Intraperitoneal Delivery of Acetate-Encapsulated Liposomal Nanoparticles for Neuroprotection of the Penumbra in a Rat Model of Ischemic Stroke

Po-Wah Soa, Antigoni Ekonomoua, Kim Galleya, Leigh Brodyb,
Meliz Sahuri-Arisoylu, Ivan Rattrayc, Diana Casha, Jimmy D. Bellb

aKing’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Neuroimaging, London, United Kingdom.
bUniversity of Westminster, Research Centre for Optimal Health, London, United Kingdom.
cKing’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, United Kingdom.

Corresponding author:

Dr. Po-Wah So,

King's College London,

Institute of Psychiatry, Psychology and Neuroscience,

Department of Neuroimaging,

Maurice Wohl Clinical Neuroscience Institute,

5, Cutcombe Road,

London. SE5 9RX

Email: po-wah.so@kcl.ac.uk

Telephone: +44 (0)20 7848 5453
Supplemental Data

Figure 1. Daily body weights of rats treated with control and liposome encapsulated acetate (LITA) during the two weeks after mid-cerebral artery occlusion.

Figure 2: Typical *in vivo* T2-weighted coronal magnetic resonance images of the brain at minus 0.10 Bregma of control and liposomal-encapsulated acetate (LITA) treated rats at two weeks after mid-cerebral artery occlusion. White and yellow arrows indicate the infarct area and anterior lateral ventricle, respectively. Scale bar: 3.0 mm.
Figure 3: Immunofluorescence for mitochondrial density (MTCO1), lipid peroxidation (malondialdehyde, MDA), neural progenitors (nestin), proliferation (Ki67), histone H3 acetylation (accHH3), and apoptosis (appoptosin) in control or liposomal encapsulated acetate (LITA)-treated animals at 2 weeks after mid-cerebral artery occlusion. Scale bar: 50 mm.