutrophils (Kraemer et al., 2011) (Ali et al., 2017). To this end, bacterial growth curves were performed both in the presence and absence of platelets in vitro. Here a significant reduction in pulmonary bacteria load was observed at both 6 and 8 hours in the presence of platelets when compared to bacteria alone, suggestive of a direct mechanism by which platelets can limit bacterial growth in vitro. Indeed, other published literature has suggested a direct mechanism of platelet modulation on bacterial growth. (Ali et al., 2017) indicated that platelets kill S.aureus directly in an activation-dependent manner, whilst (Kraemer et al., 2011) have demonstrated that platelets can limit
the growth rate of *S. aureus in vitro*. These findings supported the fact that the platelet is the first and most abundant cell type present, indicate the possibility that platelets serve as an early and independent function of direct host defence against bacterial pathogens. Furthermore, previous published work has suggested that platelets possess the capacity to directly internalise and phagocytose pathogens (Youssefian et al., 2002); and indeed, platelets contain many mediators with antimicrobial activity that are secreted from their granules upon platelet activation (Yeaman, 2014). However, the relative contribution of platelet microbicidal activity to host defence against infection remains unclear and further work is required to fully determine the mechanisms by which platelets independently modulate bacterial growth/survival.

In order to elucidate the mechanism by which platelets defend against infection and to determine whether there were specific components of platelets that mediate protection against infection, additional studies were performed to investigate potential mechanisms. Literature published by (Clark et al., 2007) and (Caudrillier et al., 2012) indicated that platelet TLR4 induces NET formation from activated neutrophils, therefore I speculated that a worsened phenotype would be observed using TLR4 knockout mice. As expected pulmonary neutrophil recruitment was reduced, however the severity of infection was not enhanced in TLR4 knockout mice when compared to wild type mice, suggesting a more direct mechanism for platelets. In contrast, studies performed by (Oliveira et al., 2010) demonstrated a higher mortality in TLR4 deficient mice following parasitic infection with *Trypanosoma cruzi*. However, these studies highlighted that older (>7 weeks) TLR4 deficient mice did not elicit enhanced susceptibility to infection, which perhaps helps to explain the data observed in the current study.
Recent studies have also postulated that the purinergic receptors exert a protective role against infection, whereby it was reported that P2Y₁ and P2Y₂ single and double knockout mice displayed increased susceptibility and increased morality to pulmonary infection with \textit{P. aeruginosa} (Geary et al., 2005). Therefore, the purine (ATP/ADP) hydrolysing enzyme, Apyrase, was used to investigate the role of ATP/ADP and purinergic receptors in the regulation of pulmonary infection. My results provided compelling evidence to suggest that activation of the purinergic receptors exerts a protective effect against infection, since the inhibition of these receptors enhanced the pathogenicity of \textit{P. aeruginosa} infection, with enhanced pulmonary bacterial load, bacterial dissemination and increased weight loss.

Administration of Apyrase also induced a significant reduction in both pulmonary total cell and neutrophil recruitment induced by \textit{P. aeruginosa} infection. This is consistent with findings published by (Kukulski et al., 2010), whereby Apyrase was seen to abrogate LPS-induced neutrophil migration.

The contribution of the purinergic receptors to host defence remains unclear, however (Trier et al., 2008) suggests an association between purinergic receptor inhibition (P2X₁/P2Y₁₂) and decreased production of PMPs and kinocidins from platelets. To this end, I sought to identify specific purinergic receptors implicated in host defence through the use of purinergic receptor antagonists. Consistent with previous findings (Amison et al., 2017), results demonstrated that inhibition of the P2Y₁ and P2Y₁₄ receptors significantly attenuated infection induced pulmonary neutrophil recruitment by 2-3 fold. It is therefore plausible to suggest that these receptors are involved in pulmonary neutrophil recruitment in this model, comparable to that observed in the literature (Amison et al., 2017) (Amison et al., 2015). Intriguingly, inhibition of the P2Y₁₄ receptor with PPTN demonstrated evidence of enhanced pulmonary bacterial load and bacterial dissemination to the kidney. The increase in
pulmonary bacterial load observed following P2Y\textsubscript{14} receptor inhibition was equivalent to the increase observed following depletion of circulating platelets in mice. This is perhaps suggestive of an involvement of the purinergic receptors in host defence against infection with \textit{P. aeruginosa}, although further work is required to investigate this further. It is also possible to postulate that the worsened phenotype may be as a result of a diminished neutrophil population at the site of infection and reduced NETosis, in addition to a direct function of platelets.

