Phosphodiesterase 10A Pet Imaging in Early Parkinson's Disease

Pagano, Gennaro

Awarding institution: King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.

END USER LICENCE AGREEMENT

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to:

- Share: to copy, distribute and transmit the work

Under the following conditions:

- Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work).
- Non Commercial: You may not use this work for commercial purposes.
- No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above.

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
PHOSPHODIESTERASE 10A PET IMAGING IN EARLY PARKINSON’S DISEASE

Department of Basic & Clinical Neuroscience

Institute of Psychiatry, Psychology and Neuroscience

King's College London

This dissertation is submitted to King’s College London for the degree of Doctor of Philosophy

July 2018

by

Dr. Gennaro Pagano

Dissertation for the degree of PhD in Clinical Neuroscience
DECLARATION

This dissertation is the result of my own work and that all the material has not been written for me, in whole or in part, by any other person. I also undertake that any quotation or paraphrase from the published or unpublished work of another person has been duly acknowledged in the work which I present for examination. This dissertation has not been previously submitted, in part or whole, to any university or institution for any degree, diploma, or other qualification.

This is to certify that I have carried out the studies embodied in this thesis under the supervision of Professor Marios Politis and Professor Mitul Metha.

Signed:

Date: 31st July 2018

Dr. Gennaro Pagano, MSc, MD

King’s College London
ABSTRACT

Recent work has shown loss of phosphodiesterase 10A (PDE10A) expression in middle-stage and advanced treated patients with Parkinson’s disease, which was associated with motor symptom severity. In this thesis, I used molecular imaging to evaluate whether the reduction of PDE10A expression is characteristic of the early stages of the Parkinson’s disease and is related to disease severity and other markers of Parkinson’s disease pathology via the following objectives:

1) By using $^{[11}C]IMA107$ PET imaging to assess the integrity of PDE10A enzyme in vivo in early de novo and early levodopa-treated patients with Parkinson’s disease compared to age- and sex-matched healthy control subjects (Project 1)

2) Compare and investigate the associations between the expression of PDE10A with known molecular markers of dopaminergic dysfunction in Parkinson’s patients such as loss of dopamine transporters, as quantified with $^{[11}C]PE2I$ PET and $^{[123}I]FP$-CIT SPECT molecular imaging (Project 2)

3) Explore the associations between the expression of PDE10A with MRI markers of Parkinson’s pathology such as iron depositions (assessed with susceptibility-weighted MR imaging), neuromelanin loss (assessed with neuromelanin sensitive MR imaging) and changes in structural volumetric (assessed with T1 MR imaging) and connectivity (assessed with diffusion tensor MR imaging) (Project 3)

4) Investigate for associations between the expression of PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc).

Overall, the findings of this thesis indicate that loss of PDE10A expression is a very early phenomenon during Parkinson’s disease and is associated with the disease duration and gradual increase of motor symptom burden in different disease stages. PDE10A PET was not associated with non-motor symptoms. PDE10A PET shows a diagnostic power similar to DAT PET and DAT SPECT, but greater than any MRI imaging modalities. This suggests PDE10A imaging as a robust alternative worth exploring further for use in clinical practice.
TABLE OF CONTENTS

DECLARATION OF AUTHORSHIP ... 1
ABSTRACT .. 2
TABLE OF CONTENTS ... 3
LIST OF FIGURES ... 5
LIST OF TABLES ... 6
PEER-REVIEWED PUBLICATIONS RELATED TO THIS PHD ... 7
ACKNOWLEDGEMENTS ... 8
ABBREVIATIONS ... 9
CHAPTER 1. INTRODUCTION .. 13
1.1 PARKINSON’S DISEASE ... 14
1.2 PDE10A IN PARKINSON’S DISEASE .. 18
1.3 NEUROIMAGING TECHNIQUES IN PARKINSON’S DISEASE ... 32
1.3.1 SPECT AND PET MOLECULAR IMAGING ... 32
1.3.2 MRI .. 46
1.4 HYPOTHESIS AND AIMS .. 66
CHAPTER 2. METHODS ... 68
2.1 STUDY PLANNED .. 69
2.2 POPULATION ... 70
2.2.1 INCLUSION CRITERIA .. 70
2.2.2 RECRUITMENT ... 73
2.3 CLINICAL ASSESSMENTS ... 74
2.3.1 MOTOR SCALES .. 76
2.3.2 NON-MOTOR SCALES .. 77
2.3.3 QUALITY OF LIFE .. 81
2.3.4 NEUROPSYCHOLGICAL BATTERY .. 81
2.4 MOLECULAR IMAGING ... 83
2.4.1 SPECT DAT SCAN .. 83
2.4.1.1 SCANNING DETAILS .. 83
2.4.1.2 IMAGING ANALYSES ... 84
LIST OF FIGURES

Figure 1. Roles of PDE10A in the control of basal ganglia—thalamocortical circuitry .. 20
Figure 2. PDE10A expression in Parkinson’s disease ... 27
Figure 3. Chemical structure of potential PET ligand for in vivo imaging of PDE10A ... 40
Figure 4. MIAKAT™ Pipeline .. 86
Figure 5. ROIs for Substantia nigra and Locus coeruleus ... 97
Figure 6. PDE10A expression in the groups of PD patients and healthy controls ... 111
Figure 7. Altered PDE10A expression in anatomically defined brain regions of PD patients 112
Figure 8. Correlations between PDE10A and disease duration in PD patients ... 113
Figure 9. Correlations between PDE10A to motor symptoms in PD patients .. 114
Figure 10. DAT SPECT (A) and PET (B) expression in the groups of Parkinson’s disease patients and healthy controls ... 128
Figure 11. Altered DAT and PDE10A expression in anatomically defined brain regions of Parkinson’s disease patients .. 130
Figure 12. Correlations between DAT and disease duration in PD patients .. 131
Figure 13. Correlations between DAT and motor symptoms in PD patients .. 133
Figure 14. Correlations between PDE10A and DAT imaging in PD patients .. 137
Figure 15. SWI MRI markers in the groups of PD patients and healthy controls .. 154
Figure 16. NM MRI markers in the groups of PD patients and healthy controls .. 155
Figure 17. DTI MRI markers in the groups of PD patients and healthy controls ... 156
Figure 18. Altered SWI and NM markers in the substantia nigra of PD patients .. 157
Figure 19. Correlations between MRI and motor symptoms in PD patients .. 160
Figure 20. Correlations between PDE10A and MRI imaging in PD patients .. 163
LIST OF TABLES

TABLE 1. Demographic and clinical characteristics of cohorts of early *de novo* and early treated patients with idiopathic Parkinson’s disease and healthy controls............................... 102

TABLE 2. $[^{11}]$CIMA107 BPND in early *de novo* and early treated patients with idiopathic Parkinson’s disease compared to healthy controls ... 110

TABLE 3. $[^{11}]$CPE2I BPND and $[^{123}]$I FP-CIT SBR in early *de novo* and early treated patients with idiopathic Parkinson’s disease compared to healthy controls... 127

TABLE 4. Freesurfer volumes, microstructural DTI, SWI iron depositions and NM changes in subcortical areas and substantia nigra of early *de novo* and early treated idiopathic Parkinson’s disease patients compared to healthy controls ... 153
PEER-REVIEW PUBLICATIONS RELATED TO THIS PHD

*co-first authorship

Acknowledgments

I would like to express my sincere gratitude to my first supervisor Professor Marios Politis for his unwavering support during my PhD research. His guidance has been a constant help throughout my time of intellectual growth and allowed me to think as a truly independent research scientist. His advice on both research studies as well as on my career path has been priceless. I could not have imagined having a better advisor and mentor for my PhD study.

I would like to thank my second supervisor Professor Mitul Metha. His brilliant comments and suggestions have made the journey lighter and I am incredibly grateful for all his input during the past three years.

I thank all my colleagues at the Neurodegeneration Imaging Group for all the stimulating discussions, all the time spent working together before deadlines and for all the fun we have had in the last three years:

I would like to thank my wonderful Emanuela and my 2-year-old son Gabriele for their continuous support during the nights spent to write this thesis, for all their love and encouragement. I would also like to thank my parents, Luigi and Fiorella who raised me with a love for science and physically, mentally and financially supported me in all my pursuits. Thank you for inspiring me to follow my dreams. My brother, Raffaele has always believed in me and wanted the best for me.

My family is the most important people in my world and I dedicate this thesis to them.

Thank you.

London, 31st July 2018
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-OHDA</td>
<td>6-hydroxydopamine</td>
</tr>
<tr>
<td>AC</td>
<td>Adenylate cyclase</td>
</tr>
<tr>
<td>AADC</td>
<td>Aromatic L-Amino Acid Decarboxylase</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer's Disease</td>
</tr>
<tr>
<td>ADi</td>
<td>Axial diffusivity</td>
</tr>
<tr>
<td>ADC</td>
<td>Apparent diffusion coefficient</td>
</tr>
<tr>
<td>AMPA</td>
<td>2-Amino-3-(5-Methyl-3-Oxo-1,2-Oxazol-4-Yl) Propanoic Acid</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood-Brain Barrier</td>
</tr>
<tr>
<td>BDI-II</td>
<td>Beck Depression Inventory II</td>
</tr>
<tr>
<td>BP<sub>ND</sub></td>
<td>Nondisplaceable Binding Potential</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CBD</td>
<td>Corticobasal degeneration</td>
</tr>
<tr>
<td>cGMP</td>
<td>cyclic guanine monophosphate</td>
</tr>
<tr>
<td>CIT (FP)</td>
<td>Ioflupane, ligand for DAT</td>
</tr>
<tr>
<td>CREB</td>
<td>cAMP response element-binding protein</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal Fluid</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>DAT</td>
<td>Dopamine Transporter</td>
</tr>
<tr>
<td>DJ-1</td>
<td>Deglcase 1 Gene</td>
</tr>
<tr>
<td>DLB</td>
<td>Dementia with Lewy bodies</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DTI</td>
<td>Diffusion Tensor Imaging</td>
</tr>
<tr>
<td>DSI</td>
<td>Diffusion spectrum imaging</td>
</tr>
<tr>
<td>EDS</td>
<td>Excessive Daytime Sleepiness</td>
</tr>
<tr>
<td>ESS</td>
<td>Epworth Sleepiness Scale</td>
</tr>
<tr>
<td>ET</td>
<td>Essential tremor</td>
</tr>
<tr>
<td>FA</td>
<td>Fractional Anisotropy</td>
</tr>
<tr>
<td>GDS</td>
<td>Geriatric Depression Scale</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>H&Y</td>
<td>Hoehn & Yahr</td>
</tr>
<tr>
<td>IMA107</td>
<td>PET ligand for PDE10A</td>
</tr>
<tr>
<td>KCL</td>
<td>King’s College London</td>
</tr>
<tr>
<td>L-DOPA</td>
<td>Levodopa</td>
</tr>
<tr>
<td>LIDs</td>
<td>Levodopa-induced dyskinesias</td>
</tr>
<tr>
<td>LRRK2</td>
<td>Leucine-Rich Repeat Kinase 2</td>
</tr>
<tr>
<td>MAO-B</td>
<td>Monoamine oxidase B</td>
</tr>
<tr>
<td>MBq</td>
<td>Megabecquerel</td>
</tr>
<tr>
<td>MCI</td>
<td>Mild Cognitive Impairment</td>
</tr>
<tr>
<td>MD</td>
<td>Mean diffusivity</td>
</tr>
<tr>
<td>MDS-UPDRS</td>
<td>Movement Disorder Society Unified Parkinson’s Disease Rating Scale</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini-Mental State Examination</td>
</tr>
<tr>
<td>MoCA</td>
<td>Montreal Cognitive Assessment</td>
</tr>
<tr>
<td>MPRAGE</td>
<td>Magnetization Prepared Rapid Acquisition Gradient Echo</td>
</tr>
<tr>
<td>MR</td>
<td>Magnetic Resonance</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MSA</td>
<td>Multiple system atrophy</td>
</tr>
<tr>
<td>mSv</td>
<td>Millisievert</td>
</tr>
<tr>
<td>NET</td>
<td>Noradrenaline transporter</td>
</tr>
<tr>
<td>NHS</td>
<td>National Health Service</td>
</tr>
<tr>
<td>NIG</td>
<td>Neurodegeneration Imaging Group</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-Methyl-D-Aspartate</td>
</tr>
<tr>
<td>NMSS</td>
<td>Non-Motor Symptom Scale</td>
</tr>
<tr>
<td>NM-MRI</td>
<td>Neuromelanin-sensitive MRI</td>
</tr>
<tr>
<td>PARK2</td>
<td>Parkin Gene</td>
</tr>
<tr>
<td>PD</td>
<td>Parkinson’s Disease</td>
</tr>
<tr>
<td>PDE</td>
<td>Phosphodiesterase</td>
</tr>
<tr>
<td>PDE10A</td>
<td>Phosphodiesterase 10A</td>
</tr>
<tr>
<td>PDQ-39</td>
<td>Parkinson’s Disease Questionnaire</td>
</tr>
<tr>
<td>PDSS</td>
<td>Parkinson Disease Sleep Scale</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PE2I</td>
<td>Ligand for DAT</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PINK1</td>
<td>PTEN Induced Putative Kinase 1 Gene</td>
</tr>
<tr>
<td>PKA</td>
<td>cAMP-dependent protein kinase</td>
</tr>
<tr>
<td>PP-1</td>
<td>protein phosphatase-1</td>
</tr>
<tr>
<td>PSP</td>
<td>Progressive Supranuclear Palsy</td>
</tr>
<tr>
<td>QSM</td>
<td>Quantitative susceptibility mapping</td>
</tr>
<tr>
<td>RBD</td>
<td>REM Sleep Behaviour Disorder</td>
</tr>
<tr>
<td>RBSQ</td>
<td>REM Sleep Behaviour Sleep Disorder Questionnaire</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Controlled Trial</td>
</tr>
<tr>
<td>RD</td>
<td>Radial diffusivity</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>ROI</td>
<td>Region-of-interest</td>
</tr>
<tr>
<td>SCOPA-AUT</td>
<td>Scales for Outcomes in PD-Autonomic dysfunction</td>
</tr>
<tr>
<td>SERT</td>
<td>Serotonin transporter</td>
</tr>
<tr>
<td>SN</td>
<td>Substantia Nigra</td>
</tr>
<tr>
<td>SNpc</td>
<td>Substantia nigra pars compacta</td>
</tr>
<tr>
<td>SNCA</td>
<td>Synuclein Gene</td>
</tr>
<tr>
<td>SNP</td>
<td>Single Nucleotide Polymorphism</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SPECT</td>
<td>DAT single-photon emission computed tomography</td>
</tr>
<tr>
<td>SRTM</td>
<td>Simplified Reference Tissue Model</td>
</tr>
<tr>
<td>STEP</td>
<td>Striatal-enriched tyrosine phosphatase</td>
</tr>
<tr>
<td>SYNJ1</td>
<td>Synaptojanin 1 Gene</td>
</tr>
<tr>
<td>SWI</td>
<td>Susceptibility-weighted imaging</td>
</tr>
<tr>
<td>T1</td>
<td>Longitudinal Relaxation Time</td>
</tr>
<tr>
<td>T2</td>
<td>Transverse Relaxation Time</td>
</tr>
<tr>
<td>TBSS</td>
<td>Tract-based spatial statistic</td>
</tr>
<tr>
<td>TE</td>
<td>Time Echo</td>
</tr>
<tr>
<td>TR</td>
<td>Time Repetition</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>UPSIT</td>
<td>University of Pennsylvania Smell Identification Test</td>
</tr>
<tr>
<td>VBM</td>
<td>Voxel-Based Morphometry</td>
</tr>
<tr>
<td>VCF</td>
<td>Variant Call Format</td>
</tr>
<tr>
<td>VMAT2</td>
<td>Vesicular Monoamine Transporter 2</td>
</tr>
<tr>
<td>WM</td>
<td>White Matter</td>
</tr>
</tbody>
</table>
Chapter 1. Introduction

This chapter introduces the background of the major topics that are discussed in greater detail throughout this thesis. Recent *post-mortem* and imaging evidence of Parkinson’s disease pathology are reviewed and described underlying the role of phosphodiesterase 10A (PDE10A) in Parkinson’s disease. Emphasis has been given on: why current imaging techniques, such as DAT single-photon emission computed tomography (SPECT) or DAT positron emission tomography (PET), are not appropriate to entirely define Parkinson’s disease; the rationale of using both PET, SPECT and magnetic resonance imaging (MRI) in comparison with PDE10A; and why imaging markers have been compared with non-motor symptoms. Our hypothesis and aims are described at the end of the Introduction.
1.1 Parkinson’s disease

Through precisely detailing the pathognomonic symptoms of six patients in his medical chef-d'oeuvre ‘An Essay of the Shaking Palsy’, in 1817 James Parkinson highlighted a clinical entity which had only insubstantially been comprehended before that date (Parkinson, 2002). Parkinson’s disease is now recognized as the second most common neurodegenerative disease, with a prevalence steadily rising with age across all regions of the world (Pringsheim et al., 2014). This chronic neurodegenerative movement disorder typically transpires insidiously in the sixth decade, progressing slowly over a duration of 10 – 30 years (Pavese and Brooks, 2009).

Parkinson’s disease is characterized by cardinal motor features, including a combination of bradykinesia, rest tremor (4 – 6 Hz), muscle rigidity, postural instability and gait disturbance (Lees et al., 2009). Although a clinical diagnosis rests exclusively on the appearance of these motor manifestations, non-motor symptoms including depression, chronic fatigue, sleep disorders, autonomic dysfunction and cognitive impairment are equally debilitating, disproving James Parkinson’s original notion claiming that ‘the sense and intellect remain uninjured’ (Korczyn and Gurevich, 2010).

The aetiology of Parkinson’s disease is poorly understood. The prevailing model suggests that the disease develops through a complex interplay between genetics and environmental factors (Kalia and Lang, 2015). A recent meta-analysis by Noyce et al. (2012) of 30 potential environmental factors affecting Parkinson’s disease onset identified 11 significant environmental factors. From the highest to the lowest, the three most significant factors which increased the risk of Parkinson’s disease were pesticide exposure, prior head injury, and rural living. From highest to lowest again, the three most significant factors which reduced the risk of Parkinson’s disease were tobacco smoking, coffee drinking, and non-steroidal anti-inflammatory drug use. However, the link between the environment and the onset of Parkinson’s disease is still unclear (Kalia and Lang, 2015).
The quintessential neuropathological hallmark of Parkinson’s disease is the selective atrophy of neuromelanin-containing dopaminergic neurons within the substantia nigra pars compacta (SNpc) and the subsequent dopaminergic denervation of forebrain areas, predominantly the striatum (Marsden, 1982). Although neuronal neuropathological changes are pronounced in SNpc, non-dopaminergic systems including the serotonergic (Politis et al., 2010a), glutamatergic (Hallett et al., 2005), noradrenergic and cholinergic (Zheng et al., 2011) systems are also affected.

Parkinson’s disease is also characterized by abnormal aggregates in surviving neurons called Lewy bodies, mainly composed by α-synuclein (Gelb et al., 1999; Davie, 2008; Kalia and Lang, 2015). This results in damage to neurons which leads to a dopamine deficiency in the basal ganglia and visible motor symptoms. Braak et al. (2003) have staged Parkinson’s disease progression by mapping the distribution of Lewy bodies. In addition to the SNpc, the Lewy Bodies accumulation also occurs in the raphe nuclei, locus coeruleus, nucleus basalis of Meynert, amygdala, hypothalamus, and other cortical and subcortical regions (Dickson, 2012). According to Braak’s staging, the pathological process in Parkinson’s disease occurs in a gradual ascending fashion, starting from the olfactory nucleus and the medulla in premotor stages and spreading to the pons and midbrain later (Braak et al., 2003). Braak, by examining post-mortem tissue, has described six stages of Parkinson’s disease pathology of which three take places before motor symptoms become evident and a clinical diagnosis can be made (Braak et al., 2007). The early premotor Braak stages are characterized by Lewy bodies and neurites lesions within the median raphe nuclei containing serotonergic neurons (Braak et al., 2003). Some non-motor symptoms, such as constipation, depression, rapid eye movement sleep behaviour disorder (RBD) and anosmia, have been associated with the development of Parkinson’s disease (Gagnon et al., 2006) and are currently considered pre-motor symptoms. Subjects with these pre-motor symptoms, who might be considered as having prodromal idiopathic Parkinson’s disease, provide limited possibilities to study premotor pathology because not all people at risk will eventually
develop Parkinson’s disease, and observation of such individuals needs long follow-up periods, while the mechanisms underlying neurodegeneration remain obscure.

Familial forms of Parkinson’s disease without manifest disease, though accounting only for 5-10% of the total Parkinson’s disease population (Crosiers et al., 2011), represent an ideal model to study premotor stages to not only elucidate disease pathophysiology, but enable the identification of biomarkers with the capacity to detect persons at risk for Parkinson’s disease. A separate meta-analysis by Nalls et al. (2014) investigated the genetic contribution to Parkinson’s disease onset and concluded that 24 loci have a clinically significant association with increased risk. To date, more than 25 mutated genes have been associated with familial forms of parkinsonism; monogenic causes include dominantly (SNCA, LRRK2, VPS35, EIF4G1) and recessively (PARK2, PINK1, DJ-1) inherited mutations. SNCA was the first gene to be associated with Parkinson’s disease and codes for α-synuclein, the main component of Lewy bodies, and α-synuclein (SNCA) mutation carriers with manifest Parkinson’s disease have similar clinical and pathologic findings of idiopathic Parkinson’s disease, including a good response to levodopa and the presence of Lewy bodies (Gasser, 2001).

Currently, there is no cure for Parkinson’s disease and only therapies which ease symptoms. The most widely used medications for motor symptoms enhance the dopamine concentration or stimulate dopamine receptors. These include levodopa, dopamine agonists, and monoamine oxidase B (MAO-B) inhibitors. In addition to adverse drug reactions, such as nausea, long-term dopaminergic treatment by Levodopa and dopamine agonists can cause drug-induced motor and non-motor complications (Thanvi and Lo, 2004). Alongside these medications, a wide range of drugs targeting the individual non-motor symptoms are used, such as antidepressants for Parkinson’s disease associated depression. Today, no therapy is able to slow down or halt the neurodegenerative process, and a major goal of Parkinson’s disease research is the potential development of a disease-modifying drug (Mesulam et al., 1983; Kalia and Lang, 2015).
Use of Biomarkers to measure disease progression

Identifying patients with Parkinson’s disease in the initial stage would be desirable to unravel the earliest mechanism underlying Parkinson’s disease and, eventually, to develop specific disease-modifying therapy preventing the disease progression or complications. In this scenario, the role of neuroimaging biomarkers needs to be confirmed before these imaging measures could reliably be endorsed in the current guidelines for clinical use. Biomarkers are expected to reflect distinct aspects of Parkinson’s disease pathology, either detecting preclinical and initial stages of Parkinson’s disease or correlating with the progression of the disease. Molecular imaging techniques are able to identify subtle alterations at the nano-molecular level and this represents a prerequisite to quantify *in vivo* the brain activity in humans. SPECT and PET molecular probes bind a target, such as a receptor, a transporter or an enzyme, with high specificity and power of resolution (Politis, 2014). To date, PET and SPECT have been used in clinical setting to directly visualize the loss of dopaminergic terminals to confirm the diagnosis of Parkinson’s disease (Pagano *et al.*, 2016b). The evaluation at the molecular level of biomarkers associated with the neuronal survival might be the cornerstone for the development of the cure for Parkinson’s disease. Over the past decades, also MRI has been gaining ground as an attractive alternative diagnostic tool. In fact, in comparison with radiotracer methods, MRI has a diversity of possible contrasts and it is more readily available, less expensive, and above all avoids the ionizing radiation of radiotracers, employed in both PET and SPECT (Tuite, 2017).
1.2 PDE10A in Parkinson’s disease

The survival of the organism is based on a correct signal transduction between cells that can adjust themselves in relation to changes in the environment. Activation of receptors on the plasma membrane represents the main mechanism of signal transduction that produces a downstream reaction inside the cell. Despite the thousands of “first messengers” (molecules that activate the receptors) and receptors expressed on a cell at any one time, the number of second messengers is quite limited. Cyclic adenosine monophosphate (cAMP) and cyclic guanine monophosphate (cGMP) are the main second messengers identified and finely regulate the cell differentiation, proliferation, apoptosis, learning and memory (Shaulsky et al., 1998; Richards, 2001; Insel et al., 2012). The levels of intracellular cAMP and cGMP are tightly regulated by their synthesis by adenylyl and guanylyl cyclase, respectively, and their degradation by phosphodiesterase (PDEs).

In the recent years, the role of PDEs in the cellular homeostasis has been extensively studied. PDEs are intracellular enzymes that modulates the second messenger effect induced by the activation of G-protein-coupled receptors through the hydrolysis of cAMP and cGMP. They play a pivotal role in cell signals transduction (Fujishige et al., 1999), with cAMP that activates the cAMP-dependent protein kinase (PKA) and cAMP response element-binding protein (CREB), which induce protein phosphorylation or gene expression and cGMP that modulates long-term changes in synaptic activity (Jones et al., 2015). In the brain, intracellular levels of cAMP and cGMP regulate the mechanisms underlying neuroplasticity, such as long-term potentiation (Houslay and Milligan, 1997). These signaling cascades are negatively controlled by PDEs that breakdown cAMP and/or cGMP and turn off the cAMP and/or cGMP signaling pathways. PDEs cleave the phosphodiester bond of the cAMP and/or cGMP to generate inactive 5’-nucleotide metabolites.

PDEs are commonly divided into two classes: class 1 with low-affinity and class 2 with high-affinity for cAMP and/or cGMP. Human PDEs are mainly class 1 and are linked to 21 identified genes, which
give rise to 11 families of PDEs (PDE1–PDE11). They have approximately 270 conserved amino acids in the C-terminal catalytic domain, and around 35-50% sequence identity (Richter, 2002). Individual PDEs display sequence homology, the presence of certain regulatory domains, tissue specificity, sensitivity to specific inhibitors and whether they hydrolyze cAMP, cGMP or both. cAMP is selectively hydrolyzed by PDE4, 7 and 8, cGMP by PDE5, 6, and 9 while the other PDEs, such as PDE10, hydrolyze both cAMP and cGMP (Soderling and Beavo, 2000). The PDE10 family consists of only one gene, which express only one PDE10 called PDE10A. PDE10A is expressed almost exclusively in the striatum and subcortical areas (Seeger et al., 2003; Coskran et al., 2006; Lakics et al., 2010), primarily in medium spiny neurons (MSNs), where it is thought to integrate dopaminergic and glutamatergic signals (Xie et al., 2006; Nishi et al., 2008; Nishi et al., 2011) and to modulate the activity of dopamine D1 direct and dopamine D2 indirect pathways (Coskran et al., 2006; Xie et al., 2006). Dopamine regulates cAMP synthesis via D1-related activation or D2-mediated inhibition of adenylate cyclase (AC) (Garau et al., 1978; Kebabian, 1978), and cGMP synthesis through modulation of the NO–GC pathway (Sammut et al., 2007). PDE10A regulates cAMP and cGMP downstream signaling cascades, such as cAMP/PKA/DARPP32 signaling cascade (Greengard et al., 1999), which primarily controls the activity and phosphorylation state of various physiological effectors including CREB and ERK, alongside several neurotransmitter receptors and voltage-gated ion channels through inhibition of protein phosphatase-1 (PP-1) (Girault, 2012). Thus, the inhibition of PDE10A is expected to increase cAMP and/or cGMP levels improving the cAMP/PKA/DARPP32 signaling cascade (Siuciak et al., 2006; Strick et al., 2010) (Figure 1).
Figure 1. Roles of PDE10A in the control of basal ganglia–thalamocortical circuitry. Output neurons in the striatum are medium spiny neurons (MSNs), which consist of striatonigral/direct pathway and striatopallidal/indirect pathway neurons. Direct pathway neurons are GABAergic, and inhibit tonically active neurons in globus pallidus interna (GPI)/substantia nigra pars reticulata (SNpr). Indirect pathway neurons are also GABAergic, and activate neurons in GPI/SNpr via inhibition of globus pallidus externa (GPe) GABAergic neurons and activation of subthalamic nucleus (STN) glutamatergic neurons. Direct and indirect pathway neurons induce opposing effects on the output neurons in GPI/SNpr, resulting in dis-inhibition and pro-inhibition of output, respectively, to motor areas of the thalamus and cortex. The inhibition of PDEs increases cAMP/PKA signaling in both direct and indirect pathway neurons. PDE inhibitors that predominantly act in direct pathway neurons work like dopamine D1 receptor agonists and activate motor function, whereas PDE inhibitors that predominantly act in indirect pathway neurons work like dopamine D2 receptor antagonists and inhibit motor function. Inhibition of PDE10A by papaverine activated cAMP/PKA signaling in both striatonigral and striatopallidal neurons, resulting in potentiation of dopamine D1 receptor signaling and inhibition of dopamine D2 receptor signaling. SNpc, substantia nigra pars compacta. Adapted from Nishi 2011 (Nishi et al., 2011).
Preclinical studies

The role of PDE10A in the control of movements is mediated by the second messengers cAMP and cGMP, which appears to play a prominent part in regulating dopaminergic signaling and neuroplasticity. The role of PDE10A in the control of movements has been tested in animal models of Parkinson’s disease and preclinical studies have also suggested an early role for PDE10A in the development of Parkinson’s disease. (Sancesario et al., 2004; Giorgi et al., 2008; Nishi et al., 2008). In fact, although Parkinson’s disease is caused by specific pathological events such as loss of dopamine-producing cells in the substantia nigra, it is primarily classified as a movement disorder resulting from basal ganglia dysfunction and clinically characterized by hypokinetic manifestations. Therefore, dysregulation of PDE10A might be cardinal for its involvement in the regulation of both the striatonigral (direct) and striatopallidal (indirect) output pathways (Jones et al., 2015). In these experimental models of Parkinson’s disease, it has been shown that nigrostriatal deafferentation increased cAMP and decreased cGMP levels in the ipsilateral striatum compared to the contralateral side (Sancesario et al., 2004; Giorgi et al., 2008). Reduced cGMP levels may be the result of reduced NO-mediated cGMP synthesis as well as increased degradation of cGMP by an up-regulation of PDEs activity (Sancesario et al., 2004).

A lesion of the nigrostriatal dopaminergic projections with 6-hydroxydopamine (6-OHDA) increased cAMP levels in the caudate and putamen of rats (Hossain and Weiner, 1993). In 6-OHDA lesioned rats, PDE10A protein levels and mRNA levels were reduced in the caudate-putamen and striatal projections (Giorgi et al., 2011). Increased PDE10A protein and activity, despite unchanged PDE10A mRNA levels, was observed within the nucleus accumbens. PDE10A has distinct roles in modulating cAMP signaling in the striatonigral and striatopallidal postsynaptic pathways. In striatonigral neurons, dopamine loss leads to a reduced synthesis of D1 receptor-stimulated cAMP (Herve et al., 2001); the inhibition of PDE10A expression will, therefore, increase cAMP levels and could in part compensate for the reduced cAMP signaling. In striatopallidal neurons, dopamine loss decreases the
inhibitory effect of D2 receptor on cAMP synthesis (Stoof and Kebabian, 1981). Thus, loss of PDE10A levels may further increase cAMP levels by enhancing the negative consequences of dopamine loss on D2 receptor signaling and potentiate adenosine A2A receptor signaling (Svenningsson et al., 1998), which may result in functional imbalance between striatonigral and striatopallidal dopaminergic pathways, contributing to the development of motor symptoms in Parkinson’s disease.

Based on these preclinical studies, it is also possible to hypothesize that the failure of dopamine to activate properly post-synaptic striatal neurons (which is associated with the development of motor symptoms) might be also due to a primary dysregulation of PDE10A expression, with a reduction below the physiological levels. This would be associated with an increased level of cAMP which mimics the condition induced by the 6-OHDA in animal models and could potentially be a pathogenic mechanism fundamental to the dysfunction of second messenger signaling associated with the development of motor symptoms typical of Parkinson’s disease.

Preclinical studies have suggested that PDE10A could be involved in the development of Parkinson’s disease motor complications. In dyskinetic rodent, Parkinson’s disease models, cAMP, and cGMP levels in the cortical-striatal-pallidal pathway were significantly lowered at the peak of dyskinesias compared to eukinetic animals (Giorgi et al., 2008). When dyskinetic animals were pre-treated with the non-selective PDE inhibitor, zaprinast, before levodopa administration, the severity of dyskinesias was effectively reduced and prevented the decline in cyclic nucleotide levels (Giorgi et al., 2008). A more recent study discovered an inverse correlation between cAMP/cGMP and the time course of dyskinesias in dyskinetic animals, where cellular levels of cAMP/cGMP were lower during the surge of dyskinesias (at 60 minutes after levodopa administration), but were upregulated during depletion and extinction of dyskinesias (from 90 to 150 minutes after levodopa) (Sancesario et al., 2014). Thus, this data suggests that changes in cyclic nucleotide levels are implicated in the appearance and regression of levodopa-induced dyskinesias (LIDs). The equilibrium between dopamine-induced
synthesis and PDE-related catabolism is fundamental to the regulation of cyclic nucleotides. Studies have previously demonstrated that Parkinson’s disease patients with LIDs have prominently higher striatal synaptic dopamine levels following levodopa administration compared to stable responders (de la Fuente-Fernandez et al., 2001). Therefore, altered cAMP/cGMP levels due to dopamine-induced synthesis and PDE catabolism may contribute to the development of LIDs (Sancesario et al., 2014).

Although PDE10A knockout mice demonstrated a reduction in spontaneous locomotor activity, the inhibition of PDE10A decreased spontaneous and stimulant-induced behavior, inhibits conditioned behavior and also reverses stimulant-induced sensory gating deficits (Megens et al., 2014). These effects resemble the therapeutic profile of D2 receptor blockers and are consistent with the amplified output of the indirect pathway (Megens et al., 2014). Studies have confirmed, however, that PDE10A inhibitors activate both dopamine D1 receptor and dopamine D2 receptor- pathways, thus combining functional characteristics of D1 agonists and D2 antagonists (Nishi et al., 2008; Strick et al., 2010). A recent study revealed that PDE10A inhibitors were effective only when dopaminergic neurotransmission was reduced with D1 antagonist SCH-23390 but not with D2 antagonist haloperidol, which indicates that stimulation/inhibition of motor behavior is conditional to the relative activation state of the direct and indirect striatal output pathways. In the reserpine model of Parkinson’s disease, PDE10A inhibitors showed an anti-cataleptic effect, which suggests a therapeutic perspective in Parkinson’s disease (Megens et al., 2014) (Figure 1).

Preclinical studies have also shown an association between PDE10A and neuronal survival. In the striatal pathways, cAMP regulates a diverse array of neural functions ranging from ion conductance to synaptic plasticity through activation of PKA (Meinkoth et al., 1993; Girault, 2012). The cAMP/PKA signaling cascade targets the DARPP-32 (Greengard et al., 1999; Svenningsson et al., 2004). DARPP-32 is phosphorylated by PKA and inhibits a wide-spectrum of proteins such as the PP-1. Inhibition of PP-1 by DARPP-32 controls the phosphorylation state and activity of many
downstream physiological effectors including gene transcription factors (CREB protein and Elk-1) and various neurotransmitter receptors (AMPA and NMDA receptors) and voltage-gated ion channels, indicating an essential role for the cAMP/PKA/ DARPP-32 in DA-ergic signalling (Fienberg et al., 1998; Girault, 2012). Phosphorylation of DARPP-32 inhibits the PP1-induced striatal-enriched tyrosine phosphatase (STEP), which play a critical role in the dephosphorylation of ERK (Paul et al., 2003). ERK phosphorylates the nuclear kinase MSK, which appears to play a prominent role in phosphorylation of histone H3 and CREB protein. This leads to the expression of genes such as cFos, which are particularly important for neuron survival (Girault, 2012). Thus, by enhancing the activity of DARPP-32, reduced expression of PDE10A may lead to decreased gene expression and subsequently to neuronal degeneration in the striatum. DARPP-32 enhances phosphorylation of histone H3 (Stipanovich et al., 2008) and through inhibition of PP1 increases multiple posttranslational modifications of histones, including acetylation of H2B, H3K14, and H4K5, as well as trimethylation of H3K36 (Koshibu et al., 2009). PDE10A by regulating DARPP-32 levels may lead to the activation of a complex network of protein kinases and phosphatases converging on the nucleus and contribute to epigenetic regulations (Koshibu et al., 2009).

Genetic studies

Positive evidence on the role of PDE10A in neurodegenerative disorders come from recent genetic studies on PDE10A gene mutations (Diggle et al., 2016; Mencacci et al., 2016). An early-onset hyperkinetic movement disorder was identified in eight subjects with loss of striatal PDE10A due to homozygous mutations (c.320A>G - p.Tyr107Cys and c.346G>C - p.Ala116Pro) of PDE10A gene (Diggle et al., 2016). Both mutations lead to a reduction in PDE10A levels in recombinant cellular systems. PET imaging with [11C]IMA107, a selective PDE10A ligand, confirmed that striatal PDE10A levels are also decreased in one subject with p.Tyr107Cys variant (Diggle et al., 2016).
Other \textit{de novo} heterozygous mutations in PDE10A gene were found in three subjects (c.898T>C [p.Phe300Leu] in two individuals and c.1000T>C[p.Phe334Leu] in one individual) (Mencacci \textit{et al.}, 2016). These mutations caused a unique movement disorder characterized by benign childhood-onset chorea that was followed by adult-onset levodopa-responsive parkinsonism (Mencacci \textit{et al.}, 2016). All these mutations caused a loss of function of the PDE10A gene and the three young subjects showed atrophy of caudate nuclei at MRI imaging, of the same extent seen in Huntington’s disease patients, and, for the older subject, who developed levodopa-responsive parkinsonism, it was seen a bilateral abnormality of striatal dopamine reuptake transporters consistent with nigrostriatal degeneration. However, it was not clear whether the observation of parkinsonism with nigrostriatal degeneration in that subject was accidental or whether individuals with \textit{de novo} PDE10A mutations are also at an increased risk of developing degeneration of nigral neurons. These genetic studies confirm the potential involvement of PDE10A in the development of movement disorders, such as Parkinson’s disease and Huntington’s disease, and gave us further evidence to investigate PDE10A in a cohort of Parkinson’s disease patients.

Another very interesting fact is that the gene encoding PDE10A has been identified in 6q26-27 (OMIM 610652) (Fujishige \textit{et al.}, 1999). Many loci have been identified in chromosome 6 but one locus of interest has been identified in 6q25.2-q27 (OMIM 602544) (Matsumine \textit{et al.}, 1997), which is the gene responsible for the parkin familial form of Parkinson’s disease (PARK 2). Both PDE10A signaling and parkin mutated protein are expressed in the striatum and are involved in striatal neuronal function, thus making the possibility of genetic linkage between these two intriguing. In idiopathic Parkinson’s disease, epigenetic processes such as DNA methylation, histone modifications, and small RNA-mediated mechanisms may regulate the expression of Parkinson’s disease-related genes and contribute to disease pathogenesis (Urdinguio \textit{et al.}, 2009; Masliah \textit{et al.}, 2013). Several genes including parkin have been shown vulnerable to epigenetic regulation in Parkinson’s disease, and therefore supporting the role of epigenetic alterations as a molecular mechanism in nigrostriatal degeneration.
degeneration (Asikainen et al., 2010; Masliah et al., 2013). The relationship between PDE10A and parkin have not been investigated either in preclinical nor in clinical studies.

Human studies

Post-mortem studies in humans have shown that PDE10A is expressed in the caudate, putamen, ventral striatum, globus pallidus, SNpc and thalamus (Lakics et al., 2010).

In humans, PDE10A expression can be measured with high selectivity ligands, such as $[^{11}\text{C}]$IMA107, $[^{18}\text{F}]$JNJ42259152, $[^{18}\text{F}]$MNI-659 (Ahmad et al., 2014; Russell et al., 2014; Niccolini et al., 2015a; Niccolini et al., 2015b; Russell et al., 2016).

One study has been performed in Parkinson’s disease patients, investigating PDE10A expression by using $[^{11}\text{C}]$IMA107 PET imaging in 24 moderate-advanced Parkinson’s disease patients (Niccolini et al., 2015a). Parkinson’s disease patients showed lower $[^{11}\text{C}]$IMA107 binding in the caudate, putamen and globus pallidus compared to healthy controls. Longer Parkinson’s disease duration and higher Unified Parkinson's Disease Rating Scale part-III motor scores correlated with lower $[^{11}\text{C}]$IMA107 binding in the caudate, putamen, and globus pallidus. Higher Unified Dyskinesia Rating Scale scores in those Parkinson's disease with levodopa-induced dyskinesias correlated with lower $[^{11}\text{C}]$IMA107 binding in the caudate and putamen. This provides evidence for the role of PDE10A within the striatum in the development of cardinal motor symptoms in Parkinson’s disease. Interestingly, a decline in PDE10A expression within the globus pallidus correlated with worse axial signs including the freezing of gait, falls and imbalance (Niccolini et al., 2015a) (Figure 2).
Figure 2. PDE10A expression in Parkinson’s disease. Parametric images of $[^{11}\text{C}]$IMA107 PET imaging in a healthy control and in a patient with Parkinson’s disease.

In summary, PDE10A is localized almost exclusively within the axons of striatal MSNs modifying cAMP/cGMP downstream signaling cascades in both striatonigral and striatopallidal neurons, via cAMP and cGMP hydrolysis, playing a fundamental role in regulating the direct and indirect striatal output pathways, respectively. Therefore, alterations in cyclic nucleotide availability can result in dysregulation of striatopallidal and striatonigral downstream signaling cascades, leading
to an imbalance of striatal output (Siuciak et al., 2006). This consequently results in the abnormal thalamocortical input, which can precipitate or exacerbate motor and cognitive symptoms that are typical of Parkinson’s disease (Andre et al., 2010).

Evidence links PDE10A to both Parkinson’s disease and Huntington’s disease showing that a deletion of PDE10A is associated with hyperkinetic motor symptoms in early ages but hypokinetic motor symptoms in older ages (Diggle et al., 2016). This is in line with the pharmacological data indicate that PDE10A might regulate differentially direct and indirect pathways, in which pharmacological inhibition of PDE10A with papaverine or TP-10 is consistent with the preferential activation of the indirect pathway (Threlfell et al., 2009). A genetic loss of PDE10A would then preferential affect the function of the indirect pathway, thus, induces a hyperkinetic movement disorder. With the progression of the pathology, in older age, the direct pathway would also be affected, with the onset of motor symptoms typical of Parkinson’s disease (Diggle et al., 2016; Niccolini et al., 2018). In the population of patients with genetic loss of PDE10A that showed motor Parkinson’s disease symptoms, PDE10A PET imaging with $[^{11}\text{C}]\text{IMA}107$ was correlated with DAT $[^{123}\text{I}]\text{FP-CIT}$ SPECT imaging and MRI markers of Parkinson’s disease pathology (NM-MRI and DTI) (Niccolini et al., 2018).

PDE10A function is critical for the control of movements and for neuronal survival, thus, understanding whether PDE10A is abnormally expressed will provide a major step towards understanding the mechanisms underlying neurodegenerative processes. PDE10A could serve as a novel therapeutic target for manipulation with pharmacotherapy in the neuropathological salient circuits, which promote neuronal survival and control of movements, cognitive and mood functions.
We hypothesized that the failure of dopamine to activate properly post-synaptic striatal neurons (which is associated with the development of motor symptoms in Parkinson’s disease) might not be due only to a deficit of dopamine release (consequence of SNpc cell loss) but also due to a primary dysregulation of PDE10A expression, with a reduction below the physiological levels. This would be associated with an increased level of cAMP, which mimics the condition induced by the 6-OHDA in animal models of Parkinson’s disease, and could potentially be a pathogenic mechanism fundamental to the dysfunction of second messenger signaling associated with the development of motor symptoms typical of Parkinson’s disease. Thus, loss of PDE10A expression could be one of the earliest pathophysiological events in the course of Parkinson’s disease, even earlier than DAT terminal loss.

Previous PET imaging studies have shown that changes in the molecular binding profile of selected brain targets may serve as promising markers of disease burden and progression, drug target identification and treatment response in therapeutic trials in patients with Parkinson’s disease (Politis, 2014). Loss of DAT signal in Parkinson’s disease patients reflects loss of nigrostriatal dopamine neurons and is typically associated with dopaminergic pathology in the putamen and the motor features of bradykinesia and rigidity (Pirker, 2003). However, molecular imaging of DAT cannot be considered an ideal biomarker for Parkinson’s disease due to several limitations, including a lack of specificity for Parkinson’s compared to atypical parkinsonism, and the fact that dopaminergic supplementation may modulate DAT levels, limiting its use as biomarker for clinical trials testing disease-modification drugs (Fahn et al., 2004; Schapira, 2013). Recent work with PET molecular imaging has demonstrated loss of PDE10A expression in moderate to advanced levodopa-treated patients with Parkinson’s disease, which was associated with motor symptoms and complications (Niccolini et al., 2015a). Therefore, PDE10A, as an enzyme regulating striatal output and dopaminergic signalling, shows promise to serve as a marker of disease burden in
patients with early Parkinson’s disease. However, it is unknown whether PDE10A is implicated at the earlier stages of the disease and how its biomarker value compares with the gold standard DAT molecular imaging.

DAT can be measured with different tracers and we decided here to use two different tracers, $[^{11}\text{C}]$PE2I which is more specific of DAT, and $[^{123}\text{I}]$FP-CIT, which binds also SERT but it is widely used in clinical practice. We could not use both PET PE2I and PET FP-CIT due to the limited amount of funding (SPECT is approximately 7 times cheaper than PET) but we compared $[^{11}\text{C}]$PE2I PET versus $[^{123}\text{I}]$FP-CIT SPECT to confirm that both were correlated with Parkinson’s disease symptoms.

Using molecular imaging, we aimed to investigate the role of PDE10A in the early stages of the Parkinson’s disease with the main hypothesis that a reduction of PDE10A expression is an early phenomenon in the course of Parkinson’s disease, and that PDE10A expression decreases further as Parkinson’s disease progress (in term of duration and clinical severity). We have investigated this in the Project 1, in which, by using $[^{11}\text{C}]$IMA107 PET imaging, we assessed in vivo the integrity of PDE10A enzyme in early de novo and in a population of early levodopa-treated patients with three-year longer Parkinson’s disease duration in relation to a group of age- and sex-matched healthy controls.

We also hypothesize that PDE10A expression might be affected earlier on in the course of the disease, investigating the associations between PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc).

We also hypothesize that PDE10A expression was correlated with dopaminergic pathology, which can be measured either with PET or SPECT. We have investigated this in the Project 2, in which we compared the expression of PDE10A, measured with $[^{11}\text{C}]$IMA107 PET imaging, with the best known molecular markers of dopaminergic dysfunction in Parkinson’s patients, the $[^{11}\text{C}]$PE2I PET
imaging, and the clinical validated $^{[123]}$I-FP-CIT SPECT imaging. In this Project, we also compared $^{[11]}$C-PE2I PET versus $^{[123]}$I-FP-CIT SPECT because the two tracers have a different affinity for the DAT ($^{[11]}$C-PE2I is more specific of DAT where $^{[123]}$I-FP-CIT binds both DAT and SERT). This would give us a greater understanding of the relationship between PDE10A expression and dopaminergic and non-dopaminergic pathology.

We also hypothesize that PDE10A expression was correlated with other markers of Parkinson’s disease pathology, such as iron depositions, neuromelanin loss, and changes in structural and microstructural changes in the substantia nigra and in the striatum. We have investigated this in the Project 3, in which we compared the expression of PDE10A, measured with $^{[11]}$C-IMA107 PET imaging, with MRI markers of Parkinson’s pathology such as iron depositions (assessed with susceptibility-weighted MR imaging), neuromelanin loss (assessed with neuromelanin sensitive MR imaging) and changes in structural volumetric (assessed with T1 MR imaging) and microstructural connectivity (assessed with diffusion tensor MR imaging).
1.3 Neuroimaging techniques in Parkinson’s disease

In this section, SPECT and PET molecular and MRI imaging are described from a methodological point of view and previous application in Parkinson’s disease are discussed in detail. Differences in molecular imaging of DAT with different tracers and with SPECT and PET imaging, PDE10A PET molecular imaging and novel MRI markers of Parkinson’s disease, such as SWI iron deposition, NM density and structural and microstructural DTI imaging are also described in detail.

1.3.1 SPECT and PET molecular imaging

1.3.1.1 Methodological consideration

Molecular imaging techniques are able to identify subtle alterations at the nano-molecular level and this represents a prerequisite to evaluate in vivo the brain activity in humans. SPECT and PET molecular probes bind a target, such as a receptor, a transporter or an enzyme, with high specificity and power of resolution (Politis, 2014).

MRI is a diagnostic tool that provide very high structural information of the tissue, giving a better soft tissue contrast compared to SPECT or PET. The relative weaknesses and strengths that exist among imaging techniques are important to be understood (Khalil et al., 2011). The spatial resolution of MRI and Computed Tomography (CT) is significantly higher than that of SPECT and PET, however, the detection sensitivity of SPECT and PET is significantly higher than those given by structural modalities and moreover can detect tracer concentration in the picomolar or nanomolar range. Both approaches use the tracer principal to detect physiological abnormality or disturbed biochemical process. The key elements in radionuclide imaging are a biomarker and an imaging device. The first should have high specificity, as well as sensitive characteristics to optimally study a molecular or cellular phenomenon. The imaging device is a radiation detector with specific performance to localize activity distribution within the human body or the animal. The most commonly used instrument in SPECT imaging is the conventional gamma camera that was invented
in the middle of the last century (Khalil et al., 2011). In clinical practice, almost all nuclear medicine procedures that use single photon emission tracers rely on the use of the gamma camera. It is a gamma ray position sensitive detector that typically consists of a large slab of scintillator crystal with position circuitry and energy determination. To localize the emission site of the released photons, a multihole collimator is mounted on the front face of the system to provide a spatial correlation of the detected events. The gamma camera is able to localize an activity distribution of an administered radionuclide. However, for detection of coincidence events and localization of PET-administered compounds, a PET scanner is normally used. Both imaging devices have witnessed a notable change in the last decade in terms of performance characteristics as well as diagnostic quality.

Spatial resolution and detection sensitivity are two important performance characteristics that play a key role in molecular imaging research using SPECT and PET tracers. The clinical gamma camera provides a tomographic resolution of about 10 mm for SPECT scans compared to 4-5 mm of common PET and 2.5 mm of High-Resolution Research Tomograph PET scans. These resolution differences are mainly due to the fact that PET systems are not affected by some physical and fundamental limits that hinder the SPECT camera to reach sub-millimeter ranges. Many factors serve to impact the final reconstructed images of data acquired from a PET scanner. These are crystal size, positron range, photon acollinearity, inter-crystal interaction and scatter, depth of interaction and the reconstruction algorithm. In preclinical PET machines, positron range appears to be the most important challenge that needs to be tackled to improve the spatial resolution of the PET images. However, the current generation of clinical PET scanners is slightly affected by the positron range, but correction of the phenomenon was shown to be effective in positron emitters of high maximum kinetic energy (Sanchez-Crespo et al., 2004). These issues are obviously absent in clinical as well as preclinical SPECT systems. The gamma camera relies on hardware collimators to determine the trajectory of the photon and hence able to localize the emission site by analyzing the electronic signal detected by the imaging detector. This hardware collimation plays a significant role in reducing the overall system
sensitivity as well as the spatial resolution. The intrinsic resolution of the gamma camera is about 3-4 mm and tomographic SPECT acquisition reveals a spatial resolution, as mentioned above, not better than 10 mm.

SPECT degrading factors have been extensively studied in the literature and, namely, include attenuation, scatter and resolution effects, in addition to motion artifacts. Apart from the later, most of these physical issues can be resolved in great part using SPECT/CT systems. Nevertheless, correction for photon attenuation, scatter and partial volume would collectively improve the detection and estimation task (Khalil et al., 2011). This is particularly important for small structures and in small energy radionuclides such as I-125 (Hwang et al., 2008).

Unlike PET, single photon emitting radiopharmaceuticals have several features in the context of molecular imaging such as cost and wide availability of the radioligands as well as relative ease of labeling. Small animal imaging using preclinical scanners and PET radiopharmaceuticals showed better capability in tracer kinetic studies when compared to its SPECT counterparts. PET compounds have been extensively used in compartmental modeling and kinetic analysis.
1.3.1.2 Dopaminergic molecular imaging in Parkinson’s disease

SPECT and PET molecular imaging targeting presynaptic and postsynaptic dopaminergic markers has been extensively employed to aid with the early diagnosis of Parkinson’s disease, track disease progression, and investigate motor and non-motor symptoms of Parkinson’s disease (Politis, 2014).

The integrity of the presynaptic nigrostriatal dopaminergic system can be studied with radiotracers targeting the Dopamine Transporter (DAT), the Aromatic L-Amino Acid Decarboxylase (AADC) and the Vesicular Monoamine Transporter 2 (VMAT2). AADC and VMAT2 however are not specific of dopaminergic neurons.

DAT is a symporter expressed on the presynaptic end-terminal of dopaminergic neurons, which clears the synapses from released dopamine by re-uptaking it in the presynaptic terminals and, thus, stopping its transmission. The expression of DAT declines with aging (van Dyck et al., 2002; Kaasinen et al., 2015).

Several PET and SPECT radiotracers targeting the DAT have been developed. These radioligands are mostly cocaine or tropane analogs and bind to DAT with nanomolar affinity. Most of these tracers show high affinity for other monoaminergic transporters such as Serotonin (SERT) and Noradrenaline (NET); however, the concentration of DAT in the basal ganglia highly exceeds that of the other transporters so that its measure in striatal regions is not significantly affected. By contrast, the study of extra-striatal regions with these tracers may be less reliable. $^{[123]}$Iβ-CIT has better sensitivity and specificity than $^{[99mTc]}$TRODAT-1 in the detection of DAT density reductions (Van Laere et al., 2004), but presents protracted periods of striatal uptake and long wash-out. $^{[123]}$IPE2I shows higher selectivity for DAT compared to SERT and NET in extra-striatal areas (Emond et al., 1997). $^{[123]}$IFP-CIT (also named $^{[123]}$FP-CIT or DaTSCAN) has been approved in 2000 by the European Medicine Agency for the clinical use in the differential diagnosis of clinically uncertain Parkinsonism. $^{[123]}$IFP-
CIT has lower selectivity for DAT compared to $[^{123}\text{I}]$PE2I and has been shown that is able to bind also SERT in brain area rich of SERT terminals, such as raphe nuclei (Qamhawi et al., 2015).

All SPECT tracers can distinguish patients with degenerative parkinsonism from healthy controls with high sensitivity and specificity evidencing reductions up to 81% of tracer uptake in the posterior putamen contralateral to the clinically most affected side (Schwarz et al., 2000; Huang et al., 2001; Chou et al., 2004; Weng et al., 2004; Filippi et al., 2005; Eshuis et al., 2009). PET imaging with radioligands binding to DAT has yielded comparable results: a consistent and severe decrease of DAT activity can be detected in the putamen contralateral to the clinically most affected side of Parkinson’s disease patients. Guttman and colleagues studied 11 de novo Parkinson’s disease patients using $[^{11}\text{C}]$RTI-32 PET, and showed that, contralaterally to motor symptoms, the posterior putamen displayed a 56% decrease in radioligand uptake, and 28% decrease in the anterior putamen, demonstrating a gradient of dopamine transporter changes within this region (Guttman et al., 1997). The putamen is more affected than the caudate and this pattern is highly preserved during disease course (Marek et al., 1996; Guttman et al., 1997; Mozley et al., 2000). However, other studies, demonstrated higher decreases in the caudate rather than putamen (Rinne et al., 1999a; Rinne et al., 1999b). DAT-SPECT studies have also demonstrated a significant reduction of tracer uptake to an extent up to 44% in the striatum ipsilateral to the clinically most affected side of de novo Parkinson’s disease patients, implying, therefore, that DAT-SPECT imaging is able to detect subclinical presynaptic dopaminergic degeneration (Schwarz et al., 2000; Weng et al., 2004; Filippi et al., 2005).

The extent of DAT decline is inversely correlated with the severity of motor symptoms as assessed with the Unified Parkinson’s disease Rating Scale – Motor Part III (Rinne et al., 1999b; Huang et al., 2001; Moccia et al., 2014). Interestingly, in all these studies, a correlation was found with bradykinesia and rigidity subscores, but not with tremor. This implies that tremor in Parkinson’s disease may have a different pathophysiology, not primarily driven by dopaminergic dysfunction,
such as SERT deficit, seems to have a prominent role (Politis et al., 2010b; Politis et al., 2011; Loane et al., 2013; Pagano et al., 2017).

The degree of progression of dopaminergic degeneration in Parkinson’s disease has been assessed by longitudinal studies. PET and SPECT imaging have yielded comparable results. Using 18F]CFT PET, Nurmi and colleagues found that the annual rate of decline of DAT in a two-year follow-up was 13.1% in the putamen and 12.5% in the caudate, compared to 2.1% and 2.9%, respectively, for controls (Nurmi et al., 2000). Marek and colleagues investigated 32 Parkinson’s disease patients in a one-to-four-year period with 123I]β-CIT and showed that in Parkinson’s disease patients the annual decline of striatal DAT density was of 11.2% compared to 0.8% of controls (Marek et al., 2001), which corresponds to a functional decline. In another study, 21 Parkinson’s disease patients were studied over a time span of five years in which they performed three SPECT scans with 123I]β-CIT (Pirker et al., 2003). It was found that the absolute rate of striatal decline was of 7.5% between scan one and two, and 5.6% decline between scan two and three, suggesting that the progression of DAT degeneration in Parkinson’s disease is not linear and slows over time. Moreover, during follow-up, 11 patients also developed levodopa (L-DOPA)-related motor complications. These patients did not display any specific progression in DAT decline, probably because they initial levels were so low to induce the so-called “floor effect” (Pirker et al., 2003). In patients with long-standing disease, the rate of degeneration of dopaminergic terminals slows down and reaches a plateau (Hely et al., 2005; Hely et al., 2008), whereas it appears to progress significantly only in concomitance with the presence of dementia (Colloby et al., 2005). Parkinson’s disease patients with mean disease duration of 20.6 years still show some uptake of 123I]FP-CIT with preservation of the putamen greater than the caudate and asymmetry in radiotracer uptake (Djaldetti et al., 2011).

The prognostic implications of low striatal levels of DAT density have been additionally studied. Low striatal 123I]β-CIT SPECT uptake is independently associated with higher risk of motor-related disability and falls. Moreover, Parkinson’s disease patients with the lowest levels of striatal uptake at
baseline were at higher risk of developing cognitive impairment and psychosis at a 22-month follow-up (Ravina et al., 2012). Recently, changes in DAT density over time have been studied as a possible marker of disease progression. Li and colleagues demonstrated in 33 Parkinson’s disease patients that, after a mean follow-up of 18.8 months, striatal $^{[11]}$CPE2I uptakes were more predictive of worse motor symptom severity than striatal $^{[18]}$FDOPA uptakes (Li et al., 2018). This result has been explained by the different compensatory adjustments that DAT and AADC undergo during Parkinson’s disease natural history (Li et al., 2018). It can be therefore concluded that low levels of striatal DAT activity in Parkinson’s disease patients represent a negative prognostic factor.

SPECT imaging is widely used in the diagnostic workup of patients in which clinical examination is ambiguous. $^{[123]}$I]FP-CIT facilitates the diagnosis in patients with isolated tremor symptoms not fulfilling Parkinson’s disease or essential tremor (ET) criteria, as well as in functional, and drug-induced parkinsonism (Scherfer et al., 2007; Huertas-Fernandez et al., 2015). In patients with clinically uncertain parkinsonism, lower striatal $^{[99]}$TcTRODAT-1 uptake identified who, when followed up for up to 2 years, clinically converted to Parkinson’s disease with 100% sensitivity and 70% specificity (Felicio et al., 2010). Patients with vascular parkinsonism usually display normal DAT SPECT scans (Antonini et al., 2012), although in a recent large survey, abnormal $^{[123]}$I]FP-CIT uptake levels could be detected in up to 67.5% of 106 vascular parkinsonian patients (Benitez-Rivero et al., 2013). Atypical Parkinsonism, such as Multiple System Atrophy (MSA) or Progressive Supranuclear Palsy (PSP), typically display reduced DAT striatal activity. Attempts have been done to distinguish between Parkinson’s disease and atypical syndromes, by means of DAT imaging. It has been found that the striatal DAT reduction in MSA and PSP was more uniform than in Parkinson’s disease (Kim et al., 2002; Im et al., 2006); moreover, the ratio DAT/D2 uptake was significantly higher in PSP than in MSA (Knudsen et al., 2004).

In summary, SPECT and PET molecular imaging of DAT are able to measure in vivo the pathognomonic loss dopaminergic terminals of Parkinson’s disease. PET have higher definition
than SPECT but also higher costs. Different tracers have different affinity to DAT, SERT and NET. We decided to use the 11CPE2I PET as considered the most specific DAT tracer, and 123I-FP-CIT SPECT as considered the most validated Parkinson’s disease in vivo marker in clinical practice and with a degree of affinity also to SERT. This would allowed us to compare PDE10A expression with both dopaminergic (DAT - 11CPE2I PET) and non-dopaminergic (DAT and SERT - 123I-FP-CIT SPECT) pathology. We did not use FP-CIT PET due to funding constrains.
1.3.1.3 PDE10A molecular imaging in Parkinson’s disease

Multiple PET radiotracers targeting the PDE10A have provided promising results in preclinical studies and allow assessment of target engagement in the human brain (Figure 3). These radioligands are mostly based on incorporation of radioisotopes onto PDE10A inhibitors (Barret et al., 2014; Fan et al., 2014; Hwang et al., 2014; Kehler et al., 2014; Li et al., 2015; Liu et al., 2016; Boscutti et al., 2018).

For an ideal brain PET radiotracer, there are several generally required properties, including small molecular weight, appropriate lipophilicity, high binding affinity, good target selectivity, favourable in vivo kinetics and metabolism. The first attempts to develop a PDE10A PET tracer has been performed by Pfizer with the incorporation of 11C onto MP-10 (2-[(4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)phenoxy)ethyl]quinoline) (Tu et al., 2011). 11CMP-10 showed a slow kinetic, high non-displaceable binding, and the potential to generate metabolites able to cross the blood-brain-barrier (Lin et al., 2015). In parallel, 11C]LuAE92686 (Kehler et al., 2014) and 11C]AMG7980 (Hwang et al., 2014; Hu et al., 2016) were developed but shared the same limitation of 11CMP-10, suggesting that both tracers are not ideal for quantification of PDE10A. A second attempt was done by Merck that developed 11C]MK-8193, a PDE10A PET tracer derived from a high through put

Figure 3. Chemical structure of potential PET ligand for in vivo imaging of PDE10A. Adapted by Bosciutti et al. 2018 (Boscutti et al., 2018)
screening hit. \textit{In vitro} experiments showed that \[^{11}\text{C}]\text{MK-8193}\) binds to PDE10A catalytic core suggesting its potential role as PDE10A PET tracer (Cox \textit{et al.}, 2015). PET studies with \[^{11}\text{C}]\text{MK-8193}\ were conducted in rats and rhesus monkeys showing that \[^{11}\text{C}]\text{MK-8193}\ has rapid kinetics, low test-retest variability, and a large specific signal that is displaced by a structurally multiple PDE10A inhibitors, enabling the determination of pharmacokinetic/enzyme occupancy relationships (Hostetler \textit{et al.}, 2016). No studies have been performed with \[^{11}\text{C}]\text{MK-8193}\ in humans yet.

\[^{18}\text{F}]\text{JNJ42259152}\ provides a PDE10A-specific signal in the striatum with good pharmacokinetic properties, showing specific retention in the PDE10A-rich striatum, and fast wash-out, with a good contrast to non-specific binding, in other brain regions (Celen \textit{et al.}, 2013). Pre-treatment in rats with the selective PDE10A inhibitor MP-10 showed that tracer binding was specific and reversible. Absence of specific binding in PDE10A knock-out (KO) mice further confirmed PDE10A specificity. \textit{In vivo} radiometabolite analysis using high performance liquid chromatography showed presence of polar radiometabolites in rat plasma and brain. \textit{In vivo} imaging in rat and monkey further showed faster brain kinetics, and high striatum-to cerebellum ratio for \[^{18}\text{F}]\text{JNJ42259152}. The arterial input function corrected for radiometabolites was determined in rats and basic kinetic modeling was established. For a 60-min acquisition time interval, striatal binding potential of the intact tracer referenced to the cerebellum showed good correlation with corresponding binding potential values of a Simplified Reference Tissue Model and referenced Logan Plot, the latter using a population averaged reference tissue-to-plasma clearance rate and offering the possibility to generate representative parametric binding potential images (Celen \textit{et al.}, 2013). \[^{18}\text{F}]\text{JNJ42259152}\ was tested in humans and kinetic modeling showed that PDE10A activity can be reliably quantified with a simplified tissue model using the frontal cortex as reference and a 60-min acquisition period (Van Laere \textit{et al.}, 2013b). In a human dosimetry study, \[^{18}\text{F}]\text{JNJ42259152}\ was readily taken up by the brain and showed exclusive retention in the brain, especially in the striatum with good washout starting after 20 min. The tracer was cleared through both the hepatobiliary and the urinary routes. No
defluorination was observed. Organ absorbed doses were largest for the gallbladder (239 μSv/MBq) and upper large intestine (138 μSv/MBq). The mean effective dose was 24.9 ± 4.1 μSv/MBq. No adverse events were encountered. Therefore, the tracer has been considered suitable for further human studies (Van Laere et al., 2013a). Thus, [18F]JNJ42259152 PET imaging has been performed in five manifest Huntington’s disease patients showing a reduction in the expression of PDE10A in the caudate and in the putamen, with no correlations with clinical scales (Ahmad et al., 2014).

Recently, [11C]TZ1964B and [18F]MNI-659 have been also developed and showed high binding potency and good selectivity to PDE10A (Li et al., 2013). Rat biodistribution and autoradiography studies revealed that [11C]TZ1964B had high accumulation in the striatal region and rapid clearance from non-target brain regions (Fan et al., 2014; Li et al., 2015) while MNI659 has sub-nanomolar binding potency for PDE10A (0.097 nM) (Barret et al., 2014). TZ1964B and MNI659 have similar lipophilicity and potent in vitro binding affinity for PDE10A, but the radiotracers differ in terms of in vivo kinetics. [11C]TZ1964B has higher striatal retention, so it could provide better measurements for static scan acquisition, for steady-state analysis methods, or for displacement studies. [18F]MNI659 shows higher initial tracer uptake, and could be preferred for short-term dynamic scans or for measurement of dissociation rates (Liu et al., 2016). Considering its good properties as PDE10A PET tracer, [18F]MNI659 has also been evaluated in healthy human brains, showing a regional brain uptake consistent with post-mortem PDE10A distribution: highest in striatal regions and lowest in cerebellum (Barret et al., 2014). [18F]MNI659 has been used in humans to examine the expression of PDE10A in relation with ageing. PDE10A showed a significant age-related decline that was larger compared to the age-related decline of volumes measured with MRI (Fazio et al., 2017).

No studies have been performed in Parkinson’s disease patients with [18F]MNI659 PET imaging but interesting data have been generated in Huntington’s disease. A decrease in striatal and pallidal [18F]MNI659 binding was found in eight patients with early manifest Huntington’s disease, with lower striatal [18F]MNI659 binding associated with worse UHDRS motor scores, disease burden of
pathology and regional atrophy (Russell et al., 2014). On follow-up scans, $[^{18}F]$MNI659 uptake declined in the putamen and caudate nucleus in all eight participants. The mean annualized rates of decline in signal in the caudate, putamen, and globus pallidus and the putamen were 16.6%, 6.9%, and 5.8%, respectively. In healthy controls, the annualized reduction in signal in striatal regions was less than 1%. Longitudinal data in this small cohort of participants with early Huntington’s disease support $[^{18}F]$MNI659 PET imaging of PDE10 as a useful biomarker to track Huntington’s disease progression (Russell et al., 2016).

However, although $[^{18}F]$JNJ42259152 and $[^{18}F]$MNI659 are good PET ligand for the imaging of PDE10A in humans in vivo, they are $[^{18}F]$labeled tracers with the limitations associated with that. Because of their longer half-life, $[^{18}F]$labeled ligands offer significant advantages over $[^{11}C]$labeled ones, both in terms of the reduced radiation exposure to study participants and in the facilitation of multiple scanning sessions in the same individual on the same day. The ability to conduct multiple PET scans in the same day is critical in drug development when performing time–course occupancy studies required to evaluate the relationship between plasma and brain pharmacokinetics. In addition, $[^{11}C]$labeled ligands allow multiple daily syntheses on the same platform, providing optimization of imaging infrastructure. The first $[^{11}C]$labeled PDE10A radioligands developed for human studies is $[^{11}C]$IMA107, that was reported as having suitable tracer kinetics in pig, baboon, and human brain. $[^{11}C]$IMA107 showed a regional distribution of radioactivity in the human brain consistent with the distribution previously observed in the pig and baboons. The tracer kinetics were also reversible, indicating a good translation of the tracer behavior between all species studied. $[^{11}C]$IMA107 showed a good signal to noise, with suitably fast kinetics and consistent good kinetics model fits and can be quantified using a simplified reference tissue model with a 90-minutes acquisition (Plisson et al., 2014b).
[11C]IMA107 has also been tested previously in humans, in patients with Parkinson’s disease. PDE10A expression was investigated in 24 moderate-advanced Parkinson’s disease patients by using [11C]IMA107 PET imaging (Niccolini et al., 2015a). Parkinson’s disease patients showed lower [11C]IMA107 binding in the caudate, putamen and globus pallidus compared to healthy controls. Longer Parkinson’s disease duration and higher Unified Parkinson's Disease Rating Scale part-III motor scores correlated with lower [11C]IMA107 binding in the caudate, putamen, and globus pallidus. Higher Unified Dyskinesia Rating Scale scores in those Parkinson's disease with levodopa-induced dyskinesias correlated with lower [11C]IMA107 binding in the caudate and putamen. This provides evidence for the role of PDE10A within the striatum in the development of cardinal motor symptoms in Parkinson’s disease. Interestingly, a decline in PDE10A expression within the globus pallidus correlated with worse axial signs including the freezing of gait, falls and imbalance (Niccolini et al., 2015a).

In summary, [11C]IMA107 PET molecular imaging is able to measure loss of PDE10A expression, as shown in moderate to advanced levodopa-treated patients with Parkinson’s disease (Niccolini et al., 2015a), but is unknown whether PDE10A is implicated at the earlier stages of the disease and how its biomarker value compares with the gold standard DAT molecular imaging.

Using [11C]IMA107 PET molecular imaging, we aimed to investigate the role of PDE10A in the early stages of the Parkinson’s disease with the main hypothesis that a reduction of PDE10A expression is an early phenomenon in the course of Parkinson’s disease, and that PDE10A expression decreases further as Parkinson’s disease progress (in term of duration and clinical severity). By using [11C]IMA107 PET imaging, we assessed in vivo the integrity of PDE10A enzyme in early de novo and in a population of early levodopa-treated patients with three-year longer Parkinson’s disease duration in relation to a group of age- and sex-matched healthy controls. We also hypothesize that
PDE10A expression might be affected earlier on in the course of the disease, investigating the associations between PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc).
1.3.2 MRI

1.3.2.1 Structural MRI

MRI techniques do not rely on ionizing radiation, and thus, it is one of the features that characterize magnetic resonance procedures over SPECT and PET. However, the MRI alone is not able to characterize the brain at the molecular level. Over the last decade, there has been a large interest to combine more than one or two modalities into one imaging system able to morphologically and molecular address pathophysiologic questions.

1.3.2.1.1 Methodological consideration

Structural MRI may capture “macroscopic” changes associated with Parkinson’s disease and is based on the ubiquitous presence of water in body tissues and the spin of the hydrogen atom proton, which works as a small magnetic dipole (Seppi and Poewe, 2010). A powerful, uniform, external magnetic field is employed to align the protons that are normally randomly oriented within the water nuclei of the tissue being examined. This alignment (or magnetization) is next perturbed or disrupted by introduction of an external Radio Frequency (RF) energy. The nuclei return to their resting alignment through various relaxation processes and in so doing emit RF energy. After a certain period following the initial RF, the emitted signals are measured. Fourier transformation is used to convert the frequency information contained in the signal from each location in the imaged plane to corresponding intensity levels, which are then displayed as shades of gray in a matrix arrangement of pixels. By varying the sequence of RF pulses applied & collected, different types of images are created. Repetition Time (TR) is the amount of time between successive pulse sequences applied to the same slice. Time to Echo (TE) is the time between the delivery of the RF pulse and the receipt of the echo signal (Brooks and Pavese, 2011). Tissue can be characterized by two different relaxation times – T1 and T2. T1 (longitudinal relaxation time) is the time constant which determines the rate at which excited protons return to equilibrium. It is a measure of the time taken for spinning protons to realign with the external magnetic field. T2 (transverse relaxation time) is the time constant which
determines the rate at which excited protons reach equilibrium or go out of phase with each other. It is a measure of the time taken for spinning protons to lose phase coherence among the nuclei spinning perpendicular to the main field.

T1-weighted sequences are produced by using short TE and TR times. The contrast and brightness of the image are predominately determined by T1 properties of tissue. Conversely, T2-weighted images are produced by using longer TE and TR times. In these images, the contrast and brightness are predominately determined by the T2 properties of tissue. In general, T1- and T2-weighted images can be easily differentiated by looking the CSF. CSF is dark on T1-weighted imaging and bright on T2-weighted imaging.

T2-weighted sequences are sensitive to tissue properties, including tissue damage, astroglial reaction, microglial proliferation and neurodegenerative processes, such as iron deposition. MRI visualizes non-heme iron in the brain, stored as ferritin, hemosiderin and neuromelanin, due to a selective shortening of the T2 relaxation time, thus leading to signal hypointensity on T2-weighted and minimal intensity change on T1 images (Seppi and Poewe, 2010). Standard T1-weighted sequences are important for anatomical details since present high grey/white matter contrast for cortex and basal ganglia structures, although the contrast is lower in other regions of interest in Parkinson’s disease, such as the substantia nigra, subthalamic nucleus, globus pallidus and red nucleus. In fact, unlike the layered structure of the cortex, basal ganglia and thalamic nuclei are connected by complex and intertwined axonal tracts, below the resolution limits of conventional T1-weighted imaging (~ 1 mm), reducing contrast by partial volume averaging. In addition, the high iron content of the major midbrain nuclei (SNpc, red and subthalamic nuclei, pallidum and putamen) further shortens T1 (Helms et al., 2008). These structures thus exhibit reduced contrast from white matter on conventional MRI sequences and are often misclassified by segmentation algorithms (Helms et al., 2008).
Various attempts have been made to enhance the contrast of T1-weighted images. Firstly, by using an inversion pulse, a three-dimensional magnetization prepared rapid acquisition with gradient echo (MPRAGE) sequence has been obtained and quality image, as well as contrast, have been proved to be superior with this imaging compared to T1-weighted spin echo (SE) imaging. Subsequently, distinct Inversion Recovery Sequences were used which respectively suppress grey matter and white matter. The obtained ratio image depends only on T1 so that signal values could be recast in the form of a T1 map. A newer semi-automated segmentation analysis has also enabled to display the substantia nigra as an isolated structure, which allows for a more accurate assessment of the gross abnormalities. In particular, Segmented Inversion Recovery Ratio Imaging (SIRRIM), has shown a lateral-to-medial gradient for structural changes of the substantia nigra, consistent with neuronal loss pattern as know from post-mortem studies on Parkinson’s disease. Lastly, Magnetization Transfer Imaging (MTI) relies on the transfer of energy between highly bound protons within structures such as myelin and cell membranes, and mobile protons in free water. The new contrast in MTI is induced by the application of radiofrequency pulses that selectively saturate the magnetization of rotationally immobilized macromolecules. This process leads in turn to a decrease of free water signal, probably as cross-relaxation or chemical exchange between mobile and bound protons increases. MT ratios, obtained by calculating the differences between signal intensity with and without MT, hence represent surrogate parameters for macromolecular density, which is clearly reduced in demyelinated lesions and neurodegeneration (Seppi and Poewe, 2010). However, MTI ratios are not absolute measures, as they show a residual dependence on T1 relaxation; thus, a semi-quantitative parameter, namely MT saturation, has been calculated to correct MT maps for confounding influences of proton density and T1 relaxation changes. As an additional benefit of MT maps, they resulted more suitable than T1-weighted images for automated segmentation, which enables automatic correction of inhomogeneities in the transmit and receive radio-frequency (B1) fields. By this method, more accurate anatomical delineation has been demonstrated for subcortical regions, including SNpc,
putamen, pallidum and thalamus, which are involved in the pathogenesis of many neurological diseases, such as Parkinson’s disease and atypical parkinsonism (Helms et al., 2008).

To improve the delineation of subcortical nuclei, an innovative approach defined Fast Grey Matter Acquisition T1 Inversion Recovery (FGATIR) has been implemented. The FGATIR provides significantly better high-resolution thin (1mm) slice visualization of substantia nigra globus pallidus internal and external than does either standard 3T T1 or T2-weighted imaging, with sharper delineation of these structures. This was achieved by using a shorter value of inversion time than the inversion time typically employed in the standard MPRAGE (400 in FGATIR vs. 900 msec in MPRAGE, which nulls the signal of Cerebrospinal Fluid (CSF)). Shortening of the TI resulted in nulling the signal of white matter while preserving most of the signal of grey matter and CSF (Sudhyadhom et al., 2009). The FGATIR also revealed features not visible on other scan types: the internal lamina of the globus pallidus internal, fiber bundles from the internal capsule piercing the striatum, and the boundaries of the subthalamic nuclei (Tanner et al., 2012).
1.3.2.1.2 Structural MRI in Parkinson’s disease

Standard MRI is normal in early Parkinson’s disease but brain atrophy, mainly in the prefrontal cortex, is sometimes evident in the advanced stages (Hotter et al., 2009). At 1.5T, T2-weighted sequences may also show abnormalities of the substantia nigra, including a signal increase on images or smudging of the hypointensity toward the red nucleus in both patients with advanced Parkinson’s disease and atypical parkinsonism (Seppi and Poewe, 2010). Still, visual assessment of conventional MRI takes a leading role at first clinical presentation, as it can address neurologists in the differential diagnosis. In fact, it can help either in excluding pathologies such as vascular lesions, brain tumours, multiple sclerosis and normal pressure hydrocephalus, as possible secondary causes of parkinsonism, or in pointing toward neurological disorders other than Parkinson’s disease, if characteristic abnormalities of atypical parkinsonism are seen. To date, several findings suggestive of MSA have been described at 1.5T, including pontine atrophy, “hot cross bun” sign of the pons, visible on axial T2-weighted images, atrophy of the cerebellum and hyperintensity in the middle cerebellar peduncle. While putaminal atrophy also appears to discriminate MSA from Parkinson’s disease, T2-putaminal hypointensity, and a putaminal hyperintense rim may also occur in Parkinson’s disease, possibly the latter sign being a nonspecific, normal finding (Seppi and Poewe, 2010). Specific MRI findings associated with PSP comprise midbrain atrophy with enlargement of the third ventricle and tegmental atrophy, signal increase in the midbrain and in the inferior olives, as well as frontotemporal lobe atrophy. A specific indirect sign of midbrain atrophy is the “penguin silhouette” or “hummingbird sign”, with the midbrain tegmentum and the pons respectively resembling the bird’s head and body on midsagittal T1-weighted images (Seppi and Poewe, 2010). Lastly, in patients with CBD, structural MRI tends to show cortical, especially frontoparietal, atrophy, which tends to be asymmetric and contralateral to clinical symptoms. Other specific T2-weighted imaging abnormalities have been suggested, but none of them seems to be of diagnostic relevance for CBD. Overall, specificity of structural MRI for identifying different atypical Parkinsonism is inefficient, but visual assessment of
conventional T1 and T2-weighted sequences has been proved able in discriminating atypical parkinsonism from Parkinson’s disease and controls with good accuracy (Seppi and Poewe, 2010).

The growing interest in finding simple measures of regional brain atrophy to help the differential diagnosis of neurological disorders has led to the development of various MRI semi-automatic segmentation techniques based on a Region of Interest (ROI) approach. More recently, interest for Voxel-Based Morphometry (VBM) is spreading due to its potential use for detecting cerebral volume loss in an automated and operator-independent manner, contrary to previous methods (Seppi and Poewe, 2010). VBM involves spatially normalizing all the subjects’ brain data to an equal stereotactic space, which is achieved by co-registering each of the T1-weighted MPRAGE sequences with the same template image. A segmentation into grey matter, white matter, CSF and other nonbrain partitions is performed afterward for all the spatially normalized images, using a mixture model cluster analysis technique. In the last step of VBM, the grey matter images are smoothed by convolving with an isotropic Gaussian kernel. This makes the subsequent voxel-by-voxel statistical analysis comparable to an ROI approach, because each voxel in the smoothed images contains the mean concentration of grey matter from around the voxel. Corrections for multiple comparisons are made using the theory of Gaussian random fields (Ashburner and Friston, 2000). Whereas most of the ROI-based MRI studies were not able to detect any volume difference between Parkinson’s disease patients and controls, several VBM studies have revealed grey matter loss of frontal cortical areas, including motor areas, especially in advanced Parkinson’s disease (Seppi and Poewe, 2010). In patients with MSA compared to those with Parkinson’s disease, VBM showed a typical atrophy progression pattern for the first group, with early degeneration of the basal ganglia, including striatum, followed by increasing atrophy in the cortical areas and cerebellar hemispheres. Grey matter loss in frontotemporal cortex has been confirmed for patients with PSP by applying VBM. Of note, a further VBM-based MRI study achieved high specificity and sensitivity in discriminating “PSP” from “non-PSP” (i.e. patients with Parkinson’s disease and controls), based on the presence of grey and
white matter loss in the subthalamic nucleus, midbrain and cerebral peduncles (Price et al., 2004). Lastly, from the comparison between patients with PSP and CBD, midbrain structures were more atrophied in the first, while dorsal frontal and parietal cortices were more affected in the latter (Seppi and Poewe, 2010).

Another approach to evaluating brain atrophy is the quantification of cortical thickness, with automated software such as FreeSurfer. However, past studies have yielded inconsistent results regarding the presence of cortical thinning at various stages of Parkinson’s disease. In cognitively normal and early Parkinson’s disease subjects, past studies have reported minimal or no evidence suggesting cortical thinning (Jubault et al., 2011; Pagonabarraga et al., 2013; Zarei et al., 2013; Segura et al., 2014). One small study of 16 Parkinson’s disease and 15 control subjects, however, did report fast rates of cortical thinning in early Parkinson’s disease, but still no differences in cortical thickness between Parkinson’s disease and control subjects (Ibarretxe-Bilbao et al., 2012). There is more substantial evidence, however, to suggest that lower cortical thickness may be related to cognitive decline or impairment (Hwang et al., 2013; Pagonabarraga et al., 2013; Zarei et al., 2013; Pereira et al., 2014; Segura et al., 2014; Zhang et al., 2015), worsening motor scores (Lyoo et al., 2011; Hwang et al., 2013), and visual hallucinations in Parkinson’s disease (Hwang et al., 2013).
1.3.2.2 Diffusion Tensor Imaging (DTI) MRI

1.3.2.2.1 Methodological consideration

Measuring the translational displacement of water molecules in response to an applied magnetic field is another way to evaluate brain structural anatomy at a microstructural level. This diffusion-based imaging method, namely diffusion tensor imaging (DTI), is hence capable to detect changes in white matter (Tessitore et al., 2016). Several parameters are used in DTI, the most common of which are fractional anisotropy (FA) and mean diffusivity (MD). FA is related to the directionality of water molecules’ motion that is restricted by the normal architecture of glial tissue and fiber tracts. Indeed, rapidity of diffusion was found to be greater longitudinal to the axons than perpendicular to them and FA can be calculated from the difference between these two motions (Tessitore et al., 2016). As opposite to FA, MD depends on the overall movement of water molecules and thus it is more sensitive to tissue density than to its organization (Tessitore et al., 2016). This index is quantified by applying diffusion-sensitizing gradients of different degrees in three orthogonal directions and thus calculating the apparent diffusion coefficient (ADC) for each direction. Since ADC is dependent on the orientation of the gradients applied, diffusion in each direction is averaged, obtaining the averaged ADC (ADCave), also called MD. Both FA and MD can provide insight into myelin and axon integrity, and therefore their alteration (i.e. decreased FA and increased MD) can be observed in neurodegenerative diseases, due to neuronal loss and gliosis disrupting nervous system architecture (Seppi and Poewe, 2010; Tessitore et al., 2016). Apart from quantification of MD and FA, axial diffusivity (ADi) and radial diffusivity (RD), referring to the main directions of diffusion, longitudinal and perpendicular to the axon, have also shown high specificity to underlying axonal and myelin alterations. Because DTI is sensitive to a broad spectrum of microscopic changes in brain tissue, an interpretation of its parameters variations in terms of underlying microstructural origins is not always easy. In general, however, an increased in RD has been associated with myelin damage and demyelination whereas an increase in ADi is thought to primarily indicate axonal deterioration and
neuronal loss. Tensor-derived measures can be extracted either locally in predefined regions using an ROI-based analytic approach or globally into the brain using VBM (Tessitore et al., 2016).

MRI tractography is not a distinct imaging method, but a method of analyzing diffusion data. In particular, Tract-based spatial statistic (TBSS) is an example of automated voxel-based analysis at a microstructural level to assess connections between brain structures and to derive indices of connectivity that can be used to compare groups. For each seed voxel within a connectivity distribution territory, an index of voxel connectivity is calculated using probabilistic tractography. This connectivity index represents the probability of this voxel being connected to target voxels in other regions and is defined as the number of the most probable fibers at each voxel. Further resampling of the tract fibers data into volumetric data with a voxel size smaller than the original diffusion-weighted scan has allowed developing a new method to explore connectivity, referred to as “super-resolution” track-weighted imaging. Indeed, one limitation of MRI tractography within the framework of DTI is related to the intricate and complex nervous system architecture, such that each small region may contain multiple fiber orientations and fiber crossings. To resolve the consequent heterogeneity of intravoxel diffusion signal, DT model-free methods have also been suggested, such as diffusion spectrum imaging (DSI). DSI is a 6D imaging technique that has the capacity to unravel structural information from brain tissue architecture by measuring its diffusion density spectra estimator and without the need for a priori information or ad hoc models.

1.3.2.2 DTI in Parkinson’s disease

Divergent and sometimes conflicting DTI results have been published on Parkinson’s disease to date (Tessitore et al., 2016). An ROI-based DTI study on early de novo Parkinson’s disease patients has revealed that reduction of FA in the caudal region of the substantia nigra can distinguish between Parkinson’s disease patients and healthy controls with a reported 100% sensitivity and specificity (Vaillancourt et al., 2009). More recently, TBSS and diffusion connectometry in newly diagnosed, untreated Parkinson’s disease patients showed greater FA and decreased MD and RD in callosal
projection and association fibers than controls. Accordingly, motor severity (assessed with UPDRS-III score) was inversely correlated with FA and positively associated with MD and RD in Parkinson’s disease patients. Since the alterations of DTI indexes only exhibited in the group of Parkinson’s disease patients with Hoehn & Yahr (H&Y) stage 1, the increase of FA together with the decrease of MD and RD may suggest neural compensations for the loss of dopaminergic input from the substantia nigra in the very early disease stage. Using an ROI-based approach, a reduction in nigral FA was correlated with the clinical severity in middle-stage Parkinson’s disease patients (Atkinson-Clement et al., 2017). However, in a recent meta-analysis on Parkinson’s disease-related nigral DTI changes at 3T, no changes in FA values were shown, with either an ROI- or voxel-based approach, questioning the stability and validity of this measure as a Parkinson’s disease biomarker (Atkinson-Clement et al., 2017). On the other hand, at ROI-analysis was found a regional MD increase in the substantia nigra of Parkinson’s disease patients compared to healthy controls, but no significant difference in any areas using a voxel-based approach (Atkinson-Clement et al., 2017). Higher regional MD in the putamen and reduced regional FA in the motor, premotor and supplementary motor cortex have also been reported, consistent with widespread microstructural degradation primarily involving the movement control circuit in Parkinson’s disease (Atkinson-Clement et al., 2017). Interestingly, increased FA within the postcentral gyrus at the level of somatosensory cortex was positively correlated with UPDRS-III score in Parkinson’s disease patient, reflecting a potential compensatory mechanism in response to disease-related motor deficits (Atkinson-Clement et al., 2017). Lastly, the involvement of the olfactory system is well known in Parkinson’s disease, with olfactory dysfunction being present even in the earliest stages, before the onset of overt motor symptoms. Several studies have accordingly reported decreased FA and increased MD values in the olfactory tract in early Parkinson’s disease (Tessitore et al., 2016) and, remarkably, also a significant correlation between University of Pennsylvania Smell Identification Test (UPSIT) scores and FA of white matter adjacent
to primarily olfactory cortex and right gyrus rectus also detected in one study (Ibarretxe-Bilbao et al., 2010).

Whereas at baseline Parkinson’s disease patients did not consistently differ from controls with regards to diffusion measures, as the disease progresses a significant decrease of nigral FA and an increase of nigral MD become apparent, both in comparison with the controls and longitudinally (Parkinson’s disease baseline vs. Parkinson’s disease follow-up) (Loane et al., 2016). DTI reports of striatal diffusion over time in Parkinson’s disease are not concordant (Loane et al., 2016), although, according to Braak’s staging of Parkinson’s disease, the loss of dopamine neurons in the substantia nigra and the midbrain further leads to a degeneration of the nigrostriatal and basal ganglia-thalamocortical pathways, potentially suggesting a relationship of cause-effect. At later disease stages IV to VI, Lewy Body pathology affects the thalamus and progress to mesocortex and neocortices (Zhang et al., 2016). In keeping with this neuropathological hypothesis on Parkinson’s disease progression, Zhang et al. indeed found the highest rates of diffusion measures changes involving the substantia nigra and the thalamus. In line with this hypothesis, reduced FA and increased diffusivity (MD, ADi, and RD) in the substantia nigra respectively correlated with increasing putaminal DAT deficiency and declining CSF alpha-synuclein and total tau, whereas increased diffusivity in the thalamus correlated with a progressive decline in global cognition (Zhang et al., 2016). These findings overall demonstrate that nigral DTI alteration is a valuable biomarker of Parkinson’s disease progression and that microstructural DTI changes in the thalamus might be an indicator of a cognitive decline in Parkinson’s disease (Zhang et al., 2016). Other studies have been conducted to investigate the relationship between DTI changes and cognitive impairment in Parkinson’s disease and to identify those white matter alterations, which may predict the development of Parkinson’s disease dementia. A recent study from our team has demonstrated that structural and DTI microstructural changes in the nucleus basalis of Meynert are associated with and predictive of cognitive impairment in Parkinson’s disease. Cross-sectional analysis revealed that in patients with Parkinson’s disease,
cognitive impairment was associated with reduced grey matter volume and increased MD in the nucleus basalis of Meynert. A longitudinal analysis of MRI data, collected over 36 months from patients with Parkinson’s disease who were cognitively healthy at baseline, showed that changes in the nucleus basalis of Meynert predicted cognitive decline (Schulz et al., 2018).

In another DTI study, reduced FA values in bilateral parietal white matter significantly showed a correlation with MMSE scores in patients with MCI-Parkinson’s disease, Parkinson’s disease dementia and dementia with Lewy bodies (DLB), but not in patients who were cognitively normal. Patients with Parkinson’s disease dementia and DLB also exhibited diffuse grey matter atrophy on T1-weighted MRI scans. Besides diffusion and structural data, the functional status of the cortex was evaluated by using SPECT, which revealed occipital and posterior parietal hypoperfusion in all patients’ groups. Taken together, current results suggest that cognitive impairment in Parkinson’s disease progresses with a functional alteration (hypoperfusion) followed by a structural alteration in which white matter damage precedes grey matter atrophy (Hattori et al., 2012).

In summary, DTI imaging can be used to measure microstructural changes in the brain of patients with Parkinson’s disease. These changes might be related to the reduction of PDE10A and we tested this hypothesis in our project 3.
1.3.2.3 Neuromelanin-MRI

1.3.2.3.1 Methodological consideration

Neuromelanin has paramagnetic properties resulting in a high signal on specific T1-weighted MRI, which allows its in vivo visualization. A magnetic resonance field at 3T has succeeded in enhancing neuromelanin-generated contrast thanks to the higher signal-to-noise ratio and prolonged T1 relaxation time of brain tissue. Moreover, multi-slice 2D fast spin-echo sequence, using refocusing pulses, induces off-resonance magnetization transfer (MT) effects, which also suppress the background brain noise. This is of critical importance to increase contrast in NM-sensitive sequences since MT effect is reduced in neuromelanin (Nakane et al., 2008). Also, of relevance to detect substantia nigra and locus coeruleus signal is slice positioning: acquisition must be oriented perpendicular to the fourth ventricle floor, covering from the posterior commissure to the inferior border of the pons. Different post-processing methods have subsequently been used in several studies, to analyze the so obtained images. These extend from simple visual inspection and width measurements of the substantia nigra and locus coeruleus areas to the manual tracing of ROI- or semi-automated analysis of high-intensity areas (Reimao et al., 2016).

1.3.2.3.2 Neuromelanin-MRI in Parkinson’s disease

Neuromelanin is a substance related to skin melanin and originates from dopamine and noradrenaline metabolism. Projecting neurons from the dopaminergic SNpc and noradrenergic locus coeruleus contain neuromelanin depositions, a dark-colored pigment that gives the characteristic color to these areas. Neuronal loss is associated with a depigmentation of these areas, which represents the principal pathological feature of Parkinson’s disease (Reimao et al., 2016). Alpha-synuclein accumulation in Lewy bodies, the other key pathological component of Parkinson’s disease, has a role in the regulation of the levels of neuromelanin with changes of its function (Reimao et al., 2016). Initially, alpha-synuclein accumulation causes a compensatory activation of the tyrosine hydroxylase enzyme, which results in an increased cytosolic retention of dopamine, with a reduction of dopamine release in
dopaminergic neurons. Subsequently, this process induces an inhibition of tyrosinase, leading to a decrease of neuromelanin synthesis, mitochondrial damage and cell death (Reimao et al., 2016). The association of alpha-synuclein neurotoxicity with neuromelanin concentration changes needs further research to be confirmed, but the finding of an increased incidence of melanoma in Parkinson’s disease patients, in agreement with alpha-synuclein-induced melanin reduction, has been described in several studies (Reimao et al., 2016). Furthermore, subjects with a family history of melanoma also have more than a double risk of developing Parkinson’s disease, indicating an increased vulnerability to the disease, associated with reduced skin melanin concentration. Notably, the well-documented phenomenon of smoker’s melanosis seems to be a protective factor for Parkinson’s disease, thus supporting a negative association between higher skin melanin concentration and Parkinson’s disease (Reimao et al., 2016).

A loss of neuromelanin-containing neurons is expected to be detected by these specific MRI-sensitive sequences even in preclinical stages since a substantial part of dopaminergic neurons of the substantia nigra is generally already lost when clinical symptoms become apparent (Reimao et al., 2015). One study found that measurements on these sequences, such as the area and the maximal length of the substantia nigra T1 high signal region, were reduced in the de novo Parkinson’s disease patients compared with healthy controls. Moreover, the difference was statistically significant with both measurements, as they were able to separate the two groups with high sensitivity and specificity (Reimao et al., 2015). This finding is consistent with previous results from transcranial sonography studies in Parkinson’s disease, according to which reduced ultrasound signal, reflecting neuromelanin decrease, does not seem to correlate with disease duration, progression and clinical severity (Reimao et al., 2015). Conversely, Miyoshi and colleagues demonstrated on the base of a visual assessment of NM-MRI that neuromelanin reduction gradually and stage-dependently extends from lateral to medial SNpc, which corresponds to the pathological lesions as demonstrated on autopsied brains (Miyoshi et al., 2013). In addition, they identified a more intense NM-MRI signal reduction in the
locus coeruleus of patients with late Parkinson’s disease, suggesting relative spare of noradrenergic neurons in the early stage as a potential compensatory mechanism for the substantia nigra dopaminergic neuronal loss (Miyoshi et al., 2013). In another very recent study, NM-MRI measures of the substantia nigra volume and contrast-to-noise ratio correlated significantly with dopaminergic striatal innervation loss as measured by SPECT and, notably, both findings also correlated with the severity of Parkinson’s disease-related motor signs, as defined on the base of the UPDRS score (Isaias et al., 2016).

Only a few studies have been conducted using NM-MRI for the differential diagnosis of Parkinson’s disease and atypical Parkinsonism. A recent one found signal attenuation in the SNpc but less severe attenuation in the locus coeruleus in patients with MSA, and no apparent signal changes in patients with PSP, when compared with healthy controls (Ohtsuka et al., 2014). NM-MRI was also used to study rapid eye movement sleep behavior in Parkinson’s disease. The authors reported reduced signal intensity in the locus coeruleus/subcoeruleus complex of these patients compared to patients without these movements (Garcia-Lorenzo et al., 2013). A more recent study confirmed that this complex is affected in idiopathic rapid eye movement sleep behavior to the same degree as it is affected in Parkinson’s disease, thus suggesting NM-MRI as an early biomarker of non-dopaminergic alpha-synucleinopathy (Ehrminger et al., 2016). Finally, NM-MRI did not show the same substantia nigra signal attenuation in patients with ET, with respect to tremor-dominant Parkinson’s disease patients, presenting itself as an important early diagnostic tool for Parkinson’s disease (Reimao et al., 2015).

In the present days, part of the research also aims to investigate the relation between neuromelanin reduction and increasing iron content in the substantia nigra of Parkinson’s disease patients. Some researchers believe that a localized higher iron level is caused by the iron-chelated extracellular neuromelanin, which is released from dead neurons injured by alpha-synuclein aggregation, as mentioned above. Conversely, according to others, iron level increases primarily, and then extracellular neuromelanin, as a compensatory mechanism to chelate the excess iron (Reimao et al.,
In fact, it is known by *post-mortem* studies that the amount of substantia nigra and locus coeruleus iron, normally sequestered in NM granules (20% bonded to neuromelanin in its ferric form and the remainder stored as ferritin and hemosiderin), progressively increases in Parkinson’s disease (Reimao et al., 2016). Neuromelanin exhibits paramagnetic properties when bound to iron that results in the acceleration of T1 relaxation and thus its bond with iron enhances neuromelanin-related contrast on NM-sensitive MRI sequences (Reimao et al., 2015). However, early loss of nigral neurons in Parkinson’s disease results in a general decrease in the number of NM granules, with iron being less bound to neuromelanin and with a possible increase of the proportion of iron stored as ferritin, hemosiderin and in Lewy Bodies (Reimao et al., 2016). This might explain the observed lack of correlation between the substantia nigra NM-MRI signal reduction and substantia nigra iron content, as detected with T2* relaxometry in a group of early-stage Parkinson’s disease patients. Indeed, while as expected substantia nigra neuromelanin was significantly decreased in patients compared to controls, substantia nigra T2* values of controls tended to be higher than those of the patients for all the examined substantia nigra segments (Reimao et al., 2016). Other explanations for this finding might relate either to the still unclear pathophysiology of substantia nigra neurodegeneration, with neuromelanin loss and iron accumulation possibly being two independent pathological processes, or to methodology limitations.
1.3.2.4 SWI-MRI

1.3.2.4.1 Methodological consideration

Susceptibility-weighted imaging (SWI) exploits the different response i.e. susceptibility of tissues when placed in a high-intensity magnetic field, such as 3T and 7T, to develop an enhanced contrast MRI image. To this aim, a gradient-recalled echo sequence with a relatively long echo time is applied. This allows the multiplication of magnetic susceptibility information, recorded several times in the so filtered phase image, to the structure of the brain, described by a T2-weighted magnitude image. Inhomogeneity of local magnetic field and subsequent image phase variations are influenced by the macroscopic or geometric effect, which reflects the configuration of tissues, and by the microscopic effect, that depends on substance-specific magnetic characteristics. For instance, grey matter and deep brain nuclei are generally classified as paramagnetic, because of the high iron content, while white matter is diamagnetic, because of the myelin. As the mechanism of SWI, the signal intensity is increased when diamagnetic substances accumulate, and, at the opposite, it is reduced in the presence of brain high content of paramagnetic substances, such as iron (Wang et al., 2016).

Recently, a new sophisticated post-processing technique, referred to as quantitative susceptibility mapping (QSM), has been developed to solve the SWI ill-posed inverse effect-to-source problem, considering the magnetic susceptibility as an intrinsic property of the tissue. In other words, by this method it is possible to quantify, rather than visualize, the iron content of specific cerebral areas by measuring the local magnitude susceptibility directly, obtaining values which are isotropic. Thus, QSM potentially address the limitations of SWI, such as magnetic field perturbation being non-local, i.e. affected by the surrounding areas, and anisotropic, i.e. depending on its orientation with respect to the main magnetic field (Schweser et al., 2011). In addition, QSM can overcome another big limit of SWI, which is the difficulty to distinguish iron paramagnetic susceptibility from calcium diamagnetic susceptibility, due to the convoluting effect of the dipole fields. This is of major
importance since it allows avoiding confounders between brain calcifications and iron deposition (Liu et al., 2015).

Several studies have been conducted to compare QSM with T2* relaxometry and its inverse R2*, previously considered the gold standard for the evaluation of the iron content in the brain. According to a recent publication, QSM measurements have high reproducibility in the basal ganglia of healthy controls and can be used as a replacement of R2* imaging in iron-rich cerebral regions (Santin et al., 2017). Another study concludes that QSM is the most sensitive quantitative technique for detecting an increase of iron in the brain of patients with Parkinson’s disease. Notably, the findings suggest that the phase contrast can be influenced by diamagnetic myelin. In effect, myelin correction significantly improved the linear dependence between magnetic susceptibilities and published iron values from post-mortem studies. Moreover, in agreement with most of the literature (Wang et al., 2016), the highest significant difference with healthy controls was found in the SNpc, using the QSM method (Barbosa et al., 2015).

1.3.2.4.2 SWI-MRI in Parkinson’s disease

To date brain iron accumulation has been proved to be associated with the pathogenesis of Parkinson’s disease in both pathological and MRI studies, comparing patients with healthy controls (Wang et al., 2016). Furthermore, iron levels are uneven in different cerebral regions even in the same patient, with the substantia nigra being the most relevant area for iron deposition, according to a large body of evidence (Wang et al., 2016). The specific reason for this localized phenomenon is still unclear, but iron metabolism dysregulation may relate with various aspects of Parkinson’s disease pathology, such as inflammation state with permeability changes of the blood-brain barrier (BBB), or with other acquired and genetic factors affecting iron storage and transport protein function. To date, however, it is still debatable whether the defect in iron metabolism is a cause, a consequence or just an epiphenomenon of neurodegeneration. Notably, in Parkinson’s disease there is not only an increase of free non-hemin iron, the iron form believed to be involved in normal aging and
neurodegenerative parkinsonism, but also in the ratio ferric state (Fe3+) / ferrous state (Fe2+). This is in line with Parkinson’s disease pathology as in Fenton reaction iron in the Fe2+ is oxidized to the Fe3+, the latter highly correlating with the aggregation of alpha-synuclein (Wang et al., 2016). In addition, the result of the reaction hydrogen peroxide H2O₂ might damage proteins, nucleic acids and cell membranes by producing high-toxic free radicals, eventually leading to substantia nigra cells death (Zhang et al., 2010; Chen et al., 2012).

Regarding the other basal ganglia, there are contradictions between a possible iron content increase or decrease (Rossi et al., 2014). To systematically explore different brain regions, a structure by structure analysis was made on Parkinson’s disease patients, comparing local iron levels obtained by SWI, R2* and post-mortem studies. From the results of this meta-analysis, it appears that both R2* and SWI do not completely match the post-mortem observations. Iron accumulation is detected by SWI in the globus pallidus and caudate, but these findings are inconsistent with both R2* and post-mortem values. Such iron overload is also suggested by the current study in the putamen (by post-mortem and SWI, but not R2*) and red nucleus (by R2* and SWI; no data by post-mortem) (Wang et al., 2016).

More recently, using QSM method, Guan et al. have reported a regionally progressive brain iron accumulation as the disease advances. According to this distinct progression pattern, iron deposit spreads from the SNpc, already affected in the early stages of the disease, to the substantia nigra reticulata, red nucleus and globus pallidus, especially in the internal segment, in the latter. Thus, this finding could explain the discrepancy between confirmed post-mortem neuropathology and MRI techniques, as well as provide preliminary evidence of the iron-related progression in Parkinson’s disease (Wang et al., 2016). A previous 2-year follow up study was also conducted, using both SWI and R2*, with the aim of evaluating a correlation of iron level progressive variation with Parkinson’s disease duration and clinical evolution. The data indicate a slight grow of putative iron content over time in the medial part of the substantia nigra, anterior globus pallidus, and caudate nucleus. The rate
of this increase, however, was not predictable knowing the Parkinson’s disease duration, while it seems to correlate with individual characteristics, such as age at disease onset or cognitive decline (Rossi et al., 2014). This is in line with previous literature, according to which no reliable correlation exists between an increase in brain iron concentration and Parkinson’s disease duration, the first reflecting instead clinical parameters, such as UPDRS motor scores (Zhang et al., 2010). Nevertheless, one study found greater iron accumulation, as indicated by both R2* and SWI values, to correlate with longer disease duration, even accounting for age, and regardless of disease severity or dopaminergic drugs use (Isaias et al., 2016).

Still, little research has been conducted about the application of QSM for the differential diagnosis of Parkinsonism. By SWI, the high iron level of the putamen is likely the most reliable biomarker for the differential diagnosis of Parkinson’s disease and atypical Parkinsonism, since a different deposition pattern in this area has also been confirmed by autopsy (Wang et al., 2016). In particular, sub-dividing the putamen into 4 regions (lower inner, lower outer, upper inner, upper outer), the lower inner part performed the best to distinguish MSA from Parkinson’s disease (Wang et al., 2012), while the lower outer part was more valuable in differentiating MSA from PSP, being in the latter an overall iron deposit in the putamen the predominant feature. In addition, Han et al. proved that hypointensity SWI signals in the globus pallidus and thalamus are the most accurate biomarkers to distinguish atypical Parkinsonism from Parkinson’s disease, as the neuronal loss in these regions is spared in the latter, according to neuropathological studies (Wang et al., 2016).

In summary, NM and SWI imaging can be used to measure neuromelanin density and iron deposition in the brain of patients with Parkinson’s disease. These changes might be related to the reduction of PDE10A and we tested this hypothesis in our project 3.
1.4 Hypothesis and Aims

The overarching aim of these studies is to investigate the role of PDE10A in the early stages of the Parkinson’s disease with the main hypothesis that a reduction of PDE10A expression is an early phenomenon in the course of Parkinson’s disease, and that PDE10A expression decreases further as Parkinson’s disease progress (in term of duration and clinical severity). We have investigated this in the Project 1, in which, by using \(^{11}\text{C}\)IMA107 PET imaging, we assessed *in vivo* the integrity of PDE10A enzyme in early *de novo* and early levodopa-treated patients with Parkinson’s disease compared to age- and sex-matched healthy control subjects.

We aim to test this hypothesis comparing the expression of PDE10A (measured by using \(^{11}\text{C}\)IMA107 PET imaging) in early *de novo* and early levodopa-treated patients with Parkinson’s disease versus age- and sex-matched healthy control subjects (*Project 1 Aim*).

We also hypothesize that PDE10A expression might be affected earlier on in the course of the disease investigating the associations between PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc). We aim to test this hypothesis checking for correlations between the expression of PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc).

We also hypothesize that PDE10A expression was correlated with dopaminergic pathology, which can be measured either with PET or SPECT. We have investigated this in the Project 2, in which we compared the expression of PDE10A, measured with \(^{11}\text{C}\)IMA107 PET imaging, with the best known molecular markers of dopaminergic dysfunction in Parkinson’s patients, the \(^{11}\text{C}\)PE2I PET imaging, and the clinical validated \(^{123}\text{I}\)FP-CIT SPECT imaging. We aim to test this hypothesis checking for correlations between the expression of PDE10A and the expression of dopamine transporters (measured by using \(^{11}\text{C}\)PE2I PET and \(^{123}\text{I}\)FP-CIT SPECT molecular imaging) (*Project 2 Aim*). In this Project, we also compared \(^{11}\text{C}\)PE2I PET versus \(^{123}\text{I}\)FP-CIT SPECT
because the two tracers have a different affinity for the DAT ([11C]PE2I is more specific of DAT where [123I]FP-CIT binds both DAT and SERT). This would give us a greater understanding of the relationship between PDE10A expression and dopaminergic and non-dopaminergic pathology.

We also hypothesize that PDE10A expression was correlated with other markers of Parkinson’s disease pathology, such as iron depositions, neuromelanin loss, and changes in structural and microstructural changes in the substantia nigra and in the striatum. We have investigated this in the Project 3, in which we compared the expression of PDE10A, measured with [11C]IMA107 PET imaging, with MRI markers of Parkinson’s pathology such as iron depositions (assessed with susceptibility-weighted MR imaging), neuromelanin loss (assessed with neuromelanin sensitive MR imaging) and changes in structural volumetric (assessed with T1 MR imaging) and microstructural connectivity (assessed with diffusion tensor MR imaging). We aim to test this hypothesis checking for correlations between the expression of PDE10A and MRI markers of Parkinson’s pathology such as iron depositions (assessed with susceptibility-weighted MR imaging), neuromelanin loss (assessed with neuromelanin sensitive MR imaging) and changes in structural volumetric (assessed with T1 MR imaging) and microstructural connectivity (assessed with diffusion tensor MR imaging) (Project 3 Aim).
Chapter 2. Methods

This chapter introduces the thesis methods and provides a detailed description of the study planned, the population included in the studies, the clinical and imaging methods and the statistical analyses used in this thesis. The population included in this thesis is composed of early idiopathic Parkinson’s disease patients and healthy controls. The clinical assessments performed on these subjects involved evaluation of motor and non-motor symptoms, and neuropsychological batteries. The imaging methods used in this thesis are MRI, SPECT and PET imaging. PET imaging with $[^{11}\text{C}]\text{IMA107}$ was used to assess in vivo the integrity of PDE10A enzyme in the Project 1, 2 and 3. PET imaging with $[^{11}\text{C}]\text{PE2I}$ and SPECT imaging with $[^{123}\text{I}]\text{FP-CIT}$ were used to assess in vivo the integrity of DAT in the Project 2. 3T MRI imaging was used in the Project 3 to assess in vivo markers of Parkinson’s disease pathology such as changes in structural volumetric (assessed with Freesurfer MRI) and microstructural volumetric and connectivity (assessed with DTI MRI), neuromelanin loss (assessed with NM MRI) and iron depositions (assessed with SWI MRI).
2.1 Study planned

We aimed to investigate the role of PDE10A in the early stages of the Parkinson’s disease with the main hypothesis that a reduction of PDE10A expression is an early phenomenon in the course of Parkinson’s disease, and that PDE10A expression decreases further as Parkinson’s disease progress (in term of duration and clinical severity).