(Trier et al., 2008) have reported the platelet anti-\textit{staphylococcal} responses occur through the P2X\textsubscript{1} and P2Y\textsubscript{12} purinergic receptors, since Apyrase, Suramin (a general P2 receptor antagonist), Pyridoxal (a P2X\textsubscript{1} receptor antagonist) and Cangrelor (a P2Y\textsubscript{12} receptor antagonist) reduced levels of PMP present in reaction supernatant. These studies suggest that bacteria induced platelet activation results in the release of ATP and ADP (Figure 6.1), which subsequently activates resting platelets within close proximity to augment platelet activation. This response is inhibited using the ATP/ADP hydrolysing agent, Apyrase (Figure 6.1). In addition, (Trier et al., 2008) highlight that activated platelets release PMPs to target bacteria and this response can be inhibited using both P2X\textsubscript{1} and P2Y\textsubscript{12} purinergic receptors (Figure 6.1).

It is thought that P2Y\textsubscript{14} is coupled to the same G-protein as P2Y\textsubscript{12} (G\textsubscript{i}) (Dovlatova et al., 2008), however the exact signalling mechanism associated with P2Y\textsubscript{14} remains controversial. In the current study no effects were observed following administration of P2X\textsubscript{1} and P2Y\textsubscript{12} receptor antagonists, demonstrating conflicting results and highlighting the requirement for further research to deduce the signalling pathways associated with P2Y\textsubscript{14}. To this end, I propose that inhibition of the P2Y\textsubscript{14} receptor using PPTN was associated with a worsened phenotype due to the inhibition of the release of PMPs from platelets, thereby reducing the direct killing
effect of platelets (Figure 6.1), although this requires further investigation. It is worthy to note that (Trier et al., 2008) did not investigate the effect of P2Y\textsubscript{14} receptor antagonism on the platelet anti-staphylococcal response and indeed, different platelet signalling pathways and receptors may be utilised by species of bacteria, which may help explain the results obtained here.

Figure 6.1 A Proposed Mechanism of Action of the Platelet Antimicrobial Response

Adapted from (Trier et al., 2008)
What’s more, these receptor antagonists do not specifically target platelet purinergic receptors and indeed the use of P2 receptor knockout mice may be a useful tool for investigating purinergic receptor function in host defence against infection, although this was beyond the scope of the project.

A role for purinergic receptors in response to infection has been detailed elsewhere in the literature (Coutinho-Silva and Ojcius, 2012) (Miller et al., 2011), whereby a loss of function in the human P2X7 receptor led to increased susceptibility to infection, bolstering claims of purinergic involvement in infection, however this receptor subtype is not expressed by platelets suggesting that its effects are attributed to different cell types. It is reported that different pathogens use different strategies to manipulate purinergic signalling, therefore further identification of these may clarify platelet involvement in infection and host defence in my model.

6.3 The Use of a Murine Model of Pulmonary Infection for Therapeutic Analysis

Having established and validated a murine model of pulmonary infection with *P. aeruginosa* and MRSA, another part of this project was aimed at demonstrating the use of the model for therapeutic analysis with novel compounds.

The rapid era of antibiotic discovery led to overconfidence that infectious diseases could be eradicated (Coates et al., 2002). However, the overuse and misuse of antibiotics has led to a crisis where many antibiotics are no longer effective against even the simplest infections (Laxminarayan, 2014). The emergence of antibiotic resistance has led to an urgent need for
novel approaches for treating infectious diseases. One such approach is the development of enhancer compounds, which act by restoring sensitivity of resistant bacteria to currently available antibiotics. (Hu, 2013) and colleagues have developed such a drug, the antibiotic enhancer, HT61, a small quinolone derived compound as an exemplar of this novel approach. Prior to testing this novel enhancer compound in vivo, in vitro studies were performed by collaborators to compare HT61 to commercially available antibiotics, including Amoxicillin and Levofloxacin, and to test its activity against different strains of bacteria (Hu et al., 2010). This research demonstrated that HT61 as a singular treatment produced a 7 log CFU/ml reduction against MSSA, although no activity was observed against gram-negative bacteria, including P.aeruginosa (Hu et al., 2010). Subsequent in vitro experiments were performed using HT61 in combination with commercially available antibiotics, with the aim of restoring sensitivity to drug resistant bacteria (Hu, 2013). These studies reported an enhancement of the activity of older generation antibiotics (gentamicin, neomycin and chlorhexidine) when used in combination with HT61 (Hu, 2013) in vitro against MRSA and MSSA, eradicating the total bacterial population by 2-8 hours.

To this end, we sought to investigate whether the effects of HT61 observed in vitro could be reproduced in this in vivo model of pulmonary infection. Here I demonstrated for the first time that the novel enhancer compound HT61 is able to potentiate the effect of low doses of Tobramycin on attenuating the pulmonary bacterial load induced by two drug resistant clinical isolate strains of the gram-negative P.aeruginosa, RP73 and NN2, whilst having no direct anti-microbial effect itself. Furthermore, this combination approach may lead to the use of lower doses of antibiotics, particularly aminoglycosides, which have significant toxic side-effects.
Chapter VI: Discussion

It has previously been reported that combination treatments using different antibiotic classes induced synergistic antimicrobial effects against Tobramycin resistant strains of *P. aeruginosa* (Chan and Zabransky, 1987). In comparison to my work, this research detailed the synergistic effect following co-treatment of Tobramycin and Ceftazidime *in vitro* using the checkerboard technique. In addition, the combination treatment of Colistin and Ceftazidime had an additive effect against Tobramycin resistant *P. aeruginosa*, demonstrated using the time kill curve technique (Chan and Zabransky, 1987). Such observations highlight the potential beneficial effects of utilising combination treatments and enhancer compounds to optimally kill bacteria. These observations have been supported by other studies (Pieri et al., 2014), which have demonstrated an enhancement of the activity of Doxycycline with ianthelliformisamine derivatives against resistant Gram-negative bacteria. These studies, consistent with my work, highlight the importance of combining treatments in order to slow the emergence of resistance and reduce the concentrations of single treatment antibiotics. However, these previous studies have been largely *in vitro* and I have now demonstrated that it is possible to enhance the effect of Tobramycin *in vivo* against lung infections with *P. aeruginosa*, by restoring the sensitivity of resistant strains to this antibiotic.

However, despite the enhancing effect of HT61 I observed against the two Tobramycin resistant strains of *P. aeruginosa*, I saw no significant reduction in pulmonary bacterial load following co-treatment of Tobramycin and HT61 against the Tobramycin susceptible strain of *P. aeruginosa* PAO1. This observation contrasts with other findings (Chan and Zabransky, 1987), that have demonstrated a synergistic effect of Tobramycin in combination with azlocillin, piperacillin, ceftazidime and imipenem against the Tobramycin susceptible strain of *P. aeruginosa* PAO1. Other investigators (Pieri et al., 2014) have demonstrated that
ianthelliformisamine derivatives, as enhancer compounds, restore the activity of Doxycycline against *P. aeruginosa* PAO1 *in vitro*. Comparable results were observed in work carried out by (Borselli et al., 2017), whereby polyamine derivatives were used as antibiotic enhancers to restore sensitivity to Doxycycline against *P. aeruginosa* strain PAO1. My results suggest that HT61 may be best utilised in combination with Tobramycin against resistant organisms, rather than with Tobramycin in the treatment of sensitive strains.