In the Project 1, we used $[^{11}\text{C}]$IMA107 PET imaging to assess in vivo the integrity of PDE10A enzyme in early de novo and early levodopa-treated patients with Parkinson’s disease compared to age- and sex-matched healthy control subjects. We also investigated the associations between PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc).

In the Project 2, we compared the expression of PDE10A, measured with $[^{11}\text{C}]$IMA107 PET imaging, with the best known molecular markers of dopaminergic dysfunction in Parkinson’s patients, the $[^{11}\text{C}]$PE2I PET imaging, and the clinical validated $[^{123}\text{I}]$FP-CIT SPECT imaging in early de novo and early levodopa-treated patients with Parkinson’s disease compared to age- and sex-matched healthy control subjects. In this Project, we also compared $[^{11}\text{C}]$PE2I PET versus $[^{123}\text{I}]$FP-CIT SPECT because the two tracers have a different affinity for the DAT ($[^{11}\text{C}]$PE2I is more specific of DAT where $[^{123}\text{I}]$FP-CIT binds both DAT and SERT).

In the Project 3, we compared the expression of PDE10A, measured with $[^{11}\text{C}]$IMA107 PET imaging, with MRI markers of Parkinson’s pathology such as iron depositions (assessed with susceptibility-weighted MR imaging), neuromelanin loss (assessed with neuromelanin sensitive MR imaging) and changes in structural volumetric (assessed with T1 MR imaging) and microstructural connectivity (assessed with diffusion tensor MR imaging) in early de novo and early levodopa-treated patients with Parkinson’s disease compared to age- and sex-matched healthy control subjects.
2.2 Population

A total of 54 subjects were included in these cross-sectional studies: 32 non-demented, non-depressed patients with idiopathic Parkinson’s disease according to the UK Brain Bank criteria, and 22 age and sex-matched healthy controls. All subjects underwent one 3T MRI (MPRAGE, DTI, NM, SWI) scan, one SPECT ([¹²³]I)FP-CIT) scan, and two PET ([¹¹]C)IMA107 and [¹¹]C)PE2I) scans.

Group A: 17 early untreated Parkinson’s disease patients (H&Y=1; disease duration <24 months; never treated with dopamine agonists or levodopa; MoCA>26 and BDI<13)

Group B: 15 early treated Parkinson’s disease (H&Y=2-3; disease duration <60 months; treated dopamine agonists or levodopa for at least 12 months and maximum 24 months; with no motor complications; MoCA>26 and BDI<13).

Group C: 22 age- and sex-matched HCs (MoCA>26 and BDI<13).

2.2.1 Inclusion/Exclusion criteria

Inclusion criteria

For all groups:

- 40-80 years of age, male or female
- Able to give informed consent
- Adequate visual and auditory acuity to complete the psychological testing

Specific for Parkinson’s disease patients Group A: early de novo

- Diagnosis of sporadic Parkinson’s disease according to the U.K. Brain Bank Criteria
- H&Y=1
- Disease duration <24 months
- never treated with dopamine agonists or levodopa
➢ MoCA>26
➢ BDI<13

Specific for Parkinson's disease patients Group B: early treated

➢ Diagnosis of sporadic Parkinson’s disease according to the U.K. Brain Bank Criteria
➢ H&Y=2-3
➢ Disease duration <60 months
➢ Treated with dopamine agonists or levodopa for at least 12 months and maximum 24 months
➢ No motor complications
➢ MoCA>26
➢ BDI<13
Exclusion criteria

For all groups:

➢ Presence or history of other neurological or psychiatric disorders
➢ Presence of cognitive impairment (MoCA>26)
➢ Presence of depressive symptoms (BDI<13)
➢ Current or a recent history of drug or alcohol abuse/dependence
➢ Presence of known intracranial co-morbidities such as stroke, hemorrhage, space-occupying lesions
➢ Pregnancy or breastfeeding
➢ Contraindication to MRI, such as the presence of metal devices or implants (e.g. pacemaker, vascular- or heart- valves, stents, clips), the metal deposited in the body (e.g. bullets or shells), or metal grains in the eyes
➢ History of cancer
➢ Claustrophobia and history of back pain that makes prolonged laying on the PET or MRI scanner intolerable
➢ Use of medications with known actions on PDEs (e.g. aminophylline, theophylline, papaverine).
➢ Participants participating in clinical trials investigating PDEs or with PDEs inhibitors

Specific for Parkinson’s disease patients

➢ Presence of diagnostic criteria for Parkinson’s disease mild cognitive impairment (MCI) (Litvan et al., 2011) or dementia (Emre et al., 2007) or depression (Marsh et al., 2006)
2.2.2 Recruitment

A nationally unique collection of scientific groups and research facilities makes KCL an optimal place for study recruitment. The facilities KCL, Guy’s and St Thomas’ hospital, King’s College Hospital and South London and Maudsley NHS Foundation Trusts are part of King’s Health Partners and jointly have responsibility for delivering movement disorder services through an integrated service to 6 million people living in South London and surrounding areas. In the studies that comprise this thesis, 80% of the population of Parkinson’s disease patients were recruited from the Movement Disorders clinics at King’s Health Partners and 20% through the network of Parkinson’s disease charities (Fox Finder tool of Michael J. Fox Foundation and Parkinson’s UK mailing lists). Healthy volunteers were recruited through advertisement.

Screening and clinical assessments were performed by myself and took place at the National Institute of Health Research (NIHR)-Wellcome Trust KCL Clinical Research Facility (Visit 1). SPECT imaging assessments took place at KCH Nuclear Medicine (Visit 2). MRI and PET Imaging assessments took place at Imanova ltd. (now Invicro London Ltd, A Konica Minolta Company) (Visit 3). Data processing, data analysis and dissemination of findings were performed by myself and took place at the NIG Lab based at the Maurice Wohl Clinical Neuroscience Institute.

Ethical consideration

The study was approved by the institutional review boards and the research ethics committee (IRAS number: 1692665). Written informed consent was obtained from all study participants in accordance with the Declaration of Helsinki.
2.3 Clinical assessments

The screening/clinical assessments were performed during the Visit 1 as follows:

Taking informed consent

Screening assessments

➢ Detailed medical and family history

 Medical interview was conducted to collect: risk factors (coffee use, smoking habits, alcohol frequency, rural living, use of well water, history of head injuries, occupation associated with night shifts, exposure to pesticide), comorbidities (recent head injury with hospitalization, cardio-/cerebrovascular diseases, migraine, depression, hypertension, diabetes, dyslipidaemia, obesity, metabolic syndrome) and medications (antihypertensives, vitamins, analgesics, respiratory, gastrointestinal, urinary system, metabolic, antidiabetic, lipid-lowering, thyroid, osteoporosis, neuroleptics, anticonvulsants, anticoagulants/antiplatelets, antidepressants and daily levodopa equivalent dose*)

➢ General screening questions (including MRI safety questionnaire)

➢ Physical and neurological examination

➢ Structured Clinical Interview for DSM-IV (to exclude the presence of other neurological or psychiatric disorders)

➢ Montreal Cognitive Assessment (MoCA) (to exclude the presence of cognitive impairment)

➢ Beck Depression Inventory (BDI) (to exclude the presence of depressive symptoms)

Clinical assessments

➢ Motor scales

 o MDS-UPDRS
 o H&Y
 o Schwab and England
Non-motor scales
- PD Non-motor symptom assessment scale (NMSS)
- Modified Constipation Assessment Scale
- Parkinson’s disease Sleeping Scale (PDSS)
- Excessive Daytime Sleepiness Scale (ESS)
- RBD Screening Questionnaire (RBDSQ)
- PD Fatigue Scale
- Scales for Outcomes in Parkinson’s disease – Autonomic (SCOPA-AUT)
- University of Pennsylvania Smell Identification Test (UPSIT)

Quality of Life
- PD Questionnaire (PDQ-39)

Neuropsychological battery
- Mini-Mental State Examination (MMSE)
- Montreal Cognitive Assessment (MoCA)**
- Beck Depression Inventory (BDI)**
- Geriatric Depression Scale (GDS)

*Calculation of daily dopaminergic medication equivalent dose was based on the following theoretical equivalence to levodopa formula:

Daily LED (mg) = (1 X levodopa) + (0.77 X levodopa CR) + (1.43 X levodopa + Entacapone) + (1.11 X levodopa CR + Entacapone) + (20 X Ropinirole) + (20 X Ropinirole ER) + (100 X Pramipexole) + (30 X Rotigotine) + (10 X Bromocriptine) + (8 X Apomorphine) + (100 X Pergolide) + (67 X Cabergoline) (Niccolini et al., 2015a)

**This scale was performed at screening
2.3.1 Motor scales

All subjects underwent MDS-UPDRS, H&Y and Schwab and England motor scales. Motor assessments have been performed OFF medication after overnight withdrawal of dopaminergic medications.

MDS-UPDRS: The MDS-UPDRS is a multimodal scale assessing both impairment and disability and is separated into 4 subscales (Parts I-IV) (Goetz, 2010). The MDS-UPDRS was performed by myself for all subjects throughout the course of the studies in each component: Part I: This assesses non-motor experiences of daily living and is comprised of two components (Part IA: This contains 6 questions that are assessed by the Investigator and focuses on complex behaviours and Part IB: This contains 7 questions that are part of the Patient Questionnaire completed by the subject); Part II: This assesses motor experiences of daily living. There are an additional 13 questions that are also part of the Patient Questionnaire completed by the subject; Part III: This assesses the motor signs of Parkinson’s disease and is administered by the Investigator and Part IV: This assesses motor complications, dyskinesias and motor fluctuations using historical and objective information. The Investigator completed this assessment only for treated Parkinson’s disease patients. Each item was rated 0–4 following the MDS-UPDRS scoring system. Based on the MDS-UPDRS part III items, motor subscores were calculated as follows (Niccolini et al., 2017): tremor subscore: postural tremor of the hands (left and right), kinetic tremor of the hands (left and right), rest tremor amplitude (extremities and lip/jaw) and constancy of rest tremor; bradykinesia subscore: facial expression, finger tapping (left and right), hand movements (left and right), pronation-supination movements of hands (left and right), toe-tapping (left and right), leg agility (left and right), arising from chair, global spontaneity of movement (body bradykinesia); rigidity subscore: rigidity (extremities and neck) and axial subscore: speech, gait, freezing of gait, postural stability and posture.

H&Y: The H&Y is a commonly used system for describing how the symptoms of Parkinson’s disease progress (Goetz et al., 2004). The scale allocates stages from 0 to 5 to indicate the relative level of
disability. This scale is included within the MDS-UPDRS and have been completed for all subjects as follows: Stage zero: No symptoms; Stage one: Symptoms on one side of the body only; Stage two: Symptoms on both sides of the body. No impairment of balance; Stage three: Balance impairment. Mild to moderate disease. Physically independent; Stage four: Severe disability, but still able to walk or stand unassisted and Stage five: Wheelchair-bound or bedridden unless assisted.

Schwab and England: The Modified Schwab & England ADL scale reflects the speed, ease, and independence with which an individual performs daily activities, or personal chores, such as eating, toileting, and dressing (Schwab, 1969). This scale uses a rating scale from 0% to 100%, with 100% representing complete independence in performing daily activities and 0% representing a vegetative, bedridden state (Ramaker et al., 2002; Harrison et al., 2009; Shulman et al., 2016). The Schwab and England scale has become a standard assessment tool in Parkinson’s disease and has been used in hundreds of studies. The data available from studies with a primary aim to investigate characteristics of other rating scales suggest a moderate to substantial validity and good reliability (Martinez-Martin et al., 1995; Stebbins and Goetz, 1998).

2.3.2 Non-motor scales

All subjects underwent NMSS, Modified Constipation Assessment Scale, PDSS, ESS, RBDSQ, PD Fatigue Scale, SCOPA-AUT and UPSIT.

NMSS: The NMSS is a 30-item self-rated questionnaire that captures the presence, frequency, and severity of non-motor symptoms attributed to Parkinson’s disease (Chaudhuri et al., 2007). Non-motor symptoms, such as autonomic dysfunction, depression, apathy, memory problems, sleep, and psychiatric problems, are present in the large majority of Parkinson’s disease patients (Barone et al., 2009) and profoundly affect the quality of life. It contains 30 items, each one rated for severity (from 0 to 3) and frequency (from 1 to 4) and scored through the multiplication of both figures (from 0 to
12). Items are grouped in 9 domains: cardiovascular, sleep/fatigue, mood/apathy, perceptual problems/hallucinations, attention/memory, autonomic, and miscellaneous. The maximum total score, indicative of higher severity and frequency of non-motor symptoms, is 360 (Martinez-Martin et al., 2011). The scores obtained from items of this scale have recently been found to have a high correlation in Parkinson’s disease patients with the MDS-UPDRS part I (Martinez-Martin et al., 2015).

Modified Constipation Assessment Scale: The Modified Constipation Assessment Scale is an 8-item self-report measure designed to assess the presence and severity of constipation (McMillan and Williams, 1989). Characteristics included are: abdominal distention or bloating, change in the amount of gas passed rectally, less frequent bowel movements, oozing liquid stool, rectal fullness or pressure, rectal pain with bowel movements, a small volume of stool and inability to pass stool. For each item, there is a three-point summated rating scale (0=no problem, 1=some problem, 2=severe problem). A total score is calculated that can range from 0 (no constipation) to 16 (severe constipation). Each item is rated based on the patients’ experience with each feature in the previous week. A score of >1 indicates constipation and higher scores indicate worse constipation.

PDSS: The PDSS is a self-report scale to assess the quality of sleep in patients specifically designed for Parkinson’s disease patients (Chaudhuri et al., 2002). It is composed of 15 questions tailored to commonly reported symptoms associated with sleep disturbance in Parkinson’s disease, particularly: overall quality of night’s sleep, sleep onset and maintenance insomnia, nocturnal restlessness, nocturnal psychosis, nocturia, nocturnal motor symptoms, sleep refreshment, daytime dozing. For each item, there is a ten-point summated rating scale with lower scores indicated worse sleep problems.

ESS: The ESS is an 8-item self-report measure of daytime sleepiness developed as a brief tool to measure the general level of sleepiness at the bedside (Johns, 1991). Responders are required to rate
on a scale of 0-3 the chance of dozing off or falling asleep while engaged in 8 activities. The score ranges from 0 to 24 with higher scores indicate worse sleepiness. In comparison to the instrumental Multiple Sleep Latency Test, considered the gold standard for daytime sleepiness, the ESS has demonstrated higher sensitivity and specificity in the screening of patients with daytime sleepiness (Johns, 2000). Beside primary sleep disturbances, it has found application to characterize important levels of daytime sleepiness in Parkinson’s disease. Also, the ESS has been used as an outcome measure for daytime sleepiness for randomized controlled trials in Parkinson’s disease (Postuma et al., 2012; Eggert et al., 2014). An ESS score of greater than 10 has been validated as a cut-off for experiencing EDS (Johns, 1991).

RBDSQ:* The RBDSQ is a 10-item self-report questionnaire used to gauge the presence of symptoms of RBD. The maximum total score that can be obtained on the RBDSQ is 13. RBD occurs during rapid eye movement sleep where patients primarily experience muscle atonia where muscles are not paralyzed as they normally are. As REM sleep involves vivid dreaming, a variety of resultant behaviors can occur. The RBDSQ captures notable components of RBD including vivid dreaming, limb movement during sleep, verbal expressions during sleep, night-time awakening dye to movements, and sleep disturbance. RBD has been shown to precede and also occur within the course of Parkinson’s disease (Marion et al., 2008). The RBDSQ has demonstrated a sensitivity of 0.96 and a specificity of 0.56 in differentiating RBD patients and controls considering a score of 5 as an indicator for RBD (Stiasny-Kolster et al., 2007).

PD Fatigue Scale: The PD Fatigue Scale is a 16-item self-report questionnaire that measures the presence of fatigue (seven items, i.e. “I feel totally drained”) and its impact on daily function (nine items, i.e. “I get more tired than other people I know”) over the prior 2 weeks (Brown et al., 2005). However, neither severity nor frequency of fatigue symptoms is specifically measured but the scale is designed to exclude the cognitive and emotional features of fatigue. Scoring options range from 1
(“strongly disagree”) to 5 (“strongly agree”) and are usually scored as total ordinal (from 16 to 80 based on the sum of scores for the 16 individual items).

SCOPA-AUT: The SCOPA-AUT is a 26-item self-administered test developed to evaluate autonomic symptoms, such as gastrointestinal and urinary problems, in subjects with Parkinson’s disease (Visser *et al.*, 2004). The assessment will measure whether subject’s experience an increase in autonomic dysfunction as the disease severity progresses.

UPSIT: The UPSIT is a 40-item, multiple choice, scratch and sniff test used to evaluate odor identification. It is a forced-choice test in which subjects must identify an odor among four response alternatives. There are four booklets containing ten odorants each. The instructions have been explained to the subjects by the coordinator at the clinical site. The UPSIT have been scored by the coordinator reflecting the number of correct responses out of 40 items. Score >26 are considered normal and the cut-off of 18 and of 26 are used for the definition of anosmia and hyposmia, respectively.
2.3.3 Quality of Life

PDQ-39: This is a 39-item self-report questionnaire to assess the quality of life in Parkinson’s Disease patients (Jenkinson et al., 1997), and is meant to measure the degree of burden and constraint that the fact of being diagnosed with Parkinson’s disease or its symptoms cause to the patient. It comprises 39 items grouped in 8 domains: mobility, ADL, emotional well-being, stigma, social support, cognition, communication, and body discomfort. Responses are scored on a scale from 0 (never) to 4 (always). Each subscale’s scores are transformed into a 0–100 scale by summing the items’ raw scores, divided by the maximum possible raw score, and then multiplying by 100. Higher scores mean poorer HRQoL.

2.3.4 Neuropsychological battery

All subjects underwent MMSE, MoCA, BDI, and GDS.

MMSE: The MMSE is a widely used screening test for cognition in community surveys and in research studies (Folstein et al., 1975). It is recommended by the NINDCS-ADRDA to document the diagnosis of probable AD (McKhann et al., 1984). It consists of a variety of questions, grouped into 7 categories spanning orientation in time and in space, registration of three words, attention and calculation, recall of three words, language and visual construction. The maximum score is 30 points and can be adjusted for age and years of education. Internal reliability and test-retest reliability of this test are excellent (Tombaugh and McIntyre, 1992).

MoCA: The MoCA is a widely used screening neuropsychological assessment to test cognitive performance and provides more precise data on cognitive impairment in patients with MCI or with memory issues, not to the extent of dementia (Smith et al., 2007). Items are constituted by parts of other well-known neuropsychological tests (TMT-B, clock drawing, forward and backward digit span, immediate and delayed recall, sentence repetition) and tests orientation, memory, attention,
vigilance, verbal fluency, visuospatial and visuoconstructional skills. The cut-off used are as follows: 26-30: no cognitive impairment; 22-25: MCI; <22: moderate-severe cognitive impairment (Damian et al., 2011).

BDI: The BDI is a scale for the assessment of the levels of depression and has been developed in 1996 as an update of the first BDI version to comply with the diagnostic criteria for major depressive disorder published by the DSM-IV. It contains 21 questions to which the patient should answer according to a score from 0 to 3. Higher total scores indicate more severe depressive symptoms. Items on this scale are related to symptoms of depression such as hopelessness, irritability, suicidal intentions, loss of interest, fatigue, weight loss and sense of guilt. The cut-off used are as follows: 0-13: minimal depression; 14-19: mild depression; 20-28: moderate depression; 29 or higher: severe depression. This scale is endorsed by the National Institute of Health and Clinical Excellence for use in primary care, to an adult audience, for baseline screening of depressive symptoms.

GDS: The GDS is a 30-item self-report measure to assess the presence and severity of depressive symptoms particularly in elderly individuals (Havins et al., 2012). Responses on the GDS are presented in a simple yes/no format and scored according to a binary 0/1 format depending on how the question is keyed (positive or negative). Depressive symptoms covered by the GDS include life satisfaction, anhedonia, hopelessness, worrying, helplessness, sadness, lack of energy, difficulties concentrating, excessive sleep, withdrawal, and cognitive issues. Ranges of scores and associated clinical categorization are as follows: 0 to 9 is ‘normal’, 10 to 19 is ‘mildly depressed’, and 20 to 30 is ‘severely depressed’.
2.4 Molecular SPECT and PET imaging

All subjects underwent to one SPECT ([123I]FP-CIT) scan (approximately 45 minutes – 4 hours uptake time), and two PET ([11C]IMA107 and [11C]PE2I) scans (approximately 90 minutes each). SPECT imaging was acquired on a 3-headed gamma camera system (Philips IRIX 3), and PET imaging on Siemens Biograph Hi-Rez 6 PET-CT scanner (Erlangen, Germany).

2.4.1 SPECT DAT Scan

[123I]FP-CIT DAT SPECT scans were performed at KCH NHS Foundation Trust, London, UK – Nuclear Medicine Department; acquired on a 3-headed gamma camera system (Philips IRIX 3), equipped with a low-energy high-resolution collimator.

2.4.1.1 Scanning details

Patients were given an intravenous injection of approximately 185 MBq [123I]FP-CIT, with images obtained 4 hours post-injection. Data were acquired in a 128 x 128 matrix, using a 20% energy window and magnification x 2. All SPECT images were reconstructed on a HERMES workstation, using the HERMES Hybrid Recon™ - Neurology software. Reconstruction was performed using the 3D ordered-subset expectation maximum (OSEM) method, using 5 iterations with attenuation correction. Finally, a 3D Gaussian postfilter was applied with a 0.90cm FWHM. All iteratively reconstructed SPECT images were then transferred to BRASS™ software to quantify striatal tracer uptake. Patients SPECT images were fitted against a pre-existing three-dimensional reference template, containing a number of VOIs. The caudate, putamen and striatum specific uptake ratios were calculated using the occipital cortex as a reference region.
2.4.1.2 Imaging analyses

$^{[123]}$FP-CIT-SPECT was processed using Hybrid-Recon and Statistical Parametric Mapping 12 (SPM, Wellcome Trust Centre for Neuroimaging, London, UK) implemented in MATLAB (The Math-Works, Natick, MA, USA). $^{[123]}$FP-CIT SPECT image volumes were spatially normalized to a FP-CIT template in MNI space. The eight most prominent axial slices containing the striatum were summed and a standardized VOI template was then applied to this image. VOI analyses were performed on the right and left caudate and putamen, employing the occipital region as the reference tissue. SBR was calculated as the ratio of the putamen or caudate VOI count density divided by the occipital cortex count density minus one. This measure approximates the binding potential, BP_{ND}, when the radioligand is in equilibrium at the target site and has previously been reported with $^{[123]}$FP-CIT SPECT (Qamhawi et al., 2015).

2.4.2 PET DAT Scan

$^{[11]}$CPE2I PET imaging was acquired on a Siemens Biograph Hi-Rez 6 PET-CT scanner (Erlangen, Germany).

2.4.2.1 Scanning details

Dynamic emission data $^{[11]}$CPE2I PET data were acquired continuously for 90 minutes after the injection of $^{[11]}$CPE2I at a target dose of 350 MBq administered intravenously as a slow bolus injection over 10 seconds, followed by the injection of 10 mL of saline flush over 10 seconds. Cerebellum was previously validated as a reference region devoid of specific DAT activity; therefore, arterial cannulation was not required for $^{[11]}$CPE2I PET (Jucaite et al., 2006). The dynamic images were reconstructed into 26 frames (8 x 15s, 3 x 60s, 5 x 120s, 5 x 300s, and 5 x 600s), using a filtered back projections algorithm (direct inversion Fourier transform) with a 128 matrix, zoom of 2.6
producing images with isotropic voxel size of 2 x 2 x 2 mm3, and smoothed with a transaxially Gaussian filter of 5mm.

2.4.2.2 Imaging analyses

The Molecular Imaging and Kinetic Analysis Toolbox software package (MIAKAT™; www.miakat.org) combines in-house code with wrappers for FMRIB Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and Statistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.uk/spm/) commands in order to provide state-of-the-art functionality within a coherent analysis framework. This software includes a range of analytical procedures including image registration, brain extraction, segmentation, generation of time-activity curves and input functions, graphical analysis, kinetic modeling and parametric imaging. Individual PET frames were corrected for head motion using frame-by-frame rigid registration using a frame with high signal-to-noise ratio as a reference. The MIAKAT™ processing pipeline was followed, ensuring that all quality control steps were completed (Figure 4).
A study with $[^{11}\text{C}]$PE2I PET has shown high signal in the striatum, lower in the midbrain and very low in the cerebellum, which may be interpreted by kinetic compartment models (Jucaite et al., 2006). In addition, a comparison between the SRTM and 2-TCM showed a good agreement (Jucaite et al., 2006). Therefore, parametric images of $[^{11}\text{C}]$PE2I BP$_{ND}$ were generated from the dynamic $[^{11}\text{C}]$PE2I scans using the SRTM with the cerebellum as the reference tissue.

Region of interest-based and voxel-based analysis were carried out on $[^{11}\text{C}]$PE2I parametric images to quantify changes in DAT levels. For regions of interest-based analysis, parametric images was co-
registered to subjects’ T1-weighted MRI to quantify DAT within manually delineated anatomical ROIs, including the caudate, putamen, ventral striatum, globus pallidus (external and internal segments), substantia nigra and thalamus, following published guidelines (Tziortzi et al., 2011b).
2.4.3 PET PDE10A scan

[11C]IMA107 PET imaging was acquired on a Siemens Biograph Hi-Rez 6 PET-CT scanner (Erlangen, Germany).

2.4.3.1 Scanning details

Dynamic emission data [11C]IMA107 PET data were acquired continuously for 90 minutes after the injection of [11C]IMA107 at a target dose of 350 MBq administered intravenously as a slow bolus injection over 20 seconds, no saline flush. All participants were scanned after withholding consumption of caffeinated beverages for 12 hours (Fredholm et al., 1999b). A reference region devoid of specific PDE10A activity has been validated; therefore, arterial cannulation was not required for [11C]IMA107 PET. The dynamic images were reconstructed into 26 frames (8 x 15s, 3 x 60s, 5 x 120s, 5 x 300s, and 5 x 600s), using a filtered back projections algorithm (direct inversion Fourier transform) with a 128 matrix, zoom of 2.6 producing images with isotropic voxel size of 2 x 2 x 2 mm3, and smoothed with a transaxially Gaussian filter of 5mm.

2.4.3.2 Imaging analyses

The Molecular Imaging and Kinetic Analysis Toolbox software package (MIAKAT™: www.miapat.org) combines in-house code with wrappers for FMRIB Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and Statistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.uk/spm/) commands in order to provide state-of-the-art functionality within a coherent analysis framework. This software includes a range of analytical procedures including image registration, brain extraction, segmentation, generation of time-activity curves and input functions, graphical analysis, kinetic modeling and parametric imaging. Individual PET frames were corrected for head motion using frame-by-frame rigid registration using a frame with high signal-to-noise ratio as a reference. The MIAKAT™ processing pipeline was followed, ensuring that all quality control steps were completed.
A human PDE10A inhibitor occupancy study with $^{[11]}$C]IMA107 PET has shown up to 90% occupancy in striatal regions with no displacement in the cerebellum (Plisson et al., 2014a). Moreover, comparisons between the SRTM; (Gunn et al., 1997) and 2-TCM (Gunn et al., 2001) values have shown good agreement. Therefore, parametric images of $^{[11]}$C]IMA107 BP_{ND} were generated from the dynamic $^{[11]}$C]IMA107 scans using the SRTM with the cerebellum as the reference tissue.

The region of interest-based and voxel-based analysis was carried out on $^{[11]}$C]IMA107 parametric images to quantify changes in PDE10A levels. For regions of interest-based analysis, parametric images was co-registered to subjects’ T1-weighted MRI to quantify PDE10A within manually delineated anatomical ROIs, including the caudate, putamen, ventral striatum, globus pallidus (external and internal segments), substantia nigra and thalamus, following published guidelines (Tziortzi et al., 2011b).
2.5 MRI imaging

MRI imaging was performed at Imanova Ltd, London, UK; acquired with a 32-channel head coil on a Siemens Magnetom MAGNETOM TrioTim syngo MR B17 (Erlangen, Germany), 3T MRI scanner. MRI acquisition included a T1-weighted Magnetization Prepared Rapid Gradient Echo sequence (MPRAGE); Fast Grey Matter Acquisition T1 Inversion Recovery (FGATIR); diffusion tensor imaging (DTI); neuromelanin-sensitive (NM) MRI and susceptibility weighted imaging (SWI) MRI.

2.5.1 Structural volumetric T1

Structural T1-weighted MRI data were used to assess changes in cortical thickness and subcortical volumes. Analysis of T1-weighted structural MR data have been conducted using FreeSurfer image analysis suite (version 5.3.0 http://surfer.nmr.mgh.harvard.edu) processing pipeline to derive measures of subcortical volumes and cortical thickness. This procedure automatically assigns a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. This technique has previously been shown to be comparable in accuracy to manual labeling (Fischl et al., 2002). Furthermore, T1-weighted MRI data have been used to define anatomical regions of interest.

2.5.1.1 Scanning details

Structural T1-weighted MPRAGE data was acquired with the following protocol: time repetition = 2300 ms, time echo = 2.98 ms, flip angle of 9°, time to inversion = 900 ms, matrix = 240 x 256. FGATIR data was acquired with the following protocol: time repetition = 3000 ms, time echo = 2.96 ms, flip angle of 8°, time to inversion = 409 ms, matrix = 240 x 256.
2.5.1.2 Imaging analyses

Anatomical borders were defined manually for the ROIs, including caudate, putamen, ventral striatum, globus pallidus, substantia nigra and thalamic motor nuclei in both hemispheres as follows:

Caudate: it was drawn on the axial plane. The anterior and medial borders were defined by the lateral ventricle, the posterior border was defined by the internal capsule, and the lateral border was defined by the external capsule.

Putamen: it was defined on the axial plane and traced on all slices where dense grey matter could be clearly observed and differentiated from surrounding structures. The anterior border was defined by the anterior limb of the internal capsule, the posterior border was defined by the posterior limb of the internal capsule, the lateral border was defined by the external capsule/claustrum, and the medial border was defined by the lamina medullaris lateralis.

Ventral striatum: it is drawn on the coronal plane. The boundaries between ventral and dorsal striatum are defined by a line connecting two points (Marker A and Point C) on the coronal plane. These two points are predefined by the placement of two markers (Markers A and B) on the sagittal plane. Marker A is a horizontal line intersecting the most ventral part of the splenium of the corpus callosum, which is placed on the most midsagittal slice. In coronal view, Marker A appears as a single voxel in each slice and this voxel is used for the definition of the dorsal boundary of the ventral striatum. Marker B is a rectangle placed on the head of caudate, which in coronal view appears as a column. The inferior intersection of this column with GM of putamen is defined as the point C. Ventral striatum tracing begins when point C comes into view, up to the slice where anterior commissure connects the two hemispheres.

Globus pallidus: it was performed on the coronal plane including external and internal pallidum and was defined up to the slice where anterior commissure connects the two hemispheres. The putamen served as the lateral border of the globus pallidus throughout its course. The superior border was
defined by the internal capsule. The temporal limb of the anterior commissure served as the inferior border. Using enhanced contrast FGATIR MRI sequences was possible to separate the external and internal segment of the globus pallidus. Globus pallidus internal is identifiable on the axial plane immediately caudal to the intercommissural line connecting the anterior and posterior commissures. Lamina pallida medialis separates the internal from the external segment of globus pallidus.

Substantia nigra: it is located in the midbrain, includes both pars reticulata and pars compacta and is a small region with no clear-cut boundaries. The substantia nigra is distinguishable from the surrounding tissues due to its hyperintensity in contrast to the adjacent cerebral peduncle in FGATIR MR images. The ROIs were drawn on five successive axial slices centered to the maximal signal in the substantia nigra.

Thalamus: they correspond to the motor function according to primates tracing studies and include the ventral anterior and ventral lateral thalamic nuclei. The thalamus was divided into three regions (anterior, lateral and medial subdivisions) that are anatomically defined by a "Y" shaped bundle of nerve fibers termed the internal medullary lamina. The ventral anterior and ventral lateral thalamic nuclei were defined on the axial plane and end just before the superior colliculi become visible. The posterior limb of internal capsule and the internal medullary lamina are the lateral and medial boundaries, respectively. The ventral anterior nucleus occupies the rostral part of the lateral nuclear mass. The ventral lateral nucleus lies immediately caudal to the ventral anterior nucleus in the ventral tier of the lateral nuclear complex. The ROIs were drawn on five successive axial slices.

PET images of each subject were co-registered to their respective structural MRI using SPM12 (Wellcome Trust Centre for Neuroimaging) in MATLAB (r2015a; The MathWorks). The quality of co-registration was checked visually for each subject.
MRI Analysis: FreeSurfer Subcortical Volumetric analysis

FreeSurfer image analysis suite (version 5.3.0 http://surfer.nmr.mgh.harvard.edu) was used to derive measures of deep grey matter nuclei volume. Reconstructed data sets were visually inspected to ensure the accuracy of registration, skull stripping, segmentation, and cortical surface reconstruction. Subcortical structure volumes were derived by automated procedures, which automatically assign a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set (Fischl et al., 2002). All individual nuclei volumes were normalized for total intracranial volume automatically generated by FreeSurfer (Buckner et al., 2004).
2.5.2 Structural connectivity DTI

Structural connectivity DTI MRI data were used to assess microstructural changes in cortical and subcortical grey and white matter areas.

2.5.2.1 Scanning details

Diffusion-weighted data was acquired using echo planar imaging (EPI; TR = 3010 ms, TE = 88 ms, multi-band acceleration factor = 3, flip angle of 90° and voxel size of 2.0 x 2.0 x 2.0 mm3). The diffusion weighting have been isotropically distributed along the 64 directions (b-value = 1500 s/mm2), and a 6 non-DWIs (B0) have been acquired at the beginning of each scan. The EPI acquisitions are prone to geometric distortions that can lead to errors in tractography. To minimize this, a second 6 non-DWI (B0) image sets have been acquired with the phase-encoded direction reversed—“blip-up” and “blip-down” (Chang and Fitzpatrick, 1992)— which resulted in images with geometric distortions of equal magnitude but in the opposite direction allowing for the calculation of a corrected image (Andersson et al., 2003). Before correcting geometric distortions, each image set—blip-up and blip-down—have been corrected for motion and eddy-current-related distortions. The total duration of this scan have been approximately 15 minutes.

2.5.2.2 Imaging analyses

Diffusion data analysis was performed with FSL Diffusion Toolbox (FDT) (FMRIB Software Library (FSL), Centre Software Library, University of Oxford, Oxford, UK). Correction for head motion, artefacts, and eddy currents were performed using top-up (Andersson et al., 2003) and eddy correct (Andersson et al., 2016). DTIFit was used to fit diffusor tensor model at each voxel to generate maps of FA and MD.

T1 MPRAGE and FGATIR images were registered to subject’s diffusion space, using FMRIB’s Linear Image Registration Tool (FLIRT), and parameters applied to transform subcortical regions
(caudate, putamen and substantia nigra) into subject’s diffusion space. With this technique, a quantification of FA and MD was performed for caudate, putamen and substantia nigra ROIs.
2.5.3 Neuromelanin

NM MRI data were used to assess structural changes in the substantia nigra and in the locus coeruleus by using NM density.

2.5.3.1 Scanning details

NM data was acquired with oblique-axial fast gradient-echo sequence [time repetition = 829 ms; time echo = 12 ms, matrix = 256 x 256 x 33; voxel size = 0.8×0.8×2.5 mm; slice thickness 2.5 mm; 12 slices].

2.5.3.2 Imaging analyses

For quantification of NM, substantia nigra and locus coeruleus were manually delineated on the neuromelanin-sensitive and T1-weighted image using Analyze 12.0 (Analyze Direct, Overland Park, KS, United States). On NM-space, each substantia nigra and locus coeruleus ROIs were manually drawn on both hemispheres on 3-4 (substantia nigra) and 1-2 (locus coeruleus) axial slices together with the reference regions of the superior peduncle (for substantia nigra) and rostral pontomesencephalic area (for locus coeruleus). To calculate the signal intensity in the substantia nigra and in the locus coeruleus area, the superior peduncle and the rostral pontomesencephalic area were used as a reference region, respectively for the substantia nigra and for the locus coeruleus, to normalize the intensity of the slices to remove the inter-slice and inter-subject variability (Figure 5).

Figure 5. ROIs for Substantia nigra and Locus coeruleus. ROIs were manually drawn on both hemispheres on 3-4 (substantia nigra) and 1-2 (locus coeruleus) axial slices together with the reference regions.
Mean regional values, number of voxels, standard deviations and regional areas were then extracted for each ROIs on both hemispheres individually before averaging to obtain bilateral data for NM. The NM density for Substantia nigra and locus coeruleus have been calculated with the following formulas: Ratio 1 = Mean value of substantia nigra / mean substantia nigra reference; ratio 2 = mean value of substantia nigra – substantia nigra reference / substantia nigra reference SD and ratio 3 = mean value of substantia nigra – substantia nigra reference / substantia nigra reference.
2.5.4 Susceptibility weighted imaging

SWI MRI data were used to assess iron depositions in the striatum and in the substantia nigra.

2.5.4.1 Scanning details

SWI MRI data was acquired with the following protocol: time repetition = 60 ms; time echo = 30 ms; echo train length 5; flip angle 19°; voxel size = 0.55×0.55×0.7 mm; 70 slices.

2.5.4.2 Imaging analyses

Combined SWI images were reconstructed automatically on the Siemens workstation (Syngo MR B17 software, SWI version 1), which included the application of a 64×64 high-pass filter to the phase images in order to remove low spatial frequency effects that may otherwise result in false phase information. Manual delineation of the ROIs was performed on high-pass filtered phase images using Analyze 12.0 (AnalyzeDirect, Overland Park, KS, United States). Each ROI was hand drawn on both hemispheres on a single axial slice and included the caudate, putamen, and substantia nigra. The substantia nigra was delineated on the 3rd axial slice ventral to the most dorsal aspect of the red nucleus.
2.6 Statistical Analysis

Statistical analysis and graph illustration were performed with SPSS (version 20) and GraphPad Prism (version 6.0c), respectively. For all variables, variance homogeneity and Gaussianity were tested with Kolmogorov-Smirnov tests. Student t-test (parametric variables) and Mann-Whitney U test (non-parametric variables) were used for between-group comparisons, as appropriate. Categorical variables were compared using a χ² test. Multivariate analysis of variance (MANCOVA) was used to assess the main effects of regional BP_ND between patients with Parkinson’s disease and healthy controls, with Bonferroni post-hoc analysis for comparisons among subgroups (early de novo, early treated and controls). If the overall multivariate test was significant, P-values for each variable were calculated following Bonferroni’s multiple comparisons test. Correlations between imaging and clinical data were performed using Pearson (r) or Spearman (rho) test, as appropriate, applying the Benjamini-Hochberg correction to reduce false discovery rate. False discovery rate cut-off was set at 0.05. All data are presented as the mean ± standard deviation (SD), and the level α was set for all comparisons at P<0.05, corrected. SPM voxel-by-voxel comparison was performed between controls and Parkinson’s disease patients with a priori hypothesis restricted to the basal ganglia. This masking drastically reduces the number of voxel-by-voxel statistical comparisons, and a corrected threshold of P<0.05 used to test for statistically significant effects.

With regards to power calculations, previous and pilot data have shown that cross-sectional standardized differences (Cohen’s d) between PD and HCs in PET biomarkers range between 1.48-1.57 ([¹¹C]IMA107 PET in the putamen and [¹¹C]PE2I PET in the striatum). Eighteen participants per group (54 in total), will provide 80% power to detect baseline differences between idiopathic-PD subgroups and healthy controls that correspond to a Cohen's d of 1.48 or larger with a one-sided test, 5% type I error rate.
Chapter 3. PDE10A in Parkinson’s Disease

This chapter summarizes the clinical characteristics of the populations and the Project 1 on the in vivo evaluation of the integrity of PDE10A enzyme (with 11C]IMA107 PET imaging) in early de novo Parkinson’s disease patients compared to age- and sex-matched healthy control subjects. The integrity of PDE10A enzyme in early de novo Parkinson’s disease patients was then compared to early levodopa-treated Parkinson’s disease patients, evaluating how PDE10A changes are associated with disease duration and severity. Finally, the associations between the motor (tremor, rigidity, bradykinesia and postural instability) and non-motor symptoms (sleep problems, cognitive impairment, autonomic dysfunction, mood disorders etc) and the expression of PDE10A have been explored and described in detail.
3.1 Clinical characteristics of the populations

Between September 2015, and September 2016, a total of 54 subjects were recruited from specialist Movement Disorders clinics at King’s College Hospital NHS Foundation Trust, 32 non-demented, non-depressed patients with idiopathic Parkinson’s disease according to the UK Brain Bank criteria, and 22 age and sex-matched healthy controls. Among the 32 Parkinson’s disease patients, 17 were early untreated (H&Y=1; disease duration <24 months; never treated with dopamine agonists or levodopa; MoCA>26 and BDI<13) and 15 early were treated with dopamine agonists or levodopa for at least 12 months (H&Y=2-3; disease duration <60 months; treated; with no motor complications; MoCA>26 and BDI<13).

The full demographics and clinical characteristics of the populations are shown in Table 1. As the cohorts were carefully matched for age, we found no effect of age in imaging biomarkers in all regions-of-interest across all cohorts (P>0.10).

Early de novo Parkinson’s disease patients had worse NMSS (P<0.05), constipation (P<0.05), autonomic (SCOPA-AUT, P<0.05) and olfactory dysfunction (UPSIT, P<0.05), and worse quality of life (PDQ-39, P<0.05) scores compared to healthy controls.

Early treated Parkinson’s disease patients had greater motor impairment than early de novo Parkinson’s disease patients and healthy controls. Early treated Parkinson’s disease patients had greater global non-motor symptoms impairment compared to healthy controls (MDS-UPDRS Part-I, Part-I quest, NMSS, P<0.05), with worse constipation (P<0.05), sleep (PDSS, ESS, RBQS, P<0.05) autonomic (SCOPA-AUT, P<0.05) and olfactory (UPSIT, P<0.05) dysfunction, and worse quality of life (PDQ-39, P<0.05). They also showed greater global non-motor symptoms impairment compared to early de novo Parkinson’s patients (NMSS, P<0.05), with worse constipation (P<0.05), sleep (PDSS, P<0.05) and autonomic (SCOPA-AUT, P<0.05) dysfunction. Early treated Parkinson’s
disease patients had worse depressive symptoms, although in the range of normality, compared to healthy controls (on both GDS and BDI-II, \(P<0.05 \)) and to early de novo Parkinson’s disease (on BDI-II, \(P<0.05 \)).

| Table 1. Demographic and clinical characteristics of cohorts of early de novo and early treated patients with idiopathic Parkinson’s disease and healthy controls |
|---|---------------------------------|---------------------------------|
| **Healthy Controls (n=22)** | **Early de novo Parkinson’s disease (n=17)** | **Early treated Parkinson’s disease (n=15)** |
| Demographic features | | |
| Age, years | 52.68 ± 14.97 | 58.97 ± 8.98 | 61.02 ± 5.49 |
| Gender | 16 M / 6 F | 11 M / 6 F | 8 M / 7 F |
| Disease duration, months | 0 ± 0 | 12.74 ± 6.89 | 52.58 ± 11.73* |
| Year of Education | 14.14 ± 1.83 | 13.12 ± 1.83 | 14.13 ± 1.77 |
| Clinical characteristics | | | |
| LEDD | 0 ± 0 | 0 ± 0 | 864.6 ± 435.59 |
| Motor symptoms | | | |
| MDS-UPDRS Part-II | 0 ± 0 | 7 ± 5.94* | 14.93 ± 8.98* |* |
| MDS-UPDRS Part-III | 0 ± 0 | 23.29 ± 9.76* | 47.47 ± 18.91* |
| MDS-UPDRS Part-III Rigidity | 0 ± 0 | 4.76 ± 1.64* | 10.53 ± 5.87* |* |
| MDS-UPDRS Part-III Bradykinesia | 0 ± 0 | 11.06 ± 5.85* | 25.27 ± 11.23* |
| MDS-UPDRS Part-III Resting Tremor | 0 ± 0 | 3.94 ± 2.95* | 3.27 ± 3.88* |
| MDS-UPDRS Part-III Axial symptoms | 0 ± 0 | 1.24 ± 1.48* | 6.53 ± 3.85* |
| H&Y OFF | 0 ± 0 | 1.12 ± 0.33* | 2.47 ± 1.06* |* |
| Schwab and England | 100 ± 0 | 88.24 ± 14.57* | 70 ± 6.55* |* |
| Non-motor symptoms | | | |
| MDS-UPDRS Part-I | 0.18 ± 0.39 | 1.47 ± 3.37* | 3.07 ± 2.46* |
| MDS-UPDRS Part-I questionnaire | 1.41 ± 2.38 | 4.06 ± 4.31* | 8.47 ± 5.11* |* |
| NMSS | 3.95 ± 6.75 | 24.76 ± 26.53* | 57.47 ± 34.61* |
| Modified Constipation Assessment Scale | 0.55 ± 1.18 | 4.06 ± 4.63* | 6.87 ± 6.31* |* |
| PDSS | 130.09 ± 14.21 | 117.76 ± 16.77 | 102.33 ± 16.91* |
| ESS | 4.59 ± 2.61 | 5.65 ± 5.17* | 8.2 ± 4.8* |
| RBQS | 0.82 ± 1.44 | 2.12 ± 1.96* | 2.67 ± 2.60* |
| Parkinson Fatigue Scale | 5.77 ± 9.73 | 7.59 ± 18.19* | 12.93 ± 16.78 |
| SCOPA-AUT | 3.32 ± 2.46 | 8.12 ± 5.93* | 13.93 ± 3.92* |* |
| UPSIT | 30.64 ± 5.46 | 18.41 ± 5.52* | 17.8 ± 4.14* |
| Quality of Life | | | |
| PDQ-39 | 0.18 ± 0.59 | 20.06 ± 22.54* | 27 ± 10.45* |
| Neuropsychological battery | | | |
| MMSE | 29.27 ± 0.98 | 29.71 ± 0.69* | 29.47 ± 0.99 |
| MoCA | 28.59 ± 1.3 | 28.41 ± 2* | 27.53 ± 1.6 |
| GDS | 1.82 ± 1.76 | 4.35 ± 4.06* | 7.67 ± 6.07* |
| BDI-II | 1.23 ± 1.54 | 6.47 ± 8.91* | 8 ± 5.17* |

Continuous variables are expressed as mean ± standard deviation. Abbreviations: F=Female; M=Male; LEDD=Levodopa Equivalent Daily Dosage; MDS-UPDRS=Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale; H&Y=Hoehn and Yahr; NMSS=Non-motor Symptoms Scale; PDSS=Parkinson's Disease Sleep Scale; ESS=Epworth Sleepiness Scale; RBQS= REM Sleep Behaviour Sleep Disorder Questionnaire; SCOPA-AUT= Scales for Outcomes in PD-Autonomic dysfunction; UPSIT= University of Pennsylvania Smell Identification Test; PDQ-39=39-item Parkinson’s Disease Questionnaire; MMSE=Mini Mental Status Examination; MoCA=Montreal Cognitive Assessment; GDS=Geriatric Depression Scale; BDI-II=Beck Depression Inventory-II. \(P \) value vs. healthy controls Bonferroni post-hoc corrected. *\(P <0.05 \) vs. healthy controls, &\(P <0.05 \) vs. early de novo Parkinson’s disease patients.
3.2 PDE10A and early Parkinson’s disease

3.2.1 Introduction

PDE10A is a striatal enzyme expressed in the axons of the medium spiny neurons, where it hydrolyses cAMP and cGMP (Fujishige et al., 1999; Coskran et al., 2006). In the striatal pathways, PDE10A plays a pivotal role in the regulation of dopaminergic signalling (Nishi et al., 2008) and of several other brain functions, ranging from ion conductance to synaptic plasticity (Girault, 2012).

Preclinical studies have suggested an early role for PDE10A in the development of Parkinson’s disease. A lesion of the nigrostriatal dopaminergic projections with 6-OHDA increased cAMP levels in the caudate and putamen of rats (Hossain and Weiner, 1993). In 6-OHDA lesioned rats, PDE10A protein levels and mRNA levels were reduced in the caudate-putamen and striatal projections (Giorgi et al., 2011). In another experimental model of Parkinson’s disease, PDE10A inhibitors had an anti-cataleptic effect during a depletion of dopamine release induced by reserpine, which suggests a therapeutic perspective in Parkinson’s disease (Megens et al., 2014).

A recent imaging study has been performed in Parkinson’s disease patients, investigating PDE10A expression by using $^{\text{11}}$C]IMA107 PET imaging in 24 moderate-advanced Parkinson’s disease patients (Niccolini et al., 2015a). Parkinson’s disease patients showed lower $^{\text{11}}$C]IMA107 binding in the caudate, putamen and globus pallidus compared to healthy controls. Longer Parkinson’s disease duration and higher Unified Parkinson's Disease Rating Scale part-III motor scores correlated with lower $^{\text{11}}$C]IMA107 binding in the caudate, putamen, and globus pallidus. Higher Unified Dyskinesia Rating Scale scores in those Parkinson's disease with levodopa-induced dyskinesias correlated with lower $^{\text{11}}$C]IMA107 binding in the caudate and putamen. This provides evidence for the role of PDE10A within the striatum in the development of cardinal motor symptoms in Parkinson’s disease. Interestingly, a decline in PDE10A expression within the globus pallidus correlated with worse axial signs including the freezing of gait, falls and imbalance (Niccolini et al., 2015a). Therefore, PDE10A,
as an enzyme regulating striatal output and dopaminergic signalling, shows promise to serve as a marker of disease burden in patients with early Parkinson’s disease. However, it is unknown whether PDE10A is implicated at the earlier stages of the disease.

We hypothesized that the failure of dopamine to activate properly post-synaptic striatal neurons (which is associated with the development of motor symptoms in Parkinson’s disease) might not be due only to a deficit of dopamine release (consequence of SNpc cell loss) but also due to a primary dysregulation of PDE10A expression, with a reduction below the physiological levels. This would be associated with an increased level of cAMP, which mimics the condition induced by the 6-OHDA in animal models of Parkinson’s disease, and could potentially be a pathogenic mechanism fundamental to the dysfunction of second messenger signaling associated with the development of motor symptoms typical of Parkinson’s disease. Thus, loss of PDE10A expression could be one of the earliest pathophysiological events in the course of Parkinson’s disease, even earlier that DAT terminal loss.

Using molecular imaging, we aimed to investigate the role of PDE10A in the early stages of the Parkinson’s disease with the main hypothesis that a reduction of PDE10A expression is an early phenomenon in the course of Parkinson’s disease, and that PDE10A expression decreases further as Parkinson’s disease progress (in term of duration and clinical severity). We have investigated this in the Project 1, in which, by using $[^{11}\text{C}]$IMA107 PET imaging, we assessed in vivo the integrity of PDE10A enzyme in early de novo and in a population of early levodopa-treated patients with three-year longer Parkinson’s disease duration in relation to a group of age- and sex-matched healthy controls.

We also hypothesize that PDE10A expression might be affected earlier on in the course of the disease, investigating the associations between PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc).
Here, we used PET with $[^{11}\text{C}]\text{IMA107}$ to assess PDE10A expression and to explore for associations with clinical markers of disease burden in patients with early Parkinson’s disease including those who have never been treated with dopaminergic medications.

3.2.2 Hypothesis

The main hypothesis that a reduction of PDE10A expression is an early phenomenon in the course of Parkinson’s disease, and that PDE10A expression decreases further as Parkinson’s disease progresses (in term of duration and clinical severity). We have investigated this in the Project 1, in which, by using $[^{11}\text{C}]\text{IMA107}$ PET imaging, we assessed *in vivo* the integrity of PDE10A enzyme in early *de novo* and early levodopa-treated patients with Parkinson’s disease compared to age- and sex-matched healthy control subjects.

We aim to test this hypothesis comparing the expression of PDE10A (measured by using $[^{11}\text{C}]\text{IMA107}$ PET imaging) in early *de novo* and early levodopa-treated patients with Parkinson’s disease versus age- and sex-matched healthy control subjects (*Project 1 Aim*).

We also hypothesize that PDE10A expression might be affected earlier on in the course of the disease investigating the associations between PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc).

We aim to test this hypothesis checking for correlations between the expression of PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc).

3.2.3 Methods

We enrolled 60 participants recruited from specialist Movement Disorders clinics at King’s College Hospital, and through public advertisement, of which 54 subjects completed the study and were
included in the analyses (Table 1). We included 32 patients with idiopathic Parkinson’s disease according to the Queen Square Brain Bank criteria, and 22 age- and gender-matched healthy individuals with no history of neurological or psychiatric disorders, who served as the control group (healthy controls). Parkinson’s disease patients included 17 subjects with a recent diagnosis (duration of symptoms ≤24 months) who were naïve to treatment for Parkinson’s symptoms (de novo), and 15 subjects with early Parkinson’s disease (duration of symptoms ≤60 months) who were recently treated with levodopa (duration of treatment ≤24 months) and had no motor complications (early levodopa-treated). None of the Parkinson’s disease patients fulfilled the diagnostic criteria for Parkinson’s disease MCI (Litvan et al., 2011) or dementia (Emre et al., 2007) or depression (Marsh et al., 2006), had any history of other neurological or psychiatric disorders, and were not under treatment with substances with known actions in PDEs (e.g. apremilast, cilomilast, luteolin, piclamilast, roflumilast and ibudilast).

Motor symptom severity was assessed with the MDS-UPDRS-III and staged with H&Y scale. MDS-UPDRS-III subscores for rigidity, bradykinesia, tremor and axial symptoms were calculated as previously described (Niccolini et al., 2015a). Quality of life was measured with the PDQ-39. Neuropsychiatric symptoms were assessed with the Beck Depression Inventory second edition BDI-II. MMSE and MoCA were used to assess general cognitive status. Disability was assessed by Modified Schwab and England Activities of Daily Living Scale. NMSS for Parkinson’s disease was used to assess non-motor symptoms (Pagano et al., 2016a).

The study was approved by the institutional review boards and the research ethics committee. Written informed consent was obtained from all study participants in accordance with the Declaration of Helsinki.
Scanning procedures

All participants were screened successfully to undertake PET with \(^{11}\text{C}\)IMA107, and one 3-Tesla MRI scanning under standard criteria (http://www.mrisafety.com; https://www.gov.uk/government/publications/arsac-notes-for-guidance). PET and MR imaging have been performed at Imanova Ltd, London, UK. All participants were scanned on Siemens Biograph Hi-Rez 6 PET-CT scanner (Erlangen, Germany).

Dynamic emission data \(^{11}\text{C}\)IMA107 PET data were acquired continuously for 90 minutes after the injection of \(^{11}\text{C}\)IMA107 at a target dose of 350 MBq administered intravenously as a slow bolus injection over 20 seconds, no saline flush. All participants were scanned after withholding consumption of caffeinated beverages for 12 hours (Fredholm et al., 1999b). A reference region devoid of specific PDE10A activity has been validated; therefore, arterial cannulation was not required for \(^{11}\text{C}\)IMA107 PET. The dynamic images were reconstructed into 26 frames (8 x 15s, 3 x 60s, 5 x 120s, 5 x 300s, and 5 x 600s), using a filtered back projections algorithm (direct inversion Fourier transform) with a 128 matrix, zoom of 2.6 producing images with isotropic voxel size of 2 x 2 x 2 mm\(^3\), and smoothed with a transaxially Gaussian filter of 5mm. MRI scans were acquired with a 32-channel head coil on a 3-Tesla MRI Siemens Magnetom TrioTim syngo MR B17 (Erlangen, Germany) scanner, and included a T1-weighted magnetization prepared rapid gradient echo sequence [MPRAGE; time repetition (TR) = 2300 ms, time echo (TE) = 2.98 ms, flip angle of 9°, time to inversion (TI) = 900 ms, matrix = 240 x 256] for co-registration with the PET images; fast grey matter T1 inversion recovery (FGATIR; repetition time = 3000 ms, echo time = 2.96 ms, flip angle of 8, time to inversion = 409 ms, matrix = 240 x 256) (Sudhyadhom et al., 2009) sequences for delineation of regions-of-interest. All MRI sequences used a 1 mm\(^3\) voxel size, anteroposterior phase encoding direction, and a symmetric echo.
Imaging data analysis

[C¹¹]IMA107 data analysis

The Molecular Imaging and Kinetic Analysis Toolbox software package (MIAKAT™: www.miakat.org), implemented in MATLAB® (The Mathworks, Natick, MA, USA) was used to carry out image processing and kinetic modelling. MIAKAT™ combines in-house code with wrappers for FMRIB Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and Statistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.uk/spm/) commands in order to provide state-of-the-art functionality within a coherent analysis framework. The MIAKAT™ processing pipeline was followed, ensuring that all quality control steps were completed to generate parametric images and regional estimates of [C¹¹]IMA107 BPND. BPND were generated using a basis function implementation of the simplified reference tissue model, with the cerebellum as the reference tissue for non-specific binding. Individual PET frames were corrected for head motion using frame-by-frame rigid registration using a frame with high signal-to-noise ratio as reference. PET images were co-registered to the corresponding MPRAGE MRI.

Region of interest-based analysis

To facilitate anatomical delineation of regions of interest, PET images were anatomically co-registered and re-sliced to the corresponding volumetric structural T1-weighted MRI images in Statistical Parametric Mapping version12 (SPM12) software package implemented in Matlab 2015a. Regions of interest were delineated manually on the T1 co-registered FGATIR MRI sequence using ANALYZE version 12.0 (Mayo Foundation) medical imaging software package by two assessors who were blinded to groups allocation, using used a reliable, robust and repeatable technique for manual delineation of basal ganglia structures (Tziortzi et al., 2011a). Regions of interest included caudate, putamen, ventral striatum, globus pallidus (external and internal segments), substantia nigra.
and motor thalamic nuclei. These brain regions express PDE10A to a varying degree (Seeger et al., 2003; Coskran et al., 2006).

Statistical analysis

Statistical analysis and graph illustration were performed with SPSS (version 22) and GraphPad Prism (version 6.0c) for Windows 10, respectively. For all variables, Gaussianity was tested with Shapiro-Wilk test and we proceeded with parametric tests as our PET and clinical data were normally distributed. Multivariate analysis of variance (MANOVA) was used to assess the main effects of regional $[^{11}\text{C}]$IMA107 BP$_{\text{ND}}$ among the groups. If the overall multivariate test was significant, P-values for each variable were calculated following Bonferroni’s multiple comparisons test. We interrogated correlations between PET and clinical data using Spearman rho and we applied Benjamini-Hochberg correction to reduce false discovery rate (Benjamini and Cohen, 2017). We set the false discovery rate cut-off at 0.05. All data are presented as mean ± standard deviation, and the level α was set for all comparisons at $P<0.05$, corrected.

3.2.4 Results

A mean dose of 276.05 ± 48.35, 278.39 ± 33.51 and 310.43 ± 16.93 $[^{11}\text{C}]$IMA107 MBq was respectively administered in healthy controls, early de novo and early treated Parkinson’s patients. The results of $[^{11}\text{C}]$IMA107 BP$_{\text{ND}}$ in healthy controls, early de novo and treated Parkinson’s disease patients are shown in Table 2.

Early de novo patients with Parkinson’s disease had lower mean $[^{11}\text{C}]$IMA107 BP$_{\text{ND}}$ values in caudate ($P<0.001$), putamen ($P<0.001$) and ventral striatum ($P<0.05$) compared to healthy controls. There were no differences in mean $[^{11}\text{C}]$IMA107 BP$_{\text{ND}}$ values between early de novo Parkinson’s disease
patients and healthy controls in globus pallidus internal ($P>0.10$), globus pallidus external ($P>0.10$), substantia nigra ($P>0.10$) and thalamus ($P>0.10$).

Early treated patients with Parkinson’s disease had lower mean $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ values in caudate ($P<0.001$), putamen ($P<0.001$) and ventral striatum ($P<0.05$) compared to healthy controls. There were no differences in mean $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ values between early treated Parkinson’s disease patients and healthy controls in globus pallidus internal ($P>0.10$), globus pallidus external ($P>0.10$), substantia nigra ($P>0.10$) and thalamus ($P>0.10$) (Figure 6).
Figure 6. PDE10A expression in the groups of Parkinson’s disease (PD) patients and healthy controls. Dot plot graphs showing mean $[^{11}C]IMA107$ BP$_{ND}$ ± standard deviation in subcortical brain regions in PD early de novo patients, PD early levodopa-treated patients and healthy controls. *P <0.05, **P <0.01, ***P <0.001 ANOVA with Bonferroni post-hoc correction.

Compared to early de novo Parkinson’s disease patients, early levodopa-treated patients with Parkinson’s disease showed additional $[^{11}C]IMA107$ BP$_{ND}$ loss of 17.2% (SD: 8.4%) in the caudate...
(P<0.001; reflecting a 5.7% mean annual decline) and 9.5% (SD: 9.6%) in the putamen (P<0.001; reflecting a 3.2% mean annual decline) (Figure 7).

Furthermore, longer Parkinson’s disease duration correlated with lower $[^{11}C]$IMA107 B_{PN}^D in the caudate ($\rho=-0.72; P<0.001$) and putamen ($\rho=-0.48; P<0.01$) (Figure 8).
Figure 8. Correlations between PDE10A and disease duration in Parkinson’s disease (PD) patients. Spearman correlation between disease duration and [11C]IMA107 (left) in the caudate (rho=-0.72; P<0.001) and (right) in the putamen (rho=-0.48; P<0.01). PD early de novo in black circles and PD early levodopa-treated in grey circles.

Compared to early de novo, early treated Parkinson’s patients showed greater rigidity and bradykinesia (higher scores in MDS-UPDRS Part-III Rigidity and Bradykinesia, P<0.05), but similar scores in resting tremor and axial symptoms.

In term of lateralization, in the group of early de novo patients with Parkinson’s disease with unilateral motor symptoms, we assessed whether the clinically affected side of the body was associated with greater decreases in contralateral brain regions of interest [11C]IMA107 BP_{ND} values. We found no differences in [11C]IMA107 BP_{ND} values in any of the regions of interest between the most and less affected side.

When the group of early de novo and early treated Parkinson’s patients were evaluated as a whole, higher MDS-UPDRS-III total scores correlated with lower [11C]IMA107 BP_{ND} in the caudate (rho=-0.42; P<0.05) and putamen (rho=-0.41; P<0.05). Higher MDS-UPDRS-III rigidity scores correlated with lower [11C]IMA107 BP_{ND} in the caudate (rho=-0.52; P<0.01) and putamen (rho=-0.43; P<0.05).
Higher MDS-UPDRS-III bradykinesia scores correlated with lower $[^{11}C]$IMA107 B_{ND} in the caudate ($\rho=-0.45; \ P<0.01$) and putamen ($\rho=-0.47; \ P<0.01$). No correlations were found with MDS-UPDRS-III resting tremor or axial scores (Figure 9).

Figure 9. Correlations between PDE10A to motor symptoms in Parkinson’s disease (PD) patients. Spearman correlation between MDS-UPDRS-III motor scores (first line) and $[^{11}C]$IMA107 B_{ND} in the caudate ($\rho=-0.42$;
Correlation between MDS-UPDRS-III rigidity subscores (second line) and $[^{11}\text{C}]$IMA107 BP_{ND} in the caudate ($\rho=0.515; P=0.003$) and putamen ($\rho=-0.432; P=0.014$). Correlation between MDS-UPDRS-III bradykinesia subscores (third line) and $[^{11}\text{C}]$IMA107 BP_{ND} in caudate ($\rho=-0.448; P=0.001$) and putamen ($\rho=-0.467; P=0.007$). No correlation between MDS-UPDRS-III tremor subscores (forth line) and $[^{11}\text{C}]$IMA107 BP_{ND} in caudate ($\rho=0.085; P>0.10$) and putamen ($\rho=0.127; P>0.10$). PD early de novo in black circles and PD early levodopa-treated in grey circles.

In the subgroup of early de novo patients with Parkinson’s disease, higher MDS-UPDRS-III total scores correlated only with lower $[^{11}\text{C}]$IMA107 BP_{ND} in the ventral striatum ($\rho=-0.54; P<0.05$), and no correlations were found with caudate ($P>0.10$), putamen ($P>0.10$), globus pallidus internal ($P>0.10$), globus pallidus external ($P>0.10$), substantia nigra ($P>0.10$) and thalamus ($P>0.10$). No correlations were found with MDS-UPDRS-III rigidity, bradykinesia, resting tremor or axial scores.

In the subgroup of early treated patients with Parkinson’s disease, higher MDS-UPDRS-III total scores correlated only with lower $[^{11}\text{C}]$IMA107 BP_{ND} in the globus pallidus external ($\rho=-0.57; P<0.05$) and in the substantia nigra ($\rho=-0.713; P<0.05$), and no correlations were found with caudate ($P>0.10$), putamen ($P>0.10$), ventral striatum ($P>0.10$), globus pallidus internal ($P>0.10$) and thalamus ($P>0.10$). Higher MDS-UPDRS-III rigidity scores correlated with lower $[^{11}\text{C}]$IMA107 BP_{ND} in the caudate ($\rho=-0.57; P<0.01$), putamen ($\rho=-0.54; P<0.05$) and globus pallidus external ($\rho=-0.54; P<0.05$). Higher MDS-UPDRS-III bradykinesia and axial scores correlated with lower $[^{11}\text{C}]$IMA107 BP_{ND} in the substantia nigra (bradykinesia: $\rho=-0.57; P<0.05$; axial: $\rho=-0.52; P<0.05$). No correlations were found with MDS-UPDRS-III resting tremor.

No correlations were found with global non-motor symptoms (MDS-UPDRS-I, MDS-UPDRS Part-I questionnaire or NMSS), constipation (Modified Constipation Assessment Scale), sleep (PDSS,
ESS, RBQS), fatigue (Parkinson Fatigue Scale), autonomic dysfunction (SCOPA-AUT), olfaction (UPSIT), quality of life (PDQ-39) when the group of early de novo and early treated Parkinson’s patients were evaluated as a whole or when evaluated as subgroups.

No correlations were found with cognitive impairment (MMSE, MoCA) or depression (GDS, BDI-II) when the group of early de novo and early treated Parkinson’s patients were evaluated as a whole or when evaluated as subgroups.

3.2.5 Discussion

Our hypothesis was that a reduction of PDE10A expression is an early phenomenon in the course of Parkinson’s disease, and that PDE10A expression decreases further as Parkinson’s disease progress (in term of duration and clinical severity).

We aimed to test this hypothesis comparing the expression of PDE10A (measured by using $[^{11}\text{C}]$IMA107 PET imaging) in early de novo and early levodopa-treated patients with Parkinson’s disease versus age- and sex-matched healthy control subjects (Project 1 Aim).

We found that early de novo and early levodopa-treated patients with Parkinson’s disease had lower mean $[^{11}\text{C}]$IMA107 BP$_{ND}$ values in caudate, putamen and ventral striatum compared to healthy controls. Early levodopa-treated patients had lower striatal $[^{11}\text{C}]$IMA107 BP$_{ND}$ values compared to early de novo patients, and striatal $[^{11}\text{C}]$IMA107 BP$_{ND}$ values were correlated with disease duration and disease severity.

Our findings demonstrate our hypothesis that loss of striatal PDE10A expression is an early phenomenon in the course of Parkinson’s disease and is associated with duration and severity of motor symptoms. Our study agrees with previous experimental work, which has demonstrated that
lesions of nigrostriatal projections with 6-OHDA, induce a downregulation of PDE10A expression in the striatum in rodent models of Parkinson’s disease (Giorgi et al., 2008; Giorgi et al., 2011).

We also hypothesize that PDE10A expression might be affected earlier on in the course of the disease investigating the associations between PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc). We aimed to test this hypothesis checking for correlations between the expression of PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc). PDE10A expression did not correlate with non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc), which suggests that reduction of PDE10A might be concomitant and not earlier than DAT expression loss. Thus, we cannot accept this hypothesis.

We used PET molecular imaging to quantify PDE10A expression in the same cohorts of Parkinson’s disease patients and healthy controls. In both early de novo and early levodopa-treated patients with Parkinson’s disease PDE10A expression was decreased in the striatum. Our early de novo cohort of Parkinson’s disease patients had less than two year of disease duration and the cohort of early levodopa-treated less than five year of Parkinson’s symptoms and were taking levodopa for less than two years. Previously, we have reported loss of striatal PDE10A expression and correlations with the burden of motor symptoms and complications in middle-stage treated Parkinson’s disease patients with a mean of seven years of disease duration and advanced treated Parkinson’s disease patients with a mean of 13 years of disease duration (Niccolini et al., 2015a). Collectively, our data suggest that loss of striatal PDE10A expression appears very early in the course of Parkinson’s disease, might progresses over time, and is associated with the gradual increase of motor symptom burden in different disease stages. Our findings suggest that loss of PDE10A expression in globus pallidus is a phenomenon appearing later in the disease (Niccolini et al., 2015a) as PDE10A expression in this
region was not affected in the earlier cohorts. Our findings were not affected by volumetric changes in the brain, age or gender.

3.2.6 Conclusion

Our findings demonstrate loss of PDE10A expression very early in the course of Parkinson’s disease that might progresses over time and is associated with the gradual increase of motor symptom burden in different disease stages. However, we cannot draw any conclusion regarding the relationship between PDE10A and DAT expression, which represents the main pathological process underlying Parkinson’s disease.

We aim to investigate the relationship between PDE10A and DAT expression in the Project 2.
Chapter 4. DAT SPECT and PET in Parkinson’s Disease

This chapter summarizes the main results on the \textit{in vivo} evaluation of the integrity of PDE10A expression in comparison to DAT (measured with $^{[123]}$FP-CIT SPECT and $^{[11]}$CPE2I PET imaging) in early \textit{de novo} Parkinson’s disease patients compared to age- and sex-matched healthy control subjects. The integrity of DAT in early \textit{de novo} Parkinson’s disease patients was then compared to early levodopa-treated Parkinson’s disease patients, evaluating how PET and SPECT measures of DAT changes are associated with disease duration and severity. Finally, the associations between the motor (tremor, rigidity, bradykinesia and postural instability) and non-motor symptoms (sleep problems, cognitive impairment, autonomic dysfunction, mood disorders etc) and the expression of DAT PET and SPECT have been explored and described in detail.
4.1.1 Introduction

Previous PET imaging studies have shown that changes in the molecular binding profile of selected brain targets may serve as promising markers of disease burden and progression, drug target identification and treatment response in therapeutic trials in patients with Parkinson’s disease (Politis, 2014). Loss of DAT signal in Parkinson’s disease patients reflects loss of nigrostriatal dopamine neurons and is typically associated with dopaminergic pathology in the putamen and the motor features of bradykinesia and rigidity (Pirker, 2003). However, molecular imaging of DAT cannot be considered an ideal biomarker for Parkinson’s disease due to several limitations, including a lack of specificity for Parkinson’s compared to atypical parkinsonism, and the fact that dopaminergic supplementation may modulate DAT levels, limiting its use as biomarker for clinical trials testing disease-modification drugs (Fahn et al., 2004; Schapira, 2013). DAT expression can be measured with several tracers but $[^{11}\text{C}]$PE2I PET and $[^{123}\text{I}]$FP-CIT SPECT represents the most different ones because the two tracers have a different affinity for the DAT ($[^{11}\text{C}]$PE2I is more specific of DAT where $[^{123}\text{I}]$FP-CIT binds both DAT and SERT). This allows to investigate dopaminergic but also in part non-dopaminergic pathology.

PDE10A is a striatal enzyme expressed in the axons of the medium spiny neurons, where it hydrolyses cAMP and cGMP (Fujishige et al., 1999; Coskran et al., 2006). In the striatal pathways, PDE10A plays a pivotal role in the regulation of dopaminergic signalling (Nishi et al., 2008) and of several other brain functions, ranging from ion conductance to synaptic plasticity (Girault, 2012). Recent work with PET molecular imaging has demonstrated loss of PDE10A expression in moderate to advanced levodopa-treated patients with Parkinson’s disease, which was associated with motor symptoms and complications (Niccolini et al., 2015a). Therefore, PDE10A, as an enzyme regulating striatal output and dopaminergic signalling, shows promise to serve as a marker of disease burden in
patients with early Parkinson’s disease. However, it is unknown whether PDE10A is implicated at the earlier stages of the disease and how its biomarker value compares with the gold standard DAT molecular imaging.

Here, we used PET with 11CIMA107 to assess PDE10A expression in comparison with two DAT markers, the $^{[11]}$CPE2I PET imaging, and the clinical validated $^{[123]}$IFP-CIT SPECT imaging. We explored for associations with clinical markers of disease burden in patients with early Parkinson’s disease including those who have never been treated with dopaminergic medications.