HT61 was initially developed as a topical agent for the decolonisation of nasal *S. aureus* and mini pig skin was used to test HT61 for potential dermal toxicity, which demonstrated 14 days of administration to 10% of the body surface had no related adverse effects (irritation, inflammation, itching) (Hu et al., 2010) (Hu, 2013). Consequently prior to initiating *in vivo* studies, little information was known regarding the pharmacokinetics/ pharmacodynamics and the bioavailability of HT61. Similarly, no prior experiments were performed to deduce the safety profile of HT61, therefore the optimum concentrations, dosing regimens and route of administration of HT61 may not have been adequately identified for these experiments. The synergistic effect observed against RP73 and NN2 may in fact be augmented if additional experiments were performed to deduce further information about HT61, including drug toxicology and bioavailability, and similarly, an effect may be observed against PAO1 and MRSA following administration of HT61 at an optimum concentration, dosing regimens and route.

No significant reduction in pulmonary bacterial load was observed with HT61 and Vancomycin against the MRSA strain USA300 *in vivo*, which was surprising as other work has demonstrated a significant augmentation of the bactericidal efficacy of older generation antibiotics *in vitro* (Gentamycin, Neomycin, Chlorhexidine) in the presence of HT61 by (Hu, 2013) (Hu et al.,
2010). However, as this is the first study to investigate HT61 in the lung \textit{in vivo}, it is plausible that the optimal dosing regimen has not yet been identified and as discussed previously, further work is required to optimise the \textit{in vivo} therapeutic regimen of HT61 to enhance the reduction in pulmonary bacterial load when administered with different antibiotics.

Using membrane potential and ATP release assays, it has been reported that HT61 acts on the bacterial cell membrane, causing cell depolarisation and the release of the intracellular contents of the cell (Hubbard et al., 2017), leading to bacterial destruction. Furthermore, HT61 at high concentrations (40 µg/mL) has been shown to nick the bacterial cell wall structure following 10 minutes of treatment (Hu et al., 2010). This has been suggested as a possible mechanism of action of HT61 as this would increase the permeability of the bacterial membrane allowing greater cellular access to the antibiotic (Hu et al., 2010). It is also thought that when HT61 exerts its action on the bacterial cell membrane, the membrane-embedded enzymes that are involved in anaerobic metabolism and disrupted (Hu, 2013). As a result, non-multiplying bacteria are required to activate their anaerobic metabolic pathways when they are oxygen deprived and consequently become susceptible to killing by compounds that poison the respiratory chain (Hu, 2013). This provides a plausible explanation for my \textit{in vivo} findings, although the mechanisms of action of this compound requires further research and is beyond the scope of this project.

\textbf{Future Work}

In chapter IV it was demonstrated that the depletion of circulating platelets results in enhanced pathogenicity of infection with \textit{P. aeruginosa} and MRSA, as measured by enhanced
weight loss, a higher bacterial burden and evidence of systemic infection. Platelets were also seen to decrease pulmonary neutrophil recruitment in response to infection. This research has raised several key questions, including what is the nature of the interaction between platelets and *P. aeruginosa* and MRSA and can activated platelets directly engulf bacteria in this model? This would provide a plausible mechanism for the worsened phenotype observed following experimentally induced platelet depletion. What's more, this work has highlighted the points of whether bacteria can trigger the destruction of host tissue in a manner that necessitates the protective effect of platelets and whether platelet derived PMPs and kinocidins can potentially exert a direct bacterial killing effect both *in vitro* and *in vivo*.

Whilst modulation of the purinergic pathways appeared to be associated with a worsened phenotype comparable to that observed following depletion of circulating platelets, it remains unclear as to why activation of P2Y14 exerts a protective effect against infection. Future work is therefore required to investigate in more detail how purinergic signalling is affected during infection, and whether this effect is replicated in experimental models of both gram-negative and gram-positive infection.