4.1.2 Hypothesis

We hypothesize that PDE10A expression was correlated with dopaminergic pathology, which can be measured either with PET or SPECT. We have investigated this in the Project 2, in which we compared the expression of PDE10A, measured with $^{[11]}$CIMA107 PET imaging, with the best known molecular markers of dopaminergic dysfunction in Parkinson’s patients, the $^{[11]}$CPE2I PET imaging, and the clinical validated $^{[123]}$IFP-CIT SPECT imaging. We aim to test this hypothesis checking for correlations between the expression of PDE10A and the expression of dopamine transporters (measured by using $^{[11]}$CPE2I PET and $^{[123]}$IFP-CIT SPECT molecular imaging) (Project 2 Aim). In this Project, we also compared $^{[11]}$CPE2I PET versus $^{[123]}$IFP-CIT SPECT because the two tracers have a different affinity for the DAT ($^{[11]}$CPE2I is more specific of DAT where $^{[123]}$IFP-CIT binds both DAT and SERT). This would give us a greater understanding of the relationship between PDE10A expression and dopaminergic and non-dopaminergic pathology.
4.1.3 Methods

We enrolled 60 participants recruited from specialist Movement Disorders clinics at King’s College Hospital, and through public advertisement, of which 54 subjects completed the study and were included in the analyses (Table 1). We included 32 patients with idiopathic Parkinson’s disease according to the Queen Square Brain Bank criteria, and 22 age- and gender-matched healthy individuals with no history of neurological or psychiatric disorders, who served as the control group (healthy controls). Parkinson’s disease patients included 17 subjects with a recent diagnosis (duration of symptoms ≤24 months) who were naïve to treatment for Parkinson’s symptoms (de novo), and 15 subjects with early Parkinson’s disease (duration of symptoms ≤60 months) who were recently treated with levodopa (duration of treatment ≤24 months) and had no motor complications (early levodopa-treated). None of the Parkinson’s disease patients fulfilled the diagnostic criteria for Parkinson’s disease MCI (Litvan et al., 2011) or dementia (Emre et al., 2007) or depression (Marsh et al., 2006), had any history of other neurological or psychiatric disorders, and were not under treatment with substances with known actions in PDEs (e.g. apremilast, cilomilast, luteolin, piclamilast, roflumilast and ibudilast).

Motor symptom severity was assessed with the MDS-UPDRS-III and staged with H&Y scale. MDS-UPDRS-III subscores for rigidity, bradykinesia, tremor and axial symptoms were calculated as previously described (Niccolini et al., 2015a). Quality of life was measured with the PDQ-39. Neuropsychiatric symptoms were assessed with the Beck Depression Inventory second edition BDI-II. MMSE and MoCA were used to assess general cognitive status. Disability was assessed by Modified Schwab and England Activities of Daily Living Scale. NMSS for Parkinson’s disease was used to assess non-motor symptoms (Pagano et al., 2016a).
The study was approved by the institutional review boards and the research ethics committee. Written informed consent was obtained from all study participants in accordance with the Declaration of Helsinki.

Scanning procedures

All participants were screened successfully to undertake PET with $^{[11]}$CIMA107 and with $^{[11]}$CPE2I, one $^{[123]}$IFP-CIT DAT SPECT and one 3-Tesla MRI scanning under standard criteria(http://www.mrisafety.com; https://www.gov.uk/government/publications/arsac-notes-for-guidance). PET and MR imaging have been performed at Imanova Ltd, London, UK. All participants were scanned on Siemens Biograph Hi-Rez 6 PET-CT scanner (Erlangen, Germany). $^{[11]}$CIMA107 and $^{[11]}$CPE2I have been performed on the same day after withholding consumption of caffeinated beverages for 12 hours (Fredholm et al., 1999a). $^{[123]}$IFP-CIT DAT SPECT scans were performed at KCH NHS Foundation Trust within 2 weeks from PET scans.

Dynamic emission data were acquired continuously for 90 minutes following the injection of $^{[11]}$CIMA107. The dynamic images were reconstructed into 26 frames (8 x 15 s, 3 x 60 s, 5 x 120 s, 5 x 300 s, and 5 x 600 s), using a filtered back projection algorithm (direct inversion Fourier transform) with a 128 matrix, zoom of 2.6 producing images with isotropic voxel size of 2 x 2 x 2 mm3, and smoothed with a transaxial Gaussian filter of 5 mm. MRI scans were acquired with a 32-channel head coil on a 3-Tesla MRI Siemens Magnetom TrioTim syngo MR B17 (Erlangen, Germany) scanner, and included a T1-weighted magnetization prepared rapid gradient echo sequence [MPRAGE; time repetition (TR) = 2300 ms, time echo (TE) = 2.98 ms, flip angle of 9°, time to inversion (TI) = 900 ms, matrix = 240 x 256] for co-registration with the PET images; fast grey matter T1 inversion recovery (FGATIR; repetition time = 3000 ms, echo time = 2.96 ms, flip angle of 8, time to inversion = 409 ms, matrix = 240 x 256) (Sudhyadhom et al., 2009) sequences for delineation
of regions-of-interest. All MRI sequences used a 1 mm³ voxel size, anteroposterior phase encoding direction, and a symmetric echo.

Patients were given an intravenous injection of approximately 185 MBq [123I]FP-CIT, with images obtained 4 hours post-injection. Data were acquired in a 128 x 128 matrix, using a 20% energy window and magnification x 2. All SPECT images were reconstructed on a HERMES workstation, using the HERMES Hybrid Recon™ - Neurology software. Reconstruction was performed using the 3D ordered-subset expectation maximum (OSEM) method, using 5 iterations with attenuation correction. Finally, a 3D Gaussian postfilter was applied with a 0.90cm FWHM. All iteratively reconstructed SPECT images were then transferred to BRASS™ software to quantify striatal tracer uptake. Patients SPECT images were fitted against a pre-existing three-dimensional reference template, containing a number of VOIs. The caudate, putamen and striatum specific uptake ratios were calculated using the occipital cortex as a reference region.

Imaging data analysis

[11C]IMA107 and [11C]PE2I PET data analysis

The Molecular Imaging and Kinetic Analysis Toolbox software package (MIAKAT™: www.miakat.org), implemented in MATLAB® (The Mathworks, Natick, MA, USA) was used to carry out image processing and kinetic modelling. MIAKAT™ combines in-house code with wrappers for FMRIB Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and Statistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.uk/spm/) commands in order to provide state-of-the-art functionality within a coherent analysis framework. The MIAKAT™ processing pipeline was followed, ensuring that all quality control steps were completed to generate parametric images and regional estimates of [11C]IMA107 and [11C]PE2I BPND. BPND were generated using a basis function implementation of the simplified reference tissue model, with the cerebellum as the reference
tissue for non-specific binding. Individual PET frames were corrected for head motion using frame-by-frame rigid registration using a frame with high signal-to-noise ratio as reference. PET images were co-registered to the corresponding MPRAGE MRI.

[^123I]FP-CIT-SPECT Imaging analyses

[^123I]FP-CIT-SPECT was processed using Hybrid-Recon and Statistical Parametric Mapping 12 (SPM, Wellcome Trust Centre for Neuroimaging, London, UK) implemented in MATLAB (The Math-Works, Natick, MA, USA).[^123I]FP-CIT SPECT image volumes were spatially normalized to a FP-CIT template in MNI space. The eight most prominent axial slices containing the striatum were summed and a standardized VOI template was then applied to this image. VOI analyses were performed on the right and left caudate and putamen, employing the occipital region as the reference tissue. SBR was calculated as the ratio of the putamen or caudate VOI count density divided by the occipital cortex count density minus one. This measure approximates the binding potential, BP_{ND}, when the radioligand is in equilibrium at the target site and has previously been reported with[^123I]FP-CIT SPECT (Qamhawi et al., 2015).

Region of interest-based analysis

To facilitate anatomical delineation of regions of interest, PET and SPECT images were anatomically co-registered and re-sliced to the corresponding volumetric structural T1-weighted MRI images in Statistical Parametric Mapping version12 (SPM12) software package implemented in Matlab 2015a. Regions of interest were delineated manually on the T1 co-registered FGATIR MRI sequence using ANALYZE version 12.0 (Mayo Foundation) medical imaging software package by two assessors who were blinded to groups allocation, using a reliable, robust and repeatable technique for
manual delineation of basal ganglia structures (Tziortzi et al., 2011a). Regions of interest included caudate, putamen, ventral striatum, globus pallidus (external and internal segments), substantia nigra and motor thalamic nuclei.

Statistical analysis

Statistical analysis and graph illustration were performed with SPSS (version 22) and GraphPad Prism (version 6.0c) for Windows 10, respectively. For all variables, Gaussianity was tested with Shapiro-Wilk test and we proceeded with parametric tests as our imaging and clinical data were normally distributed. Multivariate analysis of variance (MANOVA) was used to assess the main effects of regional BP\textsubscript{ND} among the groups. If the overall multivariate test was significant, \(P\)-values for each variable were calculated following Bonferroni’s multiple comparisons test. We interrogated correlations between imaging and clinical data using Spearman rho and we applied Benjamini-Hochberg correction to reduce false discovery rate (Benjamini and Cohen, 2017). We set the false discovery rate cut-off at 0.05. All data are presented as mean ± standard deviation, and the level \(\alpha\) was set for all comparisons at \(P<0.05\), corrected.

4.1.4 Results

A mean dose of 180.26 ± 3.62, 179.52 ± 3.27 and 179.5 ± 3.2 \([^{123}\text{I}]\text{FP-CIT MBq}\) was respectively administered in healthy controls, early de novo and early treated Parkinson’s patients, whereas for \([^{11}\text{C}]\text{PE2I MBq}\) was administered a mean dose of 328.99 ± 10.46, 309.31 ± 35.4 and 312.44 ± 22.91. The results of \([^{123}\text{I}]\text{FP-CIT SBR}\) and \([^{11}\text{C}]\text{PE2I BP}\text{ND}\) in healthy controls, early de novo and treated Parkinson’s disease patients are shown in Table 3.
Table 3. $[^{11}C]$PE2I BP_{ND} and $[^{123}I]$FP-CIT SBR in early de novo and early treated patients with idiopathic Parkinson’s disease compared to healthy controls

<table>
<thead>
<tr>
<th></th>
<th>Healthy Controls (n=22)</th>
<th>Early de novo Parkinson’s disease (n=17)</th>
<th>Early treated Parkinson’s disease (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[^{11}C]$PE2I BP<sub>ND</sub> Dose injected (MBq)</td>
<td>328.99 ± 10.46</td>
<td>309.31 ± 35.4</td>
<td>312.44 ± 22.91</td>
</tr>
<tr>
<td>Caudate</td>
<td>2.58 ± 0.42</td>
<td>1.87 ± 0.38*</td>
<td>1.74 ± 0.44*</td>
</tr>
<tr>
<td>Putamen</td>
<td>3.16 ± 0.33</td>
<td>1.75 ± 0.44*</td>
<td>1.14 ± 0.3*</td>
</tr>
<tr>
<td>Ventral Striatum</td>
<td>2.09 ± 0.8</td>
<td>2.03 ± 0.44</td>
<td>1.63 ± 0.39</td>
</tr>
<tr>
<td>Globus Pallidus Internal</td>
<td>1.22 ± 0.24</td>
<td>0.85 ± 0.24*</td>
<td>0.6 ± 0.23*</td>
</tr>
<tr>
<td>Globus Pallidus External</td>
<td>2.03 ± 0.37</td>
<td>1.27 ± 0.31*</td>
<td>1 ± 0.36*</td>
</tr>
<tr>
<td>Substantia Nigra</td>
<td>0.7 ± 0.2</td>
<td>0.61 ± 0.09</td>
<td>0.62 ± 0.08</td>
</tr>
<tr>
<td>Thalamus</td>
<td>0.45 ± 0.07</td>
<td>0.49 ± 0.05</td>
<td>0.28 ± 0.08**</td>
</tr>
<tr>
<td>$[^{123}I]$FP-CIT SBR Dose injected (MBq)</td>
<td>180.26 ± 3.62</td>
<td>179.52 ± 3.27</td>
<td>179.5 ± 3.2</td>
</tr>
<tr>
<td>Caudate</td>
<td>3.72 ± 0.47</td>
<td>2.88 ± 0.62*</td>
<td>2.33 ± 0.36**</td>
</tr>
<tr>
<td>Putamen</td>
<td>3.67 ± 0.41</td>
<td>2.44 ± 0.51*</td>
<td>2.01 ± 0.26**</td>
</tr>
<tr>
<td>Ventral Striatum</td>
<td>2.13 ± 0.37</td>
<td>1.7 ± 0.46*</td>
<td>1.55 ± 0.2*</td>
</tr>
<tr>
<td>Globus Pallidus Internal</td>
<td>2.46 ± 0.31</td>
<td>1.97 ± 0.38*</td>
<td>1.88 ± 0.2*</td>
</tr>
<tr>
<td>Globus Pallidus External</td>
<td>3.08 ± 0.39</td>
<td>2.26 ± 0.45*</td>
<td>2.1 ± 0.26*</td>
</tr>
<tr>
<td>Substantia Nigra</td>
<td>1.55 ± 0.24</td>
<td>1.53 ± 0.34</td>
<td>1.45 ± 0.15</td>
</tr>
<tr>
<td>Thalamus</td>
<td>1.76 ± 0.18</td>
<td>1.63 ± 0.32</td>
<td>1.58 ± 0.14</td>
</tr>
</tbody>
</table>

Continuous variables are expressed as mean ± standard deviation. Abbreviations: BP_{ND} = Non-displaceable binding potential; SBR = Signal-Binding-Ratio. P value vs. healthy controls Bonferroni post-hoc corrected. *P <0.05 vs. healthy controls, **P <0.05 vs. early de novo Parkinson’s disease patients.

Early de novo patients with Parkinson’s disease had lower mean $[^{123}I]$FP-CIT SBR values in caudate ($P<0.001$), putamen ($P<0.001$), ventral striatum ($P<0.05$), globus pallidus internal ($P<0.05$) and globus pallidus external ($P<0.05$) compared to healthy controls (Figure 10A and 11A). They had lower mean $[^{11}C]$PE2I BP_{ND} values in caudate ($P<0.001$), putamen ($P<0.001$), globus pallidus internal ($P<0.05$) and globus pallidus external ($P<0.05$) compared to healthy controls (Figure 10B and 11B).
Figure 9. DAT SPECT and PET expression in the groups of Parkinson's disease (PD) patients and healthy controls. Dot plot graphs showing mean 123I-FP-CIT SBR (A) and 11C-PE2I-BPND (B) in subcortical brain regions in PD early de novo patients, PD early levodopa-treated patients and healthy controls. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.
Figure 10. DAT SPECT (A) and PET (B) expression in the groups of Parkinson’s disease (PD) patients and healthy controls. Dot plot graphs showing mean $[^{123}]$FP-CIT SBR (A) and $[^{11}C]$PE2I BPND (B) ± standard deviation in subcortical brain regions in PD early de novo patients, PD early levodopa-treated patients and healthy controls. *P <0.05, **P <0.01, ***P <0.001 ANOVA with Bonferroni post-hoc correction.
Early treated patients with Parkinson’s disease had lower mean $[^{123}\text{I}]$FP-CIT SBR values in caudate ($P<0.001$), putamen ($P<0.001$), ventral striatum ($P<0.05$), globus pallidus internal ($P<0.05$) and globus pallidus external ($P<0.05$) compared to healthy controls (Figure 10A and 11A). They had lower mean $[^{11}\text{C}]$PE2I BP_{ND} values in caudate ($P<0.001$), putamen ($P<0.001$), globus pallidus internal ($P<0.05$), globus pallidus external ($P<0.05$) and thalamus ($P<0.05$) compared to healthy controls (Figure 10B and 11B). Compared to early de novo Parkinson’s disease patients, early levodopa-treated patients with Parkinson’s disease showed additional $[^{123}\text{I}]$FP-CIT SPECT loss of 21% (SD: 7.4%) in the caudate ($P<0.001$; reflecting a 7% mean annual decline) and 17% (SD: 7.6%) in the putamen ($P<0.001$; reflecting a 5.6% mean annual decline) (Figure 10A and 11A). Early levodopa-treated Parkinson’s disease patients showed additional $[^{11}\text{C}]$PE2I BP_{ND} loss of was 34.7%
(SD: 17%) in the putamen ($P<0.001$; reflecting an 11.6% mean annual decline), whereas changes were not significant in the caudate, compared to early de novo Parkinson’s disease patients (Figure 10A and 11A).

Longer Parkinson’s disease duration correlated with lower $[^{11}\text{C}]\text{PE2I BP}_{\text{ND}}$ in the putamen ($\rho=-0.65; P<0.001$). No correlations were found between Parkinson’s disease duration and $[^{123}\text{I}]\text{FP-CIT SPECT SBR}$ in any brain areas (Figure 12).

![Figure 12. Correlations between DAT and disease duration in Parkinson’s disease (PD) patients. Spearman correlation between disease duration and $[^{11}\text{C}]\text{PE2I (down - right)}$ in the putamen ($\rho=-0.65; P<0.001$). No correlations with $[^{123}\text{I}]\text{FP-CIT SBR (top)}$ in the caudate ($\rho=-0.253; P>0.10$) or putamen ($\rho=-0.258; P>0.10$) and $[^{11}\text{C}]\text{PE2I BP}_{\text{ND}}$ (down - left) in the caudate ($\rho=-0.267; P>0.10$). PD early de novo in black circles and PD early levodopa-treated in grey circles.]

In term of lateralization, in the group of early de novo patients with Parkinson’s disease with unilateral motor symptoms, we assessed whether the clinically affected side of the body was associated with greater decreases in contralateral brain regions of interest $[^{11}\text{C}]\text{PE2I BP}_{\text{ND}}$ values. We found that
\([^{11}\text{C}]\text{PE2I BP}_{\text{ND}}\) values in caudate \((P<0.001)\), putamen \((P<0.001)\), ventral striatum \((P<0.001)\), globus pallidus internal \((P<0.001)\), globus pallidus external \((P<0.001)\) and substantia nigra \((P<0.001)\) were decreased in the contralateral to most affected compared to the less affected side of the body. Equivalent results were found for \([^{123}\text{I}]\text{FP-CIT SPECT SBR}\) values.

When the group of early de novo and early treated Parkinson’s patients were evaluated as a whole, higher MDS-UPDRS-III total scores correlated with lower \([^{123}\text{I}]\text{FP-CIT SPECT SBR}\) in the caudate \((\rho=-0.59; \ P<0.001)\), putamen \((\rho=-0.50; \ P<0.001)\), globus pallidus internal \((\rho=-0.36; \ P<0.05)\) and globus pallidus external \((\rho=-0.43; \ P<0.05)\) and with lower \([^{11}\text{C}]\text{PE2I BP}_{\text{ND}}\) in the putamen \((\rho=-0.54; \ P<0.001)\), ventral striatum \((\rho=-0.50; \ P<0.05)\) and thalamus \((\rho=-0.51; \ P<0.05)\). Higher MDS-UPDRS-III rigidity scores correlated with lower \([^{11}\text{C}]\text{PE2I BP}_{\text{ND}}\) in the caudate \((\rho=-0.37; \ P<0.001)\), putamen \((\rho=-0.61; \ P<0.001)\), ventral striatum \((\rho=-0.45; \ P<0.05)\) and thalamus \((\rho=-0.48; \ P<0.05)\); whereas no correlations were found with \([^{123}\text{I}]\text{FP-CIT SPECT SBR}\). Higher MDS-UPDRS-III bradykinesia scores correlated with lower \([^{123}\text{I}]\text{FP-CIT SPECT SBR}\) in the caudate \((\rho=-0.45; \ P<0.05)\) in the putamen \((\rho=-0.42; \ P<0.05)\) and with lower \([^{11}\text{C}]\text{PE2I BP}_{\text{ND}}\) in the putamen \((\rho=-0.47; \ P<0.001)\), ventral striatum \((\rho=-0.39; \ P<0.05)\) and thalamus \((\rho=-0.42; \ P<0.05)\). No correlations were found with MDS-UPDRS-III resting tremor and \([^{123}\text{I}]\text{FP-CIT SPECT SBR}\) or \([^{11}\text{C}]\text{PE2I BP}_{\text{ND}}\). No correlations were found with MDS-UPDRS-III axial symptoms and \([^{123}\text{I}]\text{FP-CIT SPECT SBR}\). Higher MDS-UPDRS-III axial symptoms also correlated with lower \([^{11}\text{C}]\text{PE2I BP}_{\text{ND}}\) in the putamen \((\rho=-0.55; \ P<0.001)\), ventral striatum \((\rho=-0.40; \ P<0.001)\), and thalamus \((\rho=-0.57; \ P<0.05, \text{Figure 13})\).
Figure 13. Correlations between DAT and motor symptoms in Parkinson’s disease (PD) patients. Spearman correlation between MDS-UPDRS-III motor scores (first line) and $[^{123}]$FP-CIT SBR in the caudate (rho=-0.59; P<0.001) and putamen (rho=-0.50; P<0.001) and $[^{11}]$CPE2I BP$_{ND}$ in the putamen rho=-0.54; P<0.001). No correlations between MDS-UPDRS-III motor scores and $[^{11}]$CPE2I BP$_{ND}$ in the caudate (rho=-0.328; P>0.10). Correlations between MDS-UPDRS-III rigidity subscores (second line) and $[^{11}]$CPE2I BP$_{ND}$ in the caudate (rho=-0.37; P<0.001) and putamen (rho=-0.61; P<0.001). No correlations between rigidity and $[^{123}]$FP-CIT SBR. Correlation between MDS-UPDRS-III bradykinesia subscores (third line) and $[^{123}]$FP-CIT SBR in the caudate (rho=-0.45; P<0.05) and putamen (rho=-0.42; P<0.05) and $[^{11}]$CPE2I BP$_{ND}$ in the putamen (rho=-0.47; P<0.001). No correlation between bradykinesia and $[^{11}]$CPE2I BP$_{ND}$ in the caudate (rho=-0.263; P>0.10). No correlation between MDS-UPDRS-III tremor subscores (forth line) and $[^{123}]$FP-CIT SBR in caudate (rho=0.089; P>0.10) and putamen (rho=0.022; P>0.10) and $[^{11}]$CPE2I BP$_{ND}$ in caudate (rho=0.019; P>0.10) and putamen (rho=0.141; P>0.10). PD early de novo in black circles and PD early levodopa-treated in grey circles.
On $^{[123]}$IFP-CIT SPECT scan, in the subgroup of early de novo patients with Parkinson’s disease, higher MDS-UPDRS-III total scores correlated with lower $^{[123]}$IFP-CIT SPECT SBR in the caudate (ρ=-0.76; $P<0.05$), putamen (ρ=-0.44; $P<0.05$), ventral striatum (ρ=-0.72; $P<0.05$), globus pallidus internal (ρ=-0.70; $P<0.05$), globus pallidus external (ρ=-0.72; $P<0.05$), substantia nigra (ρ=-0.60; $P<0.05$) and thalamus (ρ=-0.66; $P<0.05$). Higher MDS-UPDRS-III resting tremor correlated with lower $^{[123]}$IFP-CIT SPECT SBR in the caudate (ρ=-0.73; $P<0.05$), putamen (ρ=-0.54; $P<0.05$), ventral striatum (ρ=-0.67; $P<0.05$), globus pallidus internal (ρ=-0.68; $P<0.05$), globus pallidus external (ρ=-0.72; $P<0.05$), substantia nigra (ρ=-0.54; $P<0.05$) and thalamus (ρ=-0.64; $P<0.05$). No correlations were found with MDS-UPDRS-III rigidity, bradykinesia, axial scores and $^{[123]}$IFP-CIT SPECT SBR.

In the subgroup of early treated patients with Parkinson’s disease, no correlations were found with MDS-UPDRS-III total, rigidity, bradykinesia, resting tremor, axial scores and $^{[123]}$IFP-CIT SPECT SBR.

On $^{[11]}$CPE2I PET scan, in the subgroup of early de novo patients with Parkinson’s disease, no correlations were found with MDS-UPDRS-III total, rigidity, bradykinesia, resting tremor or axial scores and $^{[11]}$CPE2I BP$_{ND}$.

In the subgroup of early treated patients with Parkinson’s disease, higher MDS-UPDRS-III total scores correlated with lower $^{[11]}$CPE2I BP$_{ND}$ in the substantia nigra (ρ=-0.53; $P<0.05$). Higher MDS-UPDRS-III rigidity scores correlated with lower $^{[11]}$CPE2I BP$_{ND}$ in the caudate (ρ=-0.59; $P<0.05$), putamen (ρ=-0.59; $P<0.05$) and substantia nigra (ρ=-0.74; $P<0.05$). No correlations were found with MDS-UPDRS-III bradykinesia, resting tremor or axial scores and $^{[11]}$CPE2I BP$_{ND}$.

134
No correlations were found with global non-motor symptoms (higher MDS-UPDRS-I, MDS-UPDRS Part-I questionnaire or NMSS), constipation, sleep (PDSS, ESS, RBQS), fatigue (Parkinson Fatigue Scale), autonomic dysfunction (SCOPA-AUT), olfaction (UPSIT) and quality of life (PDQ-39) when the group of early de novo and early treated Parkinson’s patients were evaluated as a whole or as subgroups.

No correlations were found with global non-motor symptoms (MDS-UPDRS-I, MDS-UPDRS Part-I questionnaire or NMSS), constipation (Modified Constipation Assessment Scale), sleep (PDSS, ESS, RBQS), fatigue (Parkinson Fatigue Scale), autonomic dysfunction (SCOPA-AUT), olfaction (UPSIT), quality of life (PDQ-39) and $^{[11]}$CPE2I BPND when the group of early de novo and early treated Parkinson’s patients were evaluated as a whole or in the subgroup of early de novo patients with Parkinson’s disease.

In the subgroup of early treated patients with Parkinson’s disease, worse global non-motor symptoms (higher NMSS) correlated with lower $^{[11]}$CPE2I BPND in the thalamus (NMSS: ρ=-0.54; P<0.05). No correlations were found with constipation, fatigue, sleep (PDSS, ESS, RBQS), autonomic dysfunction (SCOPA-AUT), olfaction (UPSIT), quality of life (PDQ-39) and $^{[11]}$CPE2I BPND.

On $^{[123]}$IFP-CIT SPECT scan, when the group of early de novo and early treated Parkinson’s patients were evaluated as a whole, greater cognitive impairment (lower MoCA) correlated with lower $^{[123]}$IFP-CIT SPECT SBR in the caudate (MoCA: ρ=0.49; P<0.05), putamen (MoCA: ρ=0.41; P<0.05), ventral striatum (MoCA: ρ=0.43; P<0.05), globus pallidus external (MoCA: ρ=0.56; P<0.05) and thalamus (MoCA: ρ=0.43; P<0.05). No correlations were found with depressive symptoms (GDS, BDI-II) and $^{[123]}$IFP-CIT SPECT SBR.
In the subgroup of early *de novo* patients with Parkinson’s disease, greater cognitive impairment (lower MoCA) correlated with lower $[^{123}\text{I}]$FP-CIT SPECT SBR in the caudate (MoCA: $\rho=0.53; P<0.05$), ventral striatum (MMSE: $\rho=0.49; P<0.05$; MoCA: $\rho=0.62; P<0.05$), globus pallidus internal (MMSE: $\rho=0.59; P<0.05$; MoCA: $\rho=0.56; P<0.05$), globus pallidus external (MMSE: $\rho=0.56; P<0.05$; MoCA: $\rho=0.64; P<0.05$), thalamus (MMSE: $\rho=0.56; P<0.05$; MoCA: $\rho=0.59; P<0.05$) and substantia nigra (MoCA: $\rho=0.49; P<0.05$). No correlations were found with depressive symptoms (GDS, BDI-II) and $[^{123}\text{I}]$FP-CIT SPECT SBR.

In the subgroup of early treated patients with Parkinson’s disease, no correlations were found with cognitive impairment (MMSE, MoCA) or depressive symptoms (GDS, BDI-II) and $[^{123}\text{I}]$FP-CIT SPECT SBR.

On $[^{11}\text{C}]$PE2I PET scan, when the group of early *de novo* and early treated Parkinson’s patients were evaluated as a whole, greater cognitive impairment (lower MMSE) correlated with lower $[^{11}\text{C}]$PE2I BP_{ND} in the globus pallidus external (MMSE: $\rho=-0.41; P<0.05$) and worse depressive symptoms (higher GDS) correlated with lower $[^{11}\text{C}]$PE2I BP_{ND} in the thalamus (GDS: $\rho=-0.38; P<0.05$).

No correlations were found with cognitive impairment (MMSE, MoCA) or depression (GDS, BDI-II) and $[^{11}\text{C}]$PE2I BP_{ND} in the subgroup of patients early *de novo* or treated with Parkinson’s disease.
Comparison between PDE10A and DAT PET and SPECT

We evaluated whether PDE10A and DAT levels were correlated in the subcortical nuclei. We found that lower individual $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ values correlated with lower individual $[^{11}\text{C}]\text{PE2I BP}_{\text{ND}}$ values in the caudate ($\rho=0.51; P<0.01$) and putamen ($\rho=0.53; P<0.01$), but not in ventral striatum ($\rho=0.013; P>0.10$), globus pallidus internal ($\rho=0.21; P>0.10$), globus pallidus external ($\rho=0.46; P>0.05$), substantia nigra ($\rho=0.15; P>0.10$) or thalamus ($\rho=0.15; P>0.10$) in Parkinson’s disease patients. We found that lower individual $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ values were not correlated with lower individual $[^{123}\text{I}]\text{FP-CIT SBR}$ values in the caudate ($\rho=0.11; P>0.10$) or putamen ($\rho=0.19; P>0.10$) in Parkinson’s disease patients (Figure 14).

Figure 14. Correlations between PDE10A and DAT imaging in Parkinson’s disease (PD) patients. Spearman correlation between $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ and $[^{11}\text{C}]\text{PE2I BP}_{\text{ND}}$ (down) in the caudate ($\rho=0.51; P<0.01$) and putamen ($\rho=0.53; P<0.01$). No correlations between $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ and $[^{123}\text{I}]\text{FP-CIT SBR}$ (top) in the caudate ($\rho=0.11; P>0.10$) or putamen ($\rho=0.19; P>0.10$). PD early de novo in black circles and PD early levodopa-treated in grey circles.
Then, we compared the loss of $[{^{11}}C]IMA107\ \text{BP}_{ND}$ with loss of $[{^{11}}C]PE2I\ \text{BP}_{ND}$ in each region of interest in Parkinson’s disease patients relative to normality data from the group of healthy controls. We found that loss of $[{^{11}}C]IMA107\ \text{BP}_{ND}$ was greater than loss of $[{^{11}}C]PE2I\ \text{BP}_{ND}$ in the caudate ($P<0.01$) but lower in the putamen ($P<0.001$), globus pallidus internal ($P<0.01$), globus pallidus external ($P<0.001$) and substantia nigra ($P<0.01$), and no different in ventral striatum ($P>0.10$) and thalamus ($P>0.10$) in early de novo Parkinson’s disease patients. Similarly, we found that loss of $[{^{11}}C]IMA107\ \text{BP}_{ND}$ was greater than loss of $[{^{11}}C]PE2I\ \text{BP}_{ND}$ in the caudate ($P<0.01$) but lower in the putamen ($P<0.001$), globus pallidus internal ($P<0.05$), globus pallidus external ($P<0.01$) and substantia nigra ($P<0.05$), and no different in ventral striatum ($P>0.10$) and thalamus ($P>0.10$) in early levodopa-treated Parkinson’s disease patients.

We also evaluated the coefficient of variance (COV% = SD/mean *100) for $[{^{11}}C]IMA107$ and $[{^{11}}C]PE2I\ \text{BP}_{ND}$. In early de novo Parkinson’s disease patients: (a) $[{^{11}}C]IMA107\ \text{BP}_{ND}$ COV% was 9% in the whole striatum, 14% in the caudate, 8% in the putamen, 18% in the ventral striatum, 10% in the globus pallidus internal, 11% in the globus pallidus external, 11% in substantia nigra, and 16% in the thalamus; (b) $[{^{11}}C]PE2I\ \text{BP}_{ND}$ COV% was 19% in the whole striatum, 21% in the caudate, 26% in the putamen, 22% in the ventral striatum, 29% in the globus pallidus internal, 26% in the globus pallidus external, 16% in the substantia nigra, and 11% in the thalamus.

In early levodopa-treated Parkinson’s disease patients: (a) $[{^{11}}C]IMA107\ \text{BP}_{ND}$ COV% was 9% in the whole striatum, 10% in the caudate, 11% in the putamen, 18% in the ventral striatum, 15% in the globus pallidus internal, 13% in the globus pallidus external, 20% in substantia nigra, and 17% in the thalamus; (b) $[{^{11}}C]PE2I\ \text{BP}_{ND}$ COV% was 21% in the whole striatum, 25% in the caudate, 26% in the putamen, 24% in the ventral striatum, 30% in the globus pallidus internal, 27% in the globus pallidus external, 14% in the substantia nigra, and 12% in the thalamus.
Comparison between DAT PET and DAT SPECT

We evaluated whether DAT levels measured with PET and with SPECT were correlated in the subcortical nuclei. We found that lower individual $[^{123}\text{I}]$FP-CIT-SPECT SBR values correlated with lower individual $[^{11}\text{C}]$PE2I BP$_{ND}$ values in the caudate ($r = 0.44; P=0.011$) and putamen ($\rho = 0.36; P=0.044$), but not in ventral striatum, globus pallidus external, globus pallidus internal, thalamus or substantia nigra (all $P>0.10$) in Parkinson’s patients.

Then, we compared the loss of $[^{123}\text{I}]$FP-CIT-SPECT SBR with loss of $[^{11}\text{C}]$PE2I-PET BP$_{ND}$ in each region-of-interest in Parkinson’s patients relative to normality data from the group of healthy controls. We found that loss of $[^{11}\text{C}]$PE2I-PET BP$_{ND}$ was greater than loss of $[^{123}\text{I}]$FP-CIT-SPECT SBR in the putamen ($-11\%, P<0.01$), globus pallidus external ($-14\%, P<0.01$), globus pallidus internal ($-16\%, P<0.001$) and no different in caudate ($+1\%, P>0.10$), ventral striatum ($+8\%, P>0.10$) and thalamus ($-1\%, P>0.10$), and substantia nigra ($-2\%, P>0.10$) in early de novo Parkinson’s patients. Similarly, we found in early levodopa-treated Parkinson’s patients that loss of $[^{11}\text{C}]$PE2I-PET BP$_{ND}$ was greater than loss of $[^{123}\text{I}]$FP-CIT-SPECT SBR in the putamen ($-16\%, P<0.01$), globus pallidus external ($-14\%, P<0.01$), globus pallidus internal ($-17\%, P<0.001$), thalamus ($-11\%, P<0.001$), but lower in the caudate ($+10\%, P<0.001$) and ventral striatum ($+17\%, P<0.001$).

5.1.1 Discussion

Our hypothesis was that a PDE10A expression was correlated with dopaminergic pathology, which can be measured either with PET or SPECT.
We aimed to test this hypothesis checking for correlations between the expression of PDE10A and the expression of dopamine transporters (measured by using $[^{11}\text{C}]$PE2I PET and $[^{123}\text{I}]$FP-CIT SPECT molecular imaging) (*Project 2 Aim*).

We found that striatal $[^{11}\text{C}]$IMA107 BP$_{ND}$ values were correlated with striatal using $[^{11}\text{C}]$PE2I PET and $[^{123}\text{I}]$FP-CIT SPECT values.

Our findings demonstrate our hypothesis that loss of PDE10A correlated with loss of DAT in the striatum in early *de novo* and early levodopa-treated patients with Parkinson’s disease, suggesting an association between PDE10A and dopaminergic function. PDE10A plays a key role in the regulation of dopaminergic signalling and is essential for dopamine neurotransmission through the interaction with cAMP and the activation of PKA/DARPP-32 downstream cascade in striatal pathways (Greengard *et al.*, 1999; Nishi *et al.*, 2008; Girault, 2012).

We attempted to understand how informative PET molecular imaging of PDE10A and DAT could be for monitoring the disease progression. Our levodopa-treated patients with Parkinson’s disease had three years longer disease duration compared to early *de novo* Parkinson’s disease patients. PDE10A expression showed further decline in both the caudate and putamen, whereas DAT expression was further reduced only in the putamen in early levodopa-treated compared to early *de novo* Parkinson’s disease patients. Specifically, the loss of PDE10A in the caudate reflected a 5.7% and in the putamen a 3.2% mean annual decline, whereas loss of DAT in the putamen reflected a 11.6% mean annual decline. PDE10A showed also a lower variability over the time, with a SD of 8.4% in the caudate and 9.6% in the putamen, whereas DAT showed a 17% SD in the putamen. In our study we have shown that standardized differences (Cohen’s d) between early *de novo* and levodopa-treated with three-year longer disease duration are 1.48 for caudate measured with $[^{11}\text{C}]$IMA107, and 1.57 for putamen measured with $[^{11}\text{C}]$PE2I. Assuming in detecting a 50% reduction in these differences in a potential 18-month clinical trial testing a disease modifying drug that reduces disease progression by 50%, we
will have a 0.7412 Cohen's d for caudate PDE10A and a 0.7851 for putamen DAT. These figures are greater than $[^{18}\text{F}]$FDOPA, a validated biomarker of Parkinson’s progression, that showed Cohen’s d of 0.7993 at three-year follow-up in early de novo patients with Parkinson’s (Bruck et al., 2009), thus having a 0.3996 Cohen's d in this hypothetical trial. Providing a 80% power with a two-sided test using 5% type I error rate, we may need 60 participants if we use as endpoint the changes in the caudate $[^{11}\text{C}]$IMA107 levels, 54 subjects if we use as endpoint the changes in the putamen $[^{11}\text{C}]$PE2I levels and 200 subjects if we use as endpoint the changes in the putamen $[^{11}\text{F}]$FDOPA levels.

We performed head-to-head comparisons between loss of PDE10A and DAT in Parkinson’s disease patients relative to normality data from the group of healthy controls. We found that loss of PDE10A was greater than loss of DAT in the caudate, but lower in the putamen, globus pallidus and substantia nigra in both early de novo and early levodopa-treated patients with Parkinson’s disease. In early de novo and levodopa-treated patients with Parkinson’s disease, PDE10A tracer showed a 10% lower COV variability in the striatum, caudate and putamen compared to DAT. This suggests that PDE10A might be a more stable biomarker. Loss of PDE10A in both the caudate and putamen, and loss of DAT only in the putamen correlated with longer Parkinson’s duration, total burden of motor symptoms, and with increased rigidity and bradykinesia. The level of correlations between PDE10A and DAT and clinical scales were similar.

Considering the underlying pathophysiology of Parkinson’s disease includes progressive deposition of α-synuclein, the ideal neuroimaging biomarker to monitor disease progression should be able to quantify regional deposition of abnormal α-synuclein accumulation. Development of such a molecular imaging radiotracer has been the focus of much research but is not yet forthcoming and assessment of DAT represents the most direct approach able to quantify presynaptic nigrostriatal dopaminergic neurons. Loss of striatal DAT signal is currently considered the gold standard in the differential diagnosis between degenerative vs. non-degenerative parkinsonism. However, this approach has some shortcomings. For example, DAT levels have a floor effect that limit its use to the
initial stages of the disease and may be modulated by dopaminergic supplementation, with levodopa inducing a decline proportional to the dose used (Fahn et al., 2004). Clinical trials that used DAT as a marker of Parkinson’s disease pathology showed controversial results, with imaging studies appearing to contradict the clinical findings (Whone et al., 2003; Fahn et al., 2004; Parkinson Study Group, 2009). In CALM-PD (Parkinson Study Group, 2009) and REAL-PET (Whone et al., 2003), subjects randomized to dopamine agonists showed worse clinical symptoms but lower DAT decline than subjects randomized to levodopa. In ELLEDOPA trial (Fahn et al., 2004), subjects randomized to levodopa showed better clinical symptoms but greater DAT decline than subjects on placebo. However, it is not clear whether dopaminergic treatment hasten disease progression or it was a simple down-regulation of DAT due to the use of levodopa.

5.1.2 Conclusion

PDE10A imaging could be a robust alternative to DAT imaging regarding diagnosis and for evaluating disease burden and progression. Collectively in our studies, we found a gradual progressive decline of PDE10A in Parkinson’s from very early to advanced stages, which was independent of levodopa treatment (Niccolini et al., 2015a) and had no floor effect. This makes PDE10A imaging potentially attractive to explore its clinical use further. It is important to note that both $[^{11}\text{C}]$IMA107 and $[^{11}\text{C}]$PE2I are kinetically well-behaved tracers with good-to-very good reproducibility, and the differences in their binding in the striatum are probably related to the pathological processes underlying Parkinson’s disease, more than characteristics of the tracers. Despite all these potential advantages of PDE10A imaging, only PET ligands are currently available for PDE10A whereas DAT levels can be measured with SPECT imaging. This limitation reduces the cost-effective use of this novel molecular imaging technique until a SPECT PDE10A tracer becomes available. Neither DAT or PDE10A are good biomarkers for other Parkinson’s symptoms, like tremor.
or depression, where other mechanisms, such as serotonergic transporter deficit, seems to have a prominent role (Politis et al., 2010b; Politis et al., 2011; Loane et al., 2013; Pagano et al., 2017).

However, no conclusion can be drawn regarding the relationship between PDE10A expression and other markers of Parkinson’s disease pathology, such as iron depositions, neuromelanin loss, and changes in structural and microstructural changes in the substantia nigra and in the striatum. We have investigated this in the Project 3, in which we compared the expression of PDE10A, measured with $[^{11}C]IMA107$ PET imaging, with MRI markers of Parkinson’s pathology such as iron depositions (assessed with susceptibility-weighted MR imaging), neuromelanin loss (assessed with neuromelanin sensitive MR imaging) and changes in structural volumetric (assessed with T1 MR imaging) and microstructural connectivity (assessed with diffusion tensor MR imaging).
Chapter 5. MRI markers in Parkinson’s Disease

This chapter summarizes the main results on the in vivo evaluation of the relationship between PDE10A expression and MRI markers of Parkinson’s pathology such as iron depositions (assessed with susceptibility-weighted MR imaging), neuromelanin loss (assessed with neuromelanin sensitive MR imaging) and changes in structural volumetric (assessed with T1 MR imaging) and connectivity (assessed with diffusion tensor MR imaging) in early de novo Parkinson’s disease patients compared to age- and sex-matched healthy control subjects, as potential novel tool for Parkinson’s disease diagnosis. MRI markers in early de novo Parkinson’s disease patients were then compared to early levodopa-treated Parkinson’s disease patients, evaluating whether they are associated with disease duration and severity. Finally, the associations between the motor (tremor, rigidity, bradykinesia and postural instability) and non-motor symptoms (sleep problems, cognitive impairment, autonomic dysfunction, mood disorders etc) and the MRI markers have been explored and described in detail.
5.1.3 Introduction

PDE10A is a striatal enzyme expressed in the axons of the medium spiny neurons, where it hydrolyses cAMP and cGMP (Fujishige et al., 1999; Coskran et al., 2006). In the striatal pathways, PDE10A plays a pivotal role in the regulation of dopaminergic signalling (Nishi et al., 2008) and of several other brain functions, ranging from ion conductance to synaptic plasticity (Girault, 2012). Recent work with PET molecular imaging has demonstrated loss of PDE10A expression in moderate to advanced levodopa-treated patients with Parkinson’s disease, which was associated with motor symptoms and complications (Niccolini et al., 2015a). Therefore, PDE10A, as an enzyme regulating striatal output and dopaminergic signalling, shows promise to serve as a marker of disease burden in patients with early Parkinson’s disease. However, it is unknown whether PDE10A is implicated at the earlier stages of the disease and how PDE10A biomarker value compares with the other markers of Parkinson’s disease pathology.

Molecular imaging of DAT expression is currently considered the gold standard tool for the diagnosis of Parkinson’s disease. DAT expression can be measured with PET or SPECT imaging to quantify dopaminergic terminals and recognise the presence of striatal dysfunction in neurodegenerative parkinsonism (Pirker, 2003; Politis, 2014). Subclinical pathological processes in dopaminergic terminals may be detected also in subjects at higher risk of developing Parkinson’s disease, such as susceptibility gene mutation carriers, or patients with idiopathic REM sleep behaviour disorder (Politis, 2014). DAT expression, however, is mainly indicative of dopamine nerve terminals loss, which could also be induced by compensatory mechanisms, and only subsequent to the death of dopaminergic neurons within substantia nigra (Stoessl et al., 2014). Molecular imaging of DAT has shown also other limitations, including mild to moderate affinity for serotonin transporter (Laruelle et al., 1994; de Win et al., 2005) and lack of specificity and sensitivity in differential diagnosis of
neurodegenerative parkinsonisms (Schapira, 2013). In addition, the use of levodopa (Fahn et al., 2004) or antidepressants (de Win et al., 2005; Booij et al., 2007), may hinder the accuracy of its measurements and limiting its use as a biomarker for clinical trials monitoring the efficacy of disease-modification drugs (Schapira, 2013).

Deficit of dopaminergic terminals in the striatum has been associated with loss of NM containing neurons in the substantia nigra (Ehringer and Hornykiewicz, 1998) and with increased iron deposition (Dexter et al., 1987). A neurodegeneration of at least 60% of SN neurons is expected before the onset of motor symptoms, and a tool able to measure directly the substantia nigra cells is ideal to quantify dopaminergic pathology in Parkinson’s disease (Fearnley and Lees, 1991).

Several novel MRI techniques have been developed in the last decade to measure NM (Sasaki et al., 2006; Kitao et al., 2013; Ogisu et al., 2013; Nakamura and Sugaya, 2014; Ohtsuka et al., 2014; Hashido and Saito, 2016; Matsuura et al., 2016; Kuya et al., 2017; Xiang et al., 2017) and iron depositions, (Martin et al., 2008; Baudrexel et al., 2010; Lotfipour et al., 2012; Ulla et al., 2013) and have provided evidence of substantia nigra degeneration with potential applications as biomarkers of Parkinson’s disease (Schwarz et al., 2011; Castellanos et al., 2015). However, the accuracy of this novel techniques has not been compared with a validated quantification of DAT expression, such [11C]PE2I PET imaging or in relationship with the novel PDE10A [11C]IMA107 PET imaging.

Here, we aimed to compare Parkinson’s disease pathology in the substantia nigra by using PET with [11C]IMA107, [11C]PE2I and MRI with NM-sensitive, SWI and DTI, to quantify NM-SN loss, iron depositions and connectivity changes in relation to DAT and PDE10A expression. We also explored for associations with clinical markers of disease burden in Parkinson’s disease.
5.1.4 Hypothesis

We hypothesize that PDE10A expression was correlated with other markers of Parkinson’s disease pathology, such as iron depositions, neuromelanin loss, and changes in structural and microstructural changes in the substantia nigra and in the striatum. We have investigated this in the Project 3, in which we compared the expression of PDE10A, measured with [11C]IMA107 PET imaging, with MRI markers of Parkinson’s pathology such as iron depositions (assessed with susceptibility-weighted MR imaging), neuromelanin loss (assessed with neuromelanin sensitive MR imaging) and changes in structural volumetric (assessed with T1 MR imaging) and microstructural connectivity (assessed with diffusion tensor MR imaging).

We aim to test this hypothesis checking for correlations between the expression of PDE10A and MRI markers of Parkinson’s pathology such as iron depositions (assessed with susceptibility-weighted MR imaging), neuromelanin loss (assessed with neuromelanin sensitive MR imaging) and changes in structural volumetric (assessed with T1 MR imaging) and microstructural connectivity (assessed with diffusion tensor MR imaging) (Project 3 Aim).

5.1.5 Methods

We enrolled 60 participants recruited from specialist Movement Disorders clinics at King’s College Hospital, and through public advertisement, of which 54 subjects completed the study and were included in the analyses (Table 1). We included 32 patients with idiopathic Parkinson’s disease according to the Queen Square Brain Bank criteria, and 22 age- and gender-matched healthy individuals with no history of neurological or psychiatric disorders, who served as the control group (healthy controls). Parkinson’s disease patients included 17 subjects with a recent diagnosis (duration of symptoms ≤24 months) who were naïve to treatment for Parkinson’s symptoms (de novo), and 15 subjects with early Parkinson’s disease (duration of symptoms ≤60 months) who were recently treated
with levodopa (duration of treatment ≤ 24 months) and had no motor complications (*early levodopa-treated*). None of the Parkinson’s disease patients fulfilled the diagnostic criteria for Parkinson’s disease MCI (Litvan *et al.*, 2011) or dementia (Emre *et al.*, 2007) or depression (Marsh *et al.*, 2006), had any history of other neurological or psychiatric disorders, and were not under treatment with substances with known actions in PDEs (e.g. apremilast, cilomilast, luteolin, piclamilast, roflumilast and ibudilast).

Motor symptom severity was assessed with the MDS-UPDRS-III and staged with H&Y scale. MDS-UPDRS-III subscores for rigidity, bradykinesia, tremor and axial symptoms were calculated as previously described (Niccolini *et al.*, 2015a). Quality of life was measured with the PDQ-39. Neuropsychiatric symptoms were assessed with the Beck Depression Inventory second edition BDI-II. MMSE and MoCA were used to assess general cognitive status. Disability was assessed by Modified Schwab and England Activities of Daily Living Scale. NMSS for Parkinson’s disease was used to assess non-motor symptoms (Pagano *et al.*, 2016a).

The study was approved by the institutional review boards and the research ethics committee. Written informed consent was obtained from all study participants in accordance with the Declaration of Helsinki.

Scanning procedures

All participants were screened successfully to undertake PET with $[^{11}\text{C}]$IMA107 and with $[^{11}\text{C}]$PE2I, and one 3-Tesla MRI scanning under standard criteria(http://www.mrisafety.com; https://www.gov.uk/government/publications/arsac-notes-for-guidance). PET and MR imaging have been performed at Imanova Ltd, London, UK. All participants were scanned on Siemens Biograph Hi-Rez 6 PET-CT scanner (Erlangen, Germany). $[^{11}\text{C}]$IMA107 and $[^{11}\text{C}]$PE2I have been performed
on the same day after withholding consumption of caffeinated beverages for 12 hours (Fredholm et al., 1999a).

Dynamic emission data were acquired continuously for 90 minutes following the injection of $[^{11}C]$IMA107 or $[^{11}C]$PE2I. The dynamic images were reconstructed into 26 frames (8 x 15 s, 3 x 60 s, 5 x 120 s, 5 x 300 s, and 5 x 600 s), using a filtered back projection algorithm (direct inversion Fourier transform) with a 128 matrix, zoom of 2.6 producing images with isotropic voxel size of 2 x 2 x 2 mm3, and smoothed with a transaxial Gaussian filter of 5 mm. MRI scans were acquired with a 32-channel head coil on a 3-Tesla MRI Siemens Magnetom TrioTim syngo MR B17 (Erlangen, Germany) scanner, and included a T1-weighted magnetization prepared rapid gradient echo sequence [MPRAGE; time repetition (TR) = 2300 ms, time echo (TE) = 2.98 ms, flip angle of 9°, time to inversion (TI) = 900 ms, matrix = 240 x 256] for co-registration with the PET images; fast grey matter T1 inversion recovery (FGATIR; repetition time = 3000 ms, echo time = 2.96 ms, flip angle of 8, time to inversion = 409 ms, matrix = 240 x 256) (Sudhyadhom et al., 2009) sequences for delineation of regions-of-interest. All MRI sequences used a 1 mm3 voxel size, anteroposterior phase encoding direction, and a symmetric echo.

Imaging data analysis

$[^{11}C]$IMA107 and $[^{11}C]$PE2I data analysis

The Molecular Imaging and Kinetic Analysis Toolbox software package (MIAKAT™: www.miakat.org), implemented in MATLAB® (The Mathworks, Natick, MA, USA) was used to carry out image processing and kinetic modelling. MIAKAT™ combines in-house code with wrappers for FMRIB Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and Statistical
Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.uk/spm/) commands in order to provide state-of-the-art functionality within a coherent analysis framework. The MIAKAT™ processing pipeline was followed, ensuring that all quality control steps were completed to generate parametric images and regional estimates of $[^{11}\text{C}]\text{IMA107}$ and $[^{11}\text{C}]\text{PE2I BP}_{\text{ND}}$. BP_{ND} were generated using a basis function implementation of the simplified reference tissue model, with the cerebellum as the reference tissue for non-specific binding. Individual PET frames were corrected for head motion using frame-by-frame rigid registration using a frame with high signal-to-noise ratio as reference. PET images were co-registered to the corresponding MPRAGE MRI.

MRI-based analysis

FreeSurfer image analysis suite (version 5.3.0 http://surfer.nmr.mgh.harvard.edu) was used to derive measures of deep grey matter nuclei volume. Reconstructed data sets were visually inspected to ensure the accuracy of registration, skull stripping, segmentation, and cortical surface reconstruction. Subcortical structure volumes were derived by automated procedures, which automatically assign a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set (Fischl et al., 2002). All individual nuclei volumes were normalized for total intracranial volume automatically generated by FreeSurfer (Buckner et al., 2004).

For iron quantification, manual delineation of the region-of-interests was performed on SWI high-pass filtered combined images using Analyze 12.0 (AnalyzeDirect, Overland Park, KS, United States). Each region-of-interest was hand drawn on both hemispheres on a single axial slice and included the following: caudate, putamen and substantia nigra. The substantia nigra was delineated on the 3rd axial slice ventral to the most dorsal aspect of the red nucleus. For quantification of NM, SN was manually delineated on neuromelanin-sensitive T1-weighted image using Analyze 12.0.
Each region-of-interest was hand drawn on both hemispheres on 3-4 axial slices. Mean regional values, number of voxels, standard deviations and regional areas was then extracted for each region-of-interest on both hemispheres individually before averaging to obtain bilateral data for SWI.

For quantification of NM, substantia nigra and locus coeruleus were manually delineated on the neuromelanin-sensitive and T1-weighted image using Analyze 12.0 (Analyze Direct, Overland Park, KS, United States). On NM-space, each substantia nigra and locus coeruleus ROIs were manually drawn on both hemispheres on 3-4 (substantia nigra) and 1-2 (locus coeruleus) axial slices together with the reference regions of the superior peduncle (for substantia nigra) and rostral pontomesencephalic area (for locus coeruleus). To calculate the signal intensity in the substantia nigra and in the locus coeruleus area, the superior peduncle and the rostral pontomesencephalic area were used as a reference region, respectively for the substantia nigra and for the locus coeruleus, to normalize the intensity of the slices to remove the inter-slice and inter-subject variability (Figure 5).

Diffusion data were analysed using the FMRIB’s FSL Diffusion Tool box (FDT) including pre-processing steps, to correct for susceptibility-induced and current-induced distortions and head movements. For local diffusion modelling, fractional anisotropy (FA) and mean diffusivity (MD) maps were generated using DTIFit within FDT.

Region of interest-based analysis

To facilitate anatomical delineation of regions of interest, PET and MRI images were anatomically co-registered and re-sliced to the corresponding volumetric structural T1-weighted MRI images in Statistical Parametric Mapping version12 (SPM12) software package implemented in Matlab 2015a. Regions of interest were delineated manually on the T1 co-registered FGATIR MRI sequence using ANALYZE version 12.0 (Mayo Foundation) medical imaging software package by two assessors.
who were blinded to groups allocation, using used a reliable, robust and repeatable technique for manual delineation of basal ganglia structures (Tziortzi et al., 2011a). Regions of interest included caudate, putamen, ventral striatum, globus pallidus (external and internal segments), substantia nigra and motor thalamic nuclei.

Statistical analysis

Statistical analysis and graph illustration were performed with SPSS (version 22) and GraphPad Prism (version 6.0c) for Windows 10, respectively. For all variables, Gaussianity was tested with Shapiro-Wilk test and we proceeded with parametric tests as our imaging and clinical data were normally distributed. Multivariate analysis of variance (MANOVA) was used to assess the main effects of regional BPND among the groups. If the overall multivariate test was significant, *P*-values for each variable were calculated following Bonferroni’s multiple comparisons test. We interrogated correlations between imaging and clinical data using Spearman rho and we applied Benjamini-Hochberg correction to reduce false discovery rate (Benjamini and Cohen, 2017). We set the false discovery rate cut-off at 0.05. All data are presented as mean ± standard deviation, and the level α was set for all comparisons at *P*<0.05, corrected.

5.1.6 Results

The results of MRI markers in healthy controls, early *de novo* and treated Parkinson’s disease patients are shown in Table 4.
Table 4. Freesurfer volumes, microstructural DTI, SWI iron depositions and NM changes in subcortical areas and substantia nigra in early de novo and early treated patients with idiopathic Parkinson’s disease compared to healthy controls

<table>
<thead>
<tr>
<th></th>
<th>Healthy Controls (n=22)</th>
<th>Early de novo Parkinson’s disease (n=17)</th>
<th>Early treated Parkinson’s disease (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freesurfer Volumes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caudate</td>
<td>2.42 ± 0.22</td>
<td>2.39 ± 0.23</td>
<td>2.32 ± 0.31</td>
</tr>
<tr>
<td>Putamen</td>
<td>3.5 ± 0.32</td>
<td>3.34 ± 0.28</td>
<td>3.2 ± 0.31</td>
</tr>
<tr>
<td>Ventral Striatum</td>
<td>0.34 ± 0.07</td>
<td>0.32 ± 0.05</td>
<td>0.28 ± 0.07</td>
</tr>
<tr>
<td>Globus Pallidus</td>
<td>0.94 ± 0.13</td>
<td>0.97 ± 0.13</td>
<td>0.99 ± 0.12</td>
</tr>
<tr>
<td>Thalamus</td>
<td>4.86 ± 0.65</td>
<td>4.68 ± 0.44</td>
<td>4.22 ± 0.39</td>
</tr>
<tr>
<td>Microstructural DTI changes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caudate MD</td>
<td>0.00094 ± 0.00011</td>
<td>0.00104 ± 0.00013</td>
<td>0.00232 ± 0.00042*</td>
</tr>
<tr>
<td>Putamen MD</td>
<td>0.00071 ± 0.00007</td>
<td>0.00073 ± 0.00002</td>
<td>0.00228 ± 0.00046*</td>
</tr>
<tr>
<td>Substantia Nigra MD</td>
<td>0.0007 ± 0.00008</td>
<td>0.00075 ± 0.00008</td>
<td>0.00233 ± 0.00051*</td>
</tr>
<tr>
<td>Caudate FA</td>
<td>0.19 ± 0.02</td>
<td>0.205 ± 0.02</td>
<td>0.151 ± 0.03*</td>
</tr>
<tr>
<td>Putamen FA</td>
<td>0.209 ± 0.02</td>
<td>0.215 ± 0.02</td>
<td>0.155 ± 0.03*</td>
</tr>
<tr>
<td>Substantia Nigra FA</td>
<td>0.433 ± 0.04</td>
<td>0.43 ± 0.08</td>
<td>0.154 ± 0.04*</td>
</tr>
<tr>
<td>SWI iron depositions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caudate</td>
<td>148.68 ± 18.46</td>
<td>189.83 ± 23.18*</td>
<td>207.7 ± 47.44*</td>
</tr>
<tr>
<td>Putamen</td>
<td>149.96 ± 19.78</td>
<td>191.74 ± 19.96*</td>
<td>213.36 ± 55.42*</td>
</tr>
<tr>
<td>Substantia Nigra</td>
<td>154.89 ± 25.88</td>
<td>186.12 ± 17.31*</td>
<td>211.72 ± 45.37*</td>
</tr>
<tr>
<td>NM changes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substantia Nigra volume</td>
<td>358.02 ± 95.26</td>
<td>128.85 ± 33.84*</td>
<td>106.12 ± 24.83*</td>
</tr>
<tr>
<td>Locus coeruleus volume</td>
<td>20 ± 10.56</td>
<td>9.44 ± 3.32*</td>
<td>6.63 ± 1.55*</td>
</tr>
<tr>
<td>Substantia Nigra - Ratio 1</td>
<td>1.11 ± 0.05</td>
<td>1.15 ± 0.03</td>
<td>1 ± 0.23*</td>
</tr>
<tr>
<td>Substantia Nigra - Ratio 2</td>
<td>0.91 ± 0.41</td>
<td>1.22 ± 0.25*</td>
<td>1.62 ± 0.38*</td>
</tr>
<tr>
<td>Substantia Nigra - Ratio 3</td>
<td>0.11 ± 0.05</td>
<td>0.15 ± 0.03*</td>
<td>0.14 ± 0.03</td>
</tr>
<tr>
<td>Locus coeruleus - Ratio 1</td>
<td>1.15 ± 0.04</td>
<td>1.16 ± 0.03</td>
<td>1.01 ± 0.24*</td>
</tr>
<tr>
<td>Locus coeruleus - Ratio 2</td>
<td>1.36 ± 0.41</td>
<td>1.46 ± 0.36</td>
<td>1.85 ± 0.43*</td>
</tr>
<tr>
<td>Locus coeruleus - Ratio 3</td>
<td>0.15 ± 0.04</td>
<td>0.16 ± 0.03</td>
<td>0.15 ± 0.04</td>
</tr>
</tbody>
</table>

Continuous variables are expressed as mean ± standard deviation. Freesurfer volumes are corrected for total intracranial volume. Abbreviations: DTI= Diffusion tensor imaging; MD= Mean diffusivity; FA= fractional anisotropy; SWI= Susceptibility-weighted imaging; NM= Neuromelanin. P value vs. healthy controls Bonferroni post-hoc corrected. *P <0.05 vs. healthy controls, & P <0.05 vs. early de novo Parkinson’s disease patients.

There were no differences in structural or microstructural volumetric MRI between early de novo patients and healthy controls (Table 4).
In term of iron depositions SWI MRI, early de novo Parkinson’s disease patients had increased iron in caudate ($P<0.05$), putamen ($P<0.05$), and substantia nigra ($P<0.05$) compared to healthy controls (Figure 15).

In term of neuromelanin density NM MRI, early de novo Parkinson’s disease patients had lower volume in the substantia nigra and locus coeruleus compared to healthy controls (Figure 16).

Figure 15. SWI MRI markers in the groups of Parkinson’s disease (PD) patients and healthy controls. Dot plot graphs showing mean SWI values ± standard deviation in subcortical brain regions in PD early de novo patients, PD early levodopa-treated patients and healthy controls. *$P<0.05$, **$P<0.01$, ***$P<0.001$ ANOVA with Bonferroni post-hoc correction
In term of structural MRI, early treated Parkinson’s disease patients had no changes in Freesurfer volumes compared to healthy controls or early de novo patients.

In term of iron depositions SWI MRI, early treated Parkinson’s disease patients had increased iron in caudate, putamen, and substantia nigra compared to healthy controls, but similar values to early de novo patients (Figure 15).

In term of neuromelanin density NM MRI, early treated Parkinson’s disease patients had lower volume in the substantia nigra and locus coeruleus, compared to healthy controls, but similar values to early de novo patients (Figure 16).
In term of structural Microstructural DTI MRI, early treated Parkinson’s disease patients had increased MD and reduced FA in caudate, putamen, and substantia nigra compared to early de novo patients and healthy controls (Figure 17).

Figure 17. DTI MRI markers in the groups of Parkinson’s disease (PD) patients and healthy controls. Dot plot graphs showing mean DTI MD (top) and DTI FA (down) ± standard deviation in subcortical brain regions in PD early de novo patients, PD early levodopa-treated patients and healthy controls. *P <0.05, **P <0.01, ***P <0.001 ANOVA with Bonferroni post-hoc correction
Figure 18. Altered SWI and NM markers in the substantia nigra of Parkinson’s disease patients. Axial images derived from (top) a healthy control, (middle) a Parkinson’s disease early de novo and (bottom) a Parkinson’s disease early levodopa-treated patient in stereotaxic space showing increased SWI iron deposition (left) and NM volume loss (right) in the substantia nigra.

Older age was associated with smaller FreeSurfer volumes in the thalamus ($\rho=-0.61; P<0.05$). Longer Parkinson’s disease duration and was associated with smaller FreeSurfer volumes in the thalamus ($\rho=-0.45; P<0.05$), with increased DTI MD in the caudate ($\rho=0.67; P<0.05$), putamen ($\rho=0.76; P<0.05$) and substantia nigra ($\rho=0.77; P<0.05$), reduced DTI FA in the caudate ($\rho=-0.72; P<0.05$), putamen ($\rho=-0.74; P<0.05$) and substantia nigra ($\rho=-0.78; P<0.05$), and smaller
NM locus coeruleus volume (ρ=-0.39; $P<0.05$). No correlations were found between Parkinson’s disease duration and iron depositions SWI MRI (Figure 18).

In term of lateralization, in the group of early de novo patients with Parkinson’s disease with unilateral motor symptoms, we assessed whether the clinically affected side of the body was associated with greater decreases in contralateral brain regions of interest DTI values. We found that DTI FA values in caudate ($P<0.05$) were decreased in the contralateral to most affected compared to the less affected side of the body. No differences were found for DTI MD, SWI or NM values.

When the group of early de novo and early treated Parkinson’s patients were evaluated as a whole, higher MDS-UPDRS-III total scores, rigidity, bradykinesia and axial symptoms correlated with increased DTI MD in the caudate (total: ρ=0.75; $P<0.05$; rigidity: ρ=0.57; $P<0.05$; bradykinesia: ρ=0.71; $P<0.05$; axial: ρ=0.72; $P<0.05$), putamen (total: ρ=0.71; $P<0.05$; rigidity: ρ=0.69; $P<0.05$; bradykinesia: ρ=0.67; $P<0.05$; axial: ρ=0.61; $P<0.05$) and substantia nigra (total: ρ=0.59; $P<0.05$; rigidity: ρ=0.57; $P<0.05$; bradykinesia: ρ=0.47; $P<0.05$; axial: ρ=0.61; $P<0.05$), reduced DTI FA in the caudate (total: ρ=-0.39; $P<0.05$; rigidity: ρ=-0.53; $P<0.05$; bradykinesia: ρ=-0.37; $P<0.05$; axial: ρ=-0.46; $P<0.05$), putamen (total: ρ=-0.48; $P<0.05$; rigidity: ρ=-0.47; $P<0.05$; bradykinesia: ρ=-0.42; $P<0.05$; axial: ρ=-0.55; $P<0.05$) and substantia nigra (total: ρ=-0.61; $P<0.05$; rigidity: ρ=-0.52; $P<0.05$; bradykinesia: ρ=-0.58; $P<0.05$; axial: ρ=-0.60; $P<0.05$). No correlations were found with MDS-UPDRS-III resting tremor and DTI MD or FA.

In the subgroup of early de novo patients with Parkinson’s disease, higher MDS-UPDRS-III total and bradykinesia scores correlated with increased DTI MD in the caudate (total: ρ=0.59; $P<0.05$) and putamen (total: ρ=0.72; $P<0.05$; $P<0.05$), reduced DTI FA in the caudate (total: ρ=-0.51; $P<0.05$; bradykinesia: ρ=-0.64; $P<0.05$), and putamen (total: ρ=-0.60; $P<0.05$; bradykinesia: ρ=-0.64;
No correlations were found with MDS-UPDRS-III rigidity, resting tremor or axial scores and DTI MD or FA.

In the subgroup of early treated patients with Parkinson’s disease, no correlations were found with MDS-UPDRS-III total, rigidity, bradykinesia, resting tremor, axial scores and DTI MD or FA.

When the group of early de novo and early treated Parkinson’s patients were evaluated as a whole, higher MDS-UPDRS-III total, rigidity, bradykinesia and axial symptoms scores correlated with smaller NM substantia nigra volume (total: \(\rho = -0.47; P < 0.05 \); rigidity: \(\rho = -0.41; P < 0.05 \); bradykinesia: \(\rho = -0.49; P < 0.05 \), Figure 19), locus coeruleus volume (total: \(\rho = -0.50; P < 0.05 \); rigidity: \(\rho = -0.48; P < 0.05 \); bradykinesia: \(\rho = -0.54; P < 0.05 \); axial: \(\rho = -0.472; P < 0.05 \)). No correlations were found with MDS-UPDRS-III resting tremor and NM values.

In the subgroup of early de novo patients with Parkinson’s disease, no correlations were found with MDS-UPDRS-III total, rigidity, bradykinesia, resting tremor, axial scores and NM values.

In the subgroup of early treated patients with Parkinson’s disease, higher MDS-UPDRS-III total, rigidity and bradykinesia scores correlated with smaller NM substantia nigra volume (rigidity: \(\rho = -0.79; P < 0.05 \) and locus coeruleus volume (total: \(\rho = -0.59; P < 0.05 \); rigidity: \(\rho = -0.59; P < 0.05 \); bradykinesia: \(\rho = -0.54; P < 0.05 \)). No correlations were found with MDS-UPDRS-III resting tremor or axial scores and NM values.

When the group of early de novo and early treated Parkinson’s patients were evaluated as a whole, and in the two subgroups, no correlations were found with motor symptoms and Freesurfer volumes or SWI values.
Figure 19. Correlations between MRI and motor symptoms in Parkinson's disease (PD) patients. Spearman correlations between MDS-UPDRS-III total, rigidity and bradykinesia, and NM substantia nigra (left) volume (total: rho=-0.47; P<0.05; rigidity: rho=-0.41; P<0.05; bradykinesia: rho=-0.49; P<0.05). No correlations between MDS-UPDRS-III total, rigidity and bradykinesia, and SWI iron deposition in the substantia nigra (right) (total: rho=-0.053; P>0.10; rigidity: rho=-0.201; P>0.10; bradykinesia: rho=-0.031; P>0.10). PD early de novo in black circles and PD early levodopa-treated in grey circles.

On T1 MRI scan, when the group of early de novo and early treated Parkinson’s patients were evaluated as a whole, worse global non-motor symptoms impairment (higher MDS-UPDRS-I, MDS-UPDRS Part-I questionnaire or NMSS), correlated with lower Freesurfer volume in the thalamus
MDS-UPDRS-I: \(\rho = -0.39; \ P < 0.05 \); MDS-UPDRS Part-I questionnaire: \(\rho = -0.37; \ P < 0.05 \); NMSS: \(\rho = -0.42; \ P < 0.05 \), putamen (MDS-UPDRS Part-I questionnaire: \(\rho = -0.42; \ P < 0.05 \)), worse olfaction (lower UPSIT) correlated with Freesurfer volume in the caudate (\(\rho = 0.39; \ P < 0.05 \)).

No correlations were found with constipation (Modified Constipation Assessment Scale), sleep (PDSS, ESS, RBQS), fatigue (Parkinson Fatigue Scale), autonomic dysfunction (SCOPA-AUT), and Freesurfer values.

No correlations were found with global non-motor symptoms (MDS-UPDRS-I, MDS-UPDRS Part-I questionnaire or NMSS), constipation (Modified Constipation Assessment Scale), sleep (PDSS, ESS, RBQS), fatigue (Parkinson Fatigue Scale), autonomic dysfunction (SCOPA-AUT), olfaction (UPSIT), quality of life (PDQ-39) and DTI or SWI values when the group of early de novo and early treated Parkinson’s patients were evaluated as a whole or as subgroups.

When the group of early de novo and early treated Parkinson’s patients were evaluated as a whole, worse global non-motor symptoms impairment (higher MDS-UPDRS-I, MDS-UPDRS Part-I questionnaire or NMSS) and worse sleep (higher ESS and RBQS) correlated with smaller NM locus coeruleus volume (MDS-UPDRS-I: \(\rho = -0.42; \ P < 0.05 \); NMSS: \(\rho = -0.51; \ P < 0.05 \); ESS: \(\rho = -0.47; \ P < 0.05 \), \(\rho = -0.54; \ P < 0.05 \)) and worse autonomic dysfunction (higher SCOPA-AUT) correlated with smaller NM substantia nigra volume (\(\rho = -0.56; \ P < 0.05 \)) and smaller NM locus coeruleus volume (\(\rho = -0.44; \ P < 0.05 \)). No correlations were found with constipation (Modified Constipation Assessment Scale), global sleep (PDSS), fatigue (Parkinson Fatigue Scale) and NM values.

In the subgroup of early de novo patients with Parkinson’s disease, worse autonomic dysfunction (higher SCOPA-AUT) correlated with smaller NM substantia nigra volume (\(\rho = -0.51; \ P < 0.05 \)).
correlations were found with constipation (Modified Constipation Assessment Scale), sleep (PDSS, ESS, RBQS), fatigue (Parkinson Fatigue Scale), olfaction (UPSIT), quality of life (PDQ-39) and NM values.

No correlations were found with constipation (Modified Constipation Assessment Scale), sleep (PDSS, ESS, RBQS), fatigue (Parkinson Fatigue Scale), autonomic dysfunction (SCOPA-AUT), olfaction (UPSIT), quality of life (PDQ-39) and NM values in the subgroup of early treated patients with Parkinson’s disease.

On T1 MRI scan, when the group of early de novo and early treated Parkinson’s patients were evaluated as a whole, worse global cognitive function (lower MSSE and MoCA) correlated with lower Freesurfer volume in the caudate (MoCA: \(\rho = 0.39; P < 0.05 \)) and putamen (MoCA: \(\rho = 0.36; P < 0.05 \)) and worse depressive symptoms (higher GDS, BDI-II) correlated with lower Freesurfer volume in the thalamus (GDS: \(\rho = -0.45; P < 0.05 \); BDI-II: \(\rho = -0.39; P < 0.05 \)).

No correlations were found with cognitive impairment (MMSE, MoCA) or depressive symptoms (GDS, BDI-II) and Freesurfer values in the subgroups of early de novo or early treated patients with Parkinson’s disease.