I have demonstrated that platelets can directly modulate bacterial growth kinetics, however future work is required to elucidate the relative contribution of platelet microbicidal activity to host defence against infection. It has previously been demonstrated that platelet reinfusion reduces mortality in LPS-induced endotoxemia and a bacterial infusion sepsis model (Xiang et al., 2013) and the protective role of platelets in this context has highlighted the potential beneficial effect of platelet transfusions in infection and sepsis (Yeaman, 2010). Future experiments could therefore be performed to determine whether the protective role of
platelets could be reinstated in conditions such as sepsis and CF, where platelets dysfunction or thrombocytopenia is observed.

The murine model of pulmonary infection that was established during the course of this project could be extended to 14-28 days post infection to be more representative of the processes occurring in chronic diseases, including CF and COPD. Heparan Sulfate competitors have been shown to attenuate *P. aeruginosa* lung infection and decrease *P. aeruginosa* biofilm formation upon treatment (Lorè et al., 2018), however most studies that investigate the effect of certain compounds on biofilm formation are performed *in vitro*. In the future, this model could be adapted and used to investigate the effect of certain antimicrobials on biofilm formation *in vivo*, or even to examine platelet involvement in biofilm formation and tissue remodelling in the context of infection.

Concerning the use of the model for therapeutic analysis, further experiments could be performed to determine the mechanism of action of HT61, in addition to toxicity, bioavailability and pharmacokinetics studies. These results may highlight the most effective dose regime, route of administration and concentration of HT61 to ensure total bacterial eradication. Several chronic respiratory diseases are characterized by incessant cycles of chronic airway inflammation, tissue remodelling and persistent infections (Lorè et al., 2018). Aggressive treatment regimens, using high, sometimes toxic doses of antibiotics are used and therefore a better understanding of the pathophysiological mechanisms underlying infection may improve future treatments. Different isolates of *P. aeruginosa* display considerable variation in both their phenotypic and genotypic characteristics, including swimming and twitching motility, expression of virulence factors and protease secretion (Cigana et al., 2018) and this consequently affects their susceptibility to antimicrobials.
Final Remarks

Here I provide compelling evidence to suggest that platelets are implicated in infection and host defence. I have demonstrated that intrapulmonary administration of bacteria induces platelet activation, as measured by the production of PF-4, RANTES and platelet-neutrophil complexes. Furthermore, I have revealed that infection induces peripheral thrombocytopenia with accumulation of activated platelets in lung tissue. The experimental depletion of circulating platelets in a murine model of pulmonary infection was associated with a worsened phenotype in both gram-negative and gram-positive infection, enhancing mortality, increasing pulmonary bacterial load and bacterial dissemination to the distal organs. This clearly highlights a critical role for platelets in host defence. I have suggested that signalling at the platelet purinergic receptors is implicated in infection, however further work is required to elucidate the mechanism by which platelets defence against infection.

References

1139–1146.

Persistent cystic fibrosis isolate Pseudomonas aeruginosa strain RP73 exhibits an under-acylated LPS structure responsible of its low inflammatory activity. *Molecular Immunology*, 63(2), 166–175. https://doi.org/10.1016/j.molimm.2014.04.004

Physiology, 313(6), 10116-1029. https://doi.org/10.1152/ajplung.00023.2017

References

References

meningococcal disease is characterized by early neutrophil but not platelet activation and increased formation and consumption of platelet-neutrophil complexes. *Journal of Leukocyte Biology*, 73(6), 722–730. https://doi.org/10.1189/jlb.1002509

References

Scrivens, M., & Dickenson, J. M. (2005). Functional expression of the P2Y 14 receptor in murine T-

References

White, J. G. (2005). Platelets are covercytes, not phagocytes: Uptake of bacteria involves channels of
the open canalicular system. *Platelets*, 16(2), 121–131. https://doi.org/10.1080/09537100400007390