No correlations were found with cognitive impairment (MMSE, MoCA) or depressive symptoms (GDS, BDI-II) and DTI or SWI or NM values when the group of early de novo and early treated Parkinson’s patients were evaluated as a whole or as subgroups.
Comparison between PDE10A PET and MRI markers of Parkinson’s disease pathology

Lower individual $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ values in the caudate correlated with higher DTI MD values in the caudate ($\rhoo=-0.53; \text{ } P<0.01$), putamen ($\rhoo=-0.55; \text{ } P<0.01$) and substantia nigra ($\rhoo=-0.41; \text{ } P<0.01$), lower DTI FA values in the caudate ($\rhoo=0.37; \text{ } P<0.01$), putamen ($\rhoo=0.36; \text{ } P<0.01$) and substantia nigra ($\rhoo=0.49; \text{ } P<0.01$) and lower NM volume in the substantia nigra ($\rhoo=0.55; \text{ } P<0.01$) and locus coeruleus ($\rhoo=0.39; \text{ } P<0.01$) (Figure 20). No correlations were found $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ values and Freesurfer volumes, SWI or NM values in any other areas. We found that lower individual $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ values in the putamen correlated with higher DTI MD values in the caudate ($\rhoo=-0.49; \text{ } P<0.01$) and putamen ($\rhoo=-0.46; \text{ } P<0.01$) and lower DTI FA values in the caudate ($\rhoo=0.35; \text{ } P<0.01$) and substantia nigra ($\rhoo=0.38; \text{ } P<0.01$, Figure 20). No correlations were found $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ values and Freesurfer volumes, SWI or NM values in any other areas.

Figure 20. Correlations between PDE10A and MRI imaging in Parkinson’s disease (PD) patients. Spearman correlation between DTI and $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ (top) in the caudate ($\rhoo=0.37; \text{ } P<0.01$) and between NM substantia nigra volume and $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ (down) in the caudate ($\rhoo=0.554; \text{ } P<0.001$). No correlation between DTI and $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ (top) in the putamen ($\rhoo=0.227; \text{ } P>0.10$) PD early de novo in black circles and PD early levodopa-treated in grey circles.
Lower NM volume in the substantia nigra correlated with lower individual [\(^{11}\text{C}\)]PE2I BP\(_{\text{ND}}\) in the substantia nigra (rho = 0.545; P<0.0001), in the caudate (rho = 0.516; P<0.0001), in the putamen (rho = 0.720; P<0.0001) but not with SWI iron depositions. Early de novo and treated Parkinson’s disease patients had significantly loss of [\(^{11}\text{C}\)]PE2I BP\(_{\text{ND}}\) and increased SWI iron depositions in the caudate (P<0.0001), putamen (P<0.0001) and substantia nigra (P<0.0001) and loss of NM in the substantia nigra (P<0.0001) compared to healthy controls (Table 4). No differences were found for DTI MD and FA maps in the de novo, while early levodopa-treated had significantly greater DTI MD in the caudate (P<0.0001), putamen (P<0.0001) and substantia nigra (P<0.0001) and lower DTI FA in the substantia nigra (P<0.0001) compared to healthy controls (Table 4).

We compared the loss of NM and increased SWI iron with loss of [\(^{11}\text{C}\)]PE2I BP\(_{\text{ND}}\) in each region-of-interest in Parkinson’s disease patients relative to normality data from the group of healthy controls. We found that loss of NM was greater than the loss of [\(^{11}\text{C}\)]PE2I BP\(_{\text{ND}}\) in the substantia nigra (P<0.005). Increased SWI iron was greater than the loss of [\(^{11}\text{C}\)]PE2I BP\(_{\text{ND}}\) in the substantia nigra but lower in the putamen (P<0.0001). No differences were found in the caudate between increased SWI iron and loss of [\(^{11}\text{C}\)]PE2I BP\(_{\text{ND}}\).

Early levodopa-treated showed loss of [\(^{11}\text{C}\)]PE2I BP\(_{\text{ND}}\) in the putamen (P<0.05), with additional loss of DAT in the putamen of 34% (decline per year = 10%) compared to early de novo, but not in the caudate (P>0.10) or in the substantia nigra (P>0.10), and loss of NM in the substantia nigra of 19.3% (decline per year = 3.58%). Early levodopa-treated patients had significantly higher DTI MD in the caudate (P<0.0001), putamen (P<0.0001) and substantia nigra (P<0.0001) and lower DTI FA in the caudate (P<0.0001), putamen (P<0.0001) and substantia nigra (P<0.0001) compared to early de novo.
patients (Table 4). No differences were found for SWI iron depositions between early de novo and levodopa-treated Parkinson’s disease patients.

5.1.7 Discussion

Our hypothesis was that a PDE10A expression was correlated with other markers of Parkinson’s disease pathology, such as iron depositions, neuromelanin loss, and changes in structural and microstructural changes in the substantia nigra and in the striatum.

We aimed to test this hypothesis checking for correlations between the expression of PDE10A and MRI markers of Parkinson’s pathology such as iron depositions (assessed with susceptibility-weighted MR imaging), neuromelanin loss (assessed with neuromelanin sensitive MR imaging) and changes in structural volumetric (assessed with T1 MR imaging) and microstructural connectivity (assessed with diffusion tensor MR imaging) (Project 3 Aim).

We have demonstrated that PDE10A expression in the caudate and putamen correlated with microstructural damage of substantia nigra (as measured by higher DTI MD values and lower NM volume) and of striatal terminals (as measured by lower DTI FA values). We found no correlations between PDE10A and brain atrophy (Freesurfer volumes) or SWI iron depositions.

Our findings demonstrate our hypothesis that loss of PDE10A correlated with neuromelanin loss and microstructural changes in the striatum, but we have to reject the hypothesis that loss of PDE10A correlated iron depositions or structural changes in the striatum.

This is a further confirmation of the value of PDE10A but also that Parkinson’s disease pathology can be measured with advanced MRI techniques, since the earliest stages of the disease, through the quantification of NM-containing neurons of the SN. Our early PD patients have loss of NM in the SN and increased SWI iron in the SN and in the striatum. Loss of NM in the SN is correlated with the loss of DAT terminals and with loss of PDE10A expression in the striatum but not with the increased iron depositions. Levels of iron were not correlated with the duration of the disease or the severity of
motor symptoms, suggesting that this might be a trigger of neurodegeneration, since it was present since the earliest stages of the disease, but it is not specific of PD pathology, since is not correlated with other measures of Parkinson’s disease pathology, such as DAT expression, and do not progress as the disease advances. We established that loss of NM in the SN is a pathological feature of Parkinson’s disease since the early stage of the disease, independently of levodopa treatment, and correlated with the duration burden. Our results support the ability of NM-MRI to differentiate PD patients from healthy subjects as indicated in previous reports (Sasaki et al., 2006; Ohtsuka et al., 2014).

Our results confirm the concept that NM and DAT should be positively correlated with the dopaminergic neuronal density in the SN. A loss of NM has been previously demonstrated with MRI in Parkinson’s disease patients as a stage-dependent phenomenon (Schwarz et al., 2011; Nakamura and Sugaya, 2014) and correlated post-mortem with the number of NM-containing neurons in Parkinson’s disease patients (Kitao et al., 2013). This raises the panorama of NM-sensitive MRI being a potential biomarker of Parkinson’s disease.

Imaging DAT with PET or SPECT imaging is currently considered the main biomarker for PD diagnosis and for evaluation of the progression of the disease. However, the availability of nuclear medicine evaluations in common clinical practice is still limited. MRI has been becoming a suitable and attractive alternative to radiotracer methods, when possible, due to its non-invasive nature, lower cost, good availability, and the fact that is not using ionizing radiation, contribute to its attractiveness for large cohorts of patients when longitudinal assessments are needed.

Here, we investigated the correlations between MRI markers of Parkinson’s disease pathology in the SN and the corresponding nigro-striatal dopaminergic innervation loss as measured with 11C]PE2I
PET imaging. Loss of NM is correlated with dopaminergic striatal innervation loss, with the duration of the disease and with the severity of motor symptoms. This loss was greater than DAT in the SN, but not in the putamen. This suggests that both biomarkers should be used and integrated for the evaluation of different brain structures.

We found that iron was higher in Parkinson’s disease compared to controls but did not increase over the time in more advanced patients. Disease duration and motor symptoms were not correlated with iron levels, neither in the striatum or the SN. The process of iron accumulation in SN of PD patients is also not completely understood. Iron concentrations in dissected SN pars compacta and pars reticulata measured with accurate spectroscopic methods have shown that iron concentrations in these regions increase with disease severity,(Dexter et al., 1987; Hirsch et al., 1991) and it has been proposed that high iron content in the SN makes this region susceptible to neurodegeneration (Zecca et al., 2004; Ward et al., 2014). In the literature however, iron imaging results are mixed. Several reports have described an increase iron concentration in the SN of PD patients (Martin et al., 2008; Baudrexel et al., 2010), as we found in our study, but equally, others did not find significant differences in iron concentration between PD and controls (Zecca et al., 2004; Ward et al., 2014). Moreover, across the available MRI studies a rather large range of iron concentration and confidence intervals has been reported both in PD patients and controls.9,11,12 These observations lead us to suspect that subtle differences in patient characteristics and measurement technique may be responsible for the inconsistency of results obtained with iron imaging by MRI, such that better standardization of technique is needed if the limitations of MRI for accurate measurement of iron in brain tissue are to be overcome and it is to have a role as a biomarker for PD (Martin et al., 2008).

We did not attempt nigral subdivision into pars compacta and pars reticulata, such as can be performed at higher magnetic field (Lotfipour et al., 2012; Lehericy et al., 2014). The region of
interest definitions we have used are however strongly tied to the contrast in the images. Differences in location and morphology of the SN are apparent in the region-of-interests defined for our NM- and SWI MRI. Langley et al. have recently found NM and SWI contrasts to be selectively sensitive to caudal and rostral compartments of the SN respectively (Langley et al., 2015). They proposed that the two histologically subregions of the SN, the SN pars compacta and the SN pars reticulata, are delineated by NM and SWI MRI, respectively. Considering this complementary role in their respective sensitivities to neuronal death, such that study of the progression of neurodegeneration in the SN is likely to benefit from their combined use. This confirms also why NM and iron were not correlated in the SN in our study.

We did not find any differences in DTI FA and MD values in early de novo patients compared to healthy controls, which is in line with a recent meta-analysis that questioned the stability and validity of this measure as a PD biomarker (Schwarz et al., 2013). Whereas at baseline PD patients and controls did not consistently differ from controls with regards to diffusion measures, as the disease progresses a significant decrease of nigral FA and an increase of nigral MD become apparent, both in comparison with the controls and longitudinally (PD baseline vs PD follow up) (Loane et al., 2016). In our study, early levodopa-treated PD had four years longer disease duration and showed lower MD and increased FA in the striatum and SN, in line with this finding. However, DTI reports of striatal diffusion over time in PD are not concordant (Loane, Politis et al. 2016), and we do not suggest using this technique as biomarker of PD pathology.

5.1.8 Conclusion

In summary, PDE10A expression in the caudate and putamen correlates with microstructural damage of substantia nigra and of striatal terminals but not with brain atrophy or iron depositions. This is a further confirmation of the value of PDE10A but also that Parkinson’s disease pathology can be
measured with advanced MRI techniques, since the earliest stages of the disease, through the quantification of NM-containing neurons of the SN.

NM-MRI is a reliable tool to quantify PD pathology in the SN, strictly correlated with loss of striatal DAT expression over the time and with worsening of motor symptoms. Further studies with a longitudinal multi-imaging design are needed to validate this novel imaging marker of PD for clinical practice and trials.
Chapter 6. Discussion

In Project 1, our hypothesis was that a reduction of PDE10A expression is an early phenomenon in the course of Parkinson’s disease, and that PDE10A expression decreases further as Parkinson’s disease progress (in term of duration and clinical severity).

We aimed to test this hypothesis comparing the expression of PDE10A (measured by using $[^{11}\text{C}]\text{IMA107 PET imaging}$) in early de novo and early levodopa-treated patients with Parkinson’s disease versus age- and sex-matched healthy control subjects (Project 1 Aim).

We found that early de novo and early levodopa-treated patients with Parkinson’s disease had lower mean $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ values in caudate, putamen and ventral striatum compared to healthy controls. Early levodopa-treated patients had lower striatal $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ values compared to early de novo patients, and striatal $[^{11}\text{C}]\text{IMA107 BP}_{\text{ND}}$ values were correlated with disease duration and disease severity.

Our findings demonstrate our hypothesis that loss of striatal PDE10A expression is an early phenomenon in the course of Parkinson’s disease and is associated with duration and severity of motor symptoms. Our study agrees with previous experimental work, which has demonstrated that lesions of nigrostriatal projections with 6-OHDA, induce a downregulation of PDE10A expression in the striatum in rodent models of Parkinson’s disease (Giorgi et al., 2008; Giorgi et al., 2011).

We also hypothesize that PDE10A expression might be affected earlier on in the course of the disease investigating the associations between PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc). We aimed to test this hypothesis checking for correlations between the expression of PDE10A and non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction, mood disorders etc). PDE10A expression did not correlate with non-motor symptoms considered pre-motor (sleep problems, autonomic dysfunction,
mood disorders etc), which suggests that reduction of PDE10A might be concomitant and not earlier than DAT expression loss. Thus, we cannot accept this hypothesis.

In Project 2, our hypothesis was that a PDE10A expression was correlated with dopaminergic pathology, which can be measured either with PET or SPECT.

We aimed to test this hypothesis checking for correlations between the expression of PDE10A and the expression of dopamine transporters (measured by using $[^{11}C]$PE2I PET and $[^{123}I]$FP-CIT SPECT molecular imaging) (Project 2 Aim).

We found that striatal $[^{11}C]$IMA107 BPND values were correlated with striatal using $[^{11}C]$PE2I PET and $[^{123}I]$FP-CIT SPECT values.

Our findings demonstrate our hypothesis that loss of PDE10A correlated with loss of DAT in the striatum in early de novo and early levodopa-treated patients with Parkinson’s disease, suggesting an association between PDE10A and dopaminergic function. Both PDE10A and DAT expression were decreased in the striatum, and DAT also decreased in globus pallidus and thalamus. Our early de novo cohort of Parkinson’s disease patients had less than two years of disease duration and the cohort of early levodopa-treated less than five years of Parkinson’s symptoms and was taking levodopa for less than two years. Previously, it has been reported that the loss of striatal PDE10A expression was correlated with the burden of motor symptoms and complications in middle-stage treated Parkinson’s disease patients with a mean of seven years of disease duration and advanced treated Parkinson’s disease patients with a mean of 13 years of disease duration (Niccolini et al., 2015a). Collectively, our findings and previous data suggest that loss of striatal PDE10A expression appears very early in the course of Parkinson’s disease and progresses over time and is associated with the gradual increase of motor symptom burden in different disease stages. Our findings suggest that loss of PDE10A expression in globus pallidus is a phenomenon appearing later in the disease (Niccolini et al., 2015a).
as PDE10A expression in this region was not affected in our earlier cohorts. Our findings were not affected by volumetric changes in the brain, age or gender.

Loss of PDE10A correlated with loss of DAT in the striatum in early de novo and early levodopa-treated patients with Parkinson’s disease, suggesting an association between PDE10A and dopaminergic function. PDE10A plays a key role in the regulation of dopaminergic signaling and is essential for dopamine neurotransmission through the interaction with cAMP and the activation of PKA/DARPP-32 downstream cascade in striatal pathways (Greengard et al., 1999; Nishi et al., 2008; Girault, 2012).

In Project 3, our hypothesis was that a PDE10A expression was correlated with other markers of Parkinson’s disease pathology, such as iron depositions, neuromelanin loss, and changes in structural and microstructural changes in the substantia nigra and in the striatum.

We aimed to test this hypothesis checking for correlations between the expression of PDE10A and MRI markers of Parkinson’s pathology such as iron depositions (assessed with susceptibility-weighted MR imaging), neuromelanin loss (assessed with neuromelanin sensitive MR imaging) and changes in structural volumetric (assessed with T1 MR imaging) and microstructural connectivity (assessed with diffusion tensor MR imaging) (Project 3 Aim).

We have demonstrated that PDE10A expression in the caudate and putamen correlated with microstructural damage of substantia nigra (as measured by higher DTI MD values and lower NM volume) and of striatal terminals (as measured by lower DTI FA values). We found no correlations between PDE10A and brain atrophy (Freesurfer volumes) or SWI iron depositions.

Our findings demonstrate our hypothesis that loss of PDE10A correlated with neuromelanin loss and microstructural changes in the striatum, but we have to reject the hypothesis that loss of PDE10A correlated iron depositions or structural changes in the striatum.

This is a further confirmation of the value of PDE10A but also that Parkinson’s disease pathology can be measured with advanced MRI techniques, since the earliest stages of the disease, through the
quantification of NM-containing neurons of the SN. Our early PD patients have loss of NM in the SN and increased SWI iron in the SN and in the striatum. Loss of NM in the SN is correlated with the loss of DAT terminals and with loss of PDE10A expression in the striatum but not with the increased iron depositions. Levels of iron were not correlated with the duration of the disease or the severity of motor symptoms, suggesting that this might be a trigger of neurodegeneration, since it was present since the earliest stages of the disease, but it is not specific of Parkinson’s disease pathology, since is not correlated with other measures of Parkinson’s disease pathology, such as DAT expression, and do not progress as the disease advances. We established that loss of NM in the substantia nigra is a pathological feature of Parkinson’s disease since the early stage of the disease, independently of levodopa treatment, and correlated with the duration burden.

Comparison between PDE10A and DAT expression

We attempted to understand how informative PET molecular imaging of PDE10A and DAT could be used for monitoring the disease progression. Our levodopa-treated patients with Parkinson’s disease had three years longer disease duration compared to early de novo Parkinson’s disease patients. PDE10A expression showed a further decline in both the caudate and putamen, whereas DAT expression was further reduced only in the putamen in early levodopa-treated compared to early de novo Parkinson’s disease patients. Specifically, the loss of PDE10A in the caudate reflected a 5.7% and in the putamen a 3.2% mean annual decline, whereas loss of DAT in the putamen reflected an 11.6% mean annual decline. PDE10A showed also a lower variability over the time, with an SD of 8.4% in the caudate and 9.6% in the putamen, whereas DAT showed a 17% SD in the putamen. In our study, we have shown that standardized differences (Cohen’s d) between early de novo and levodopa-treated with three-year longer disease duration are 1.48 for caudate measured with $[^{11}\text{C}]\text{IMA107}$, and 1.57 for putamen measured with $[^{11}\text{C}]\text{PE2I}$. Assuming in detecting a 50% reduction in these differences in a potential 18-month clinical trial testing a disease-modifying drug
that reduces disease progression by 50%, we will have a 0.7412 Cohen's d for caudate PDE10A and a 0.7851 for putamen DAT. These figures are greater than $[^{18}\text{F}]$FDOPA, a validated biomarker of Parkinson’s progression, that showed Cohen’s d of 0.7993 at three-year follow-up in early de novo patients with Parkinson’s (Bruck et al., 2009), thus having a 0.3996 Cohen’s d in this hypothetical trial. Providing an 80% power with a two-sided test using 5% type I error rate, we may need 60 participants if we use as endpoint the changes in the caudate $[^{11}\text{C}]$IMA107 levels, 54 subjects if we use as endpoint the changes in the putamen $[^{11}\text{C}]$PE2I levels and 200 subjects if we use as endpoint the changes in the putamen $[^{18}\text{F}]$FDOPA levels.

A recent study has compared $[^{18}\text{F}]$FDOPA and $[^{11}\text{C}]$PE2I in thirty-three patients with mild-moderate Parkinson’s disease at baseline and at 18-month follow-up (Li et al., 2018). They found that $[^{11}\text{C}]$PE2I, but not $[^{18}\text{F}]$FDOPA, was able to predict changes in motor scores (UPDRS-III and bradykinesia-rigidity scores). These results were confirmed at voxel-wise analysis showing that lower $[^{11}\text{C}]$PE2I BP$_{ND}$ in the striatum was correlated with higher motor severity. In addition, only the striatal changes in $[^{11}\text{C}]$PE2I BP$_{ND}$, but not in $[^{18}\text{F}]$FDOPA, were correlated with the progression of motor symptoms (changes in UPDRS-III and bradykinesia-rigidity scores) (Li et al., 2018). This is a further confirmation that striatal $[^{11}\text{C}]$PE2I has a greater sensitivity for detecting differences in motor severity than $[^{18}\text{F}]$FDOPA and $[^{11}\text{C}]$PE2I should be used in clinical trials because more effective for evaluating the efficacy of neuroprotective treatments in Parkinson’s disease.

We performed head-to-head comparisons between loss of PDE10A and DAT in Parkinson’s disease patients relative to normality data from the group of healthy controls. We found that loss of PDE10A was greater than the loss of DAT in the caudate, but lower in the putamen, globus
pallidus and substantia nigra in both early de novo and early levodopa-treated patients with Parkinson’s disease. In early de novo and levodopa-treated patients with Parkinson’s disease, PDE10A tracer showed a 10% lower COV variability in the striatum, caudate and putamen compared to DAT. This suggests that PDE10A might be a more stable biomarker. Loss of PDE10A in both the caudate and putamen, and loss of DAT only in the putamen correlated with longer Parkinson’s duration, the total burden of motor symptoms, and with increased rigidity and bradykinesia. The level of correlations between PDE10A and DAT and clinical scales were similar.

Considering the underlying pathophysiology of Parkinson’s disease includes progressive deposition of α-synuclein, the ideal neuroimaging biomarker to monitor disease progression should be able to quantify regional deposition of abnormal α-synuclein accumulation. Development of such a molecular imaging radiotracer has been the focus of much research but is not yet forthcoming and assessment of DAT represents the most direct approach able to quantify presynaptic nigrostriatal dopaminergic neurons. Loss of striatal DAT signal is currently considered the gold standard in the differential diagnosis between degenerative vs. non-degenerative parkinsonism. However, this approach has some shortcomings. For example, DAT levels have a floor effect that limits its use to the initial stages of the disease and may be modulated by dopaminergic supplementation, with levodopa inducing a decline proportional to the dose used (Fahn et al., 2004). Clinical trials that used DAT as a marker of Parkinson’s disease pathology showed controversial results, with imaging studies appearing to contradict the clinical findings (Whone et al., 2003; Fahn et al., 2004; Parkinson Study Group, 2009). In CALM-PD (Parkinson Study Group, 2009) and REAL-PET (Whone et al., 2003), subjects randomized to dopamine agonists showed worse clinical symptoms but lower DAT decline than subjects randomized to levodopa. In ELLEDOPA trial (Fahn et al., 2004), subjects randomized to levodopa showed better
clinical symptoms but greater DAT decline than subjects on placebo. However, it is not clear whether dopaminergic treatment hastens disease progression, or it was a simple down-regulation of DAT due to the use of levodopa.

PDE10A imaging could be a robust alternative to DAT imaging regarding diagnosis and for evaluating disease burden and progression. Collectively in our studies, we found a gradual progressive decline of PDE10A in Parkinson’s from very early to advanced stages, which was independent of levodopa treatment (Niccolini et al., 2015a) and had no floor effect. This makes PDE10A imaging potentially attractive to explore its clinical use further. It is important to note that both $[^{11}\text{C}]\text{IMA107}$ and $[^{11}\text{C}]\text{PE2I}$ are kinetically well-behaved tracers with good-to-very good reproducibility, and the differences in their binding in the striatum are probably related to the pathological processes underlying Parkinson’s disease, more than characteristics of the tracers. Despite all these potential advantages of PDE10A imaging, only PET ligands are currently available for PDE10A whereas DAT levels can be measured with SPECT imaging. This limitation reduces the cost-effective use of this novel molecular imaging technique until a SPECT PDE10A tracer becomes available. Neither DAT or PDE10A are good biomarkers for other Parkinson’s symptoms, like tremor or depression, where other mechanisms, such as serotonergic transporter deficit, seems to have a prominent role (Politis et al., 2010b; Politis et al., 2011; Loane et al., 2013; Pagano et al., 2017).

Comparison between DAT PET and DAT SPECT markers of Parkinson’s disease pathology

Secondly, we used $[^{123}\text{I}]\text{FP-CIT-SPECT}$ molecular imaging to quantify DAT expression in the same cohorts of Parkinson’s patients and healthy controls. DAT $[^{11}\text{C}]\text{PE2I-PET}$ and $[^{123}\text{I}]\text{FP-CIT-SPECT}$ were decreased in the striatum and globus pallidus of early *de novo* and early levodopa-
treated patients with Parkinson’s disease. Our findings demonstrate that loss of striatal DAT expression in Parkinson’s disease can be effectively measured both with $[^{123}]$FP-CIT-SPECT and $[^{11}]$CPE2I-PET, which were also associated with duration of the disease and severity of motor symptoms. Loss of $[^{11}]$CPE2I-PET correlated with loss of $[^{123}]$FP-CIT-SPECT in the striatum in early de novo and early levodopa-treated patients with Parkinson’s disease, which is a further confirmation that both tracers were good at measuring loss of dopaminergic terminals and can be used in clinical practice for confirmation of Parkinson’s disease diagnosis. To note, disease duration correlated with lower DAT $[^{11}]$CPE2I-PET in the putamen, but not with DAT $[^{123}]$FP-CIT-SPECT (probably due to the small size of our sample), which confirms the greater power of PET compared to SPECT imaging.

$[^{11}]$CPE2I-PET showed a higher accuracy than $[^{123}]$FP-CIT-SPECT in measuring DAT expression in levodopa-treated patients. Our early de novo cohort of Parkinson’s patients had less than 2 years of disease duration and the cohort of early levodopa-treated less than 5 years of Parkinson’s symptoms and was in levodopa for less than 2 years. Our findings were not affected by volumetric changes in the brain, age or gender effect and were confirmed at a voxel level.

It has been demonstrated that the use of levodopa (Fahn et al., 2004) and serotonin transporter inhibitors (de Win et al., 2005; Booij et al., 2007) interfere with $[^{123}]$FP-CIT-SPECT signal. These drugs directly (SERT) or indirectly (levodopa) bind the peripheral serotonin transporter in circulating cells, which is associated with changes in the relative fraction of $[^{123}]$FP-CIT ligand available within the brain. Clinical trials that used $[^{123}]$FP-CIT-SPECT as a marker of Parkinson’s disease pathology have shown controversial results, with imaging appeared to contradict the clinical results. In CALM-PD (Parkinson Study Group, 2009) and REAL-PET (Whone et al., 2003), subjects randomized to dopamine agonists showed worse clinical symptoms but lower $[^{123}]$FP-CIT-SPECT decline than subjects randomized to levodopa. In ELLEDOPA trial (Fahn et al., 2004), subjects randomized to levodopa showed better clinical symptoms but greater $[^{123}]$FP-
CIT-SPECT decline than subjects on placebo. However, it is not clear whether dopaminergic treatment hastens disease progression, or it was a simply a pharmacological interference on $[^{123}\text{I}]$FP-CIT-SPECT signal. This currently represents one of the main limitations for the use of $[^{123}\text{I}]$FP-CIT-SPECT in the evaluation of the efficacy of neuroprotective drugs on dopaminergic pathology, which $[^{11}\text{C}]$PE2I-PET might be able to overcome.

We attempted to understand how informative $[^{11}\text{C}]$PE2I-PET molecular imaging could be for monitoring the progression of the disease. Our levodopa-treated patients with Parkinson’s disease had three years longer disease duration compared to early de novo Parkinson’s patients. We found here that $[^{123}\text{I}]$FP-CIT-SPECT was equally good as $[^{11}\text{C}]$PE2I-PET in discriminating de novo untreated patients from healthy controls but showed lower accuracy in levodopa-treated. Compared to healthy controls, early levodopa-treated Parkinson’s patients showed a loss of 30% in the putamen $[^{11}\text{C}]$PE2I-PET BP$_{ND}$ but of only 17% in the putamen $[^{123}\text{I}]$FP-CIT-SPECT SBR. We also found within the early levodopa-treated Parkinson’s patients that loss of $[^{11}\text{C}]$PE2I-PET BP$_{ND}$ was 16% greater than the loss of $[^{123}\text{I}]$FP-CIT-SPECT SBR. This might be explained by the fact that $[^{11}\text{C}]$PE2I-PET BP$_{ND}$ is independent of the use of levodopa, dopamine agonists or antidepressants (Bang et al., 2016), where clearly $[^{123}\text{I}]$FP-CIT-SPECT SBR is not, which is another confirmation that $[^{11}\text{C}]$PE2I-PET might be better than $[^{123}\text{I}]$FP-CIT-SPECT in the quantification of DAT expression in treated patients.

$[^{11}\text{C}]$PE2I has also high specificity for DAT where $[^{123}\text{I}]$FP-CIT binds both DAT and serotonin transporter (Hall et al., 1999; Emond et al., 2008). Progressive loss of serotonin transporter has been demonstrated in Parkinson’s disease, which is prominent in the putamen and is directly related to the duration of the disease (Politis et al., 2010a; Pagano et al., 2017). Lack of specificity for DAT in $[^{123}\text{I}]$FP-CIT signal might be then associated with lower accuracy in the determination
of dopaminergic terminals pathology. Lower DAT $[^{123}I]FP$-CIT-SPECT binding, but not DAT $[^{11}C]PE2I$-PET, is associated with greater cognitive impairment (lower MoCA) in the limbic pathway (ventral striatum, thalamus, caudate and putamen). This is a further confirmation of fact that $[^{11}C]PE2I$ is more specific for DAT compared to $[^{123}I]FP$-CIT that binds also SERT. Recent evidence has shown that serotonergic dysfunction is associated with β-amyloid pathology and might underline the development of cognitive impairment in Parkinson’s disease (Kotagal et al., 2018).

Clinical trials aimed to show neuroprotective effect on dopaminergic terminals need to use a biomarker that is specific for DAT expression. Identification of molecular biomarkers characterising the pathological processes in Parkinson’s disease could also help monitor disease burden and progression, and drug target identification. So far, markers of presynaptic dopaminergic system such as quantification of striatal DAT have been extensively used for aiding diagnostics between neurodegenerative and non-neurodegenerative forms of parkinsonism and as correlates with motor symptoms. Our findings demonstrate that quantification of $[^{11}C]PE2I$-PET has potential as a molecular imaging biomarker for Parkinson’s disease progression and, taking all these evidence into account, the use of $[^{11}C]PE2I$-PET should be suggested rather than $[^{123}I]FP$-CIT-SPECT in future clinical trials.

$[^{11}C]PE2I$-PET seems to be a more stable biomarker for diagnosis of Parkinson’s disease. $[^{11}C]PE2I$-PET have shown higher specificity than $[^{123}I]FP$-CIT-SPECT for the differential diagnosis between Parkinson’s disease and other neurodegenerative parkinsonism (Appel et al., 2015). In line with our study, they found a high consistency between $[^{11}C]PE2I$-PET and $[^{123}I]FP$-CIT-SPECT images. $[^{11}C]PE2I$-PET has several advantages over $[^{123}I]FP$-CIT-SPECT in the differential diagnosis of parkinsonian disorders with respect to data quality, radiation dose, and
scanning logistics. One advantage is that PET images have a higher resolution than SPECT images. The data quality is further improved by the use of established kinetic models for generation of parametric images, which allow valid voxel-wise analysis. In addition, as indicated above, the radioligand $[^{11}\text{C}]\text{PE2I}$ binds highly selectively to DAT, whereas $[^{123}\text{I}]\text{FP-CIT-SPECT}$ also has high affinity for serotonin transporters and moderate affinity for norepinephrine transporters, causing an overestimation of DAT availability. When using solely a single $[^{11}\text{C}]\text{PE2I-PET}$ scan, the radiation dose is reduced by 50% from about 5 mSv for the $[^{123}\text{I}]\text{FP-CIT-SPECT}$ (Darcourt et al., 2010) to about 2.5 mSv for $[^{11}\text{C}]\text{PE2I-PET}$ (Ribeiro et al., 2007). From a patient perspective, the preparation time before scanning can be up to 6 h for a $[^{123}\text{I}]\text{FP-CIT-SPECT}$ scan but less than 30 min for an $[^{11}\text{C}]\text{PE2I-PET}$ scan.

$[^{11}\text{C}]\text{PE2I-PET}$ has also potential limitations in quantifying DAT expression. First, the relatively slow kinetics of $[^{11}\text{C}]\text{PE2I-PET}$ requires imaging acquisitions 90 min long, which certainly increases the risk for significant movement or for the patient’s being unable to complete the scan. Second, a radiometabolite of $[^{11}\text{C}]\text{PE2I-PET}$ has been found to cross the blood-brain barrier of the rat brain, and to accumulate in the striatum, which limited the kinetic analysis (Hirvonen et al., 2008). Also, relatively short half-life is an impediment of the 11C-labeled compound for clinical application. In contrast to $[^{18}\text{F}]$-ligands, $[^{11}\text{C}]\text{PE2I}$ can therefore not be transported over long distances. Then, the $[^{11}\text{C}]\text{PE2I}$ ligand has to be produced in-house at the PET facility with its own production capacity because of the limited half-life of $[^{11}\text{C}]$. This limitation tremendously reduces the possible widespread use of $[^{11}\text{C}]\text{PE2I}$ (but also of $[^{11}\text{C}]\text{IMA107}$) in clinical settings, limiting its use to clinical trials.

In conclusion, our findings demonstrate that $[^{123}\text{I}]\text{FP-CIT-SPECT}$ and $[^{11}\text{C}]\text{PE2I-PET}$ are both good biomarkers in differentiate Parkinson’s disease from healthy controls. However, $[^{11}\text{C}]\text{PE2I-PET}$ showed a higher accuracy for DAT expression, particularly in the levodopa-treated subjects, which suggests its potential use in clinical trials testing drugs on disease progression.
Lastly, we demonstrate that Parkinson’s disease pathology can be measured with advanced MRI techniques, since the earliest stages of the disease, through the quantification of NM-containing neurons of the substantia nigra. Our early Parkinson’s disease patients have loss of NM in the substantia nigra and increased SWI iron in the substantia nigra and in the striatum. Loss of NM in the substantia nigra is correlated with the loss of dopaminergic terminals in the striatum but not with the increased iron depositions. Levels of iron were not correlated with the duration of the disease or the severity of motor symptoms, suggesting that this might be a trigger of neurodegeneration, since it was present since the earliest stages of the disease, but it is not specific of Parkinson’s disease pathology, since is not correlated with other measures of Parkinson’s disease pathology, such as DAT expression, and do not progress as the disease advances. We established that loss of NM in the substantia nigra is a pathological feature of Parkinson’s disease since the early stage of the disease, independently of levodopa treatment, and correlated with the duration burden. Our results support the ability of NM-MRI to differentiate Parkinson’s disease patients from healthy subjects as indicated in previous reports (Sasaki et al., 2006; Ohtsuka et al., 2014).

Our results confirm the concept that NM and DAT should be positively correlated with the dopaminergic neuronal density in the substantia nigra. This finding can also be extended to PDE10A, which closely correlates with DAT and NM. A loss of NM has been previously demonstrated with MRI in Parkinson’s disease patients as a stage-dependent phenomenon (Schwarz et al., 2011; Nakamura and Sugaya, 2014) and correlated post-mortem with the number of NM-containing neurons in Parkinson’s disease patients (Kitao et al., 2013). This raises the panorama of NM-sensitive MRI being a potential biomarker of Parkinson’s disease.
Imaging DAT with PET or SPECT imaging is currently considered the main biomarker for Parkinson’s disease diagnosis and for evaluation of the progression of the disease. However, the availability of nuclear medicine evaluations in common clinical practice is still limited. MRI has been becoming a suitable and attractive alternative to radiotracer methods, when possible, due to its non-invasive nature, lower cost, good availability, and the fact that it is not using ionizing radiation, contribute to its attractiveness for large cohorts of patients when longitudinal assessments are needed.

Here, we investigated the correlations between MRI markers of Parkinson’s disease pathology in the substantia nigra and the corresponding nigro-striatal dopaminergic innervation loss as measured with $[^{11}C]$PE2I PET imaging. Loss of NM is correlated with dopaminergic striatal innervation loss, with the duration of the disease and with the severity of motor symptoms. This loss was greater than DAT in the substantia nigra, but not in the putamen. This suggests that both biomarkers should be used and integrated for the evaluation of different brain structures.

We found that iron was higher in Parkinson’s disease compared to controls but did not increase over the time in more advanced patients. Disease duration and motor symptoms were not correlated with iron levels, neither in the striatum or the substantia nigra. The process of iron accumulation in substantia nigra of Parkinson’s disease patients is also not completely understood. Iron concentrations in dissected SNpc and substantia nigra pars reticulata measured with accurate spectroscopic methods have shown that iron concentrations in these regions increase with disease severity (Dexter et al., 1987; Hirsch et al., 1991), and it has been proposed that high iron content in the substantia nigra makes this region susceptible to neurodegeneration (Zecca et al., 2004; Ward et al., 2014). In the literature however, iron imaging results are mixed. Several reports have
described an increase iron concentration in the substantia nigra of Parkinson’s disease patients (Martin et al., 2008; Baudrexel et al., 2010), as we found in our study, but equally, others did not find significant differences in iron concentration between Parkinson’s disease and controls (Zecca et al., 2004; Ward et al., 2014). Moreover, across the available MRI studies a rather broad range of iron concentration and confidence intervals has been reported both in Parkinson’s disease patients and controls. These observations lead us to suspect that subtle differences in patient characteristics and measurement technique may be responsible for the inconsistency of results obtained with iron imaging by MRI, such that better standardization of technique is needed if the limitations of MRI for accurate measurement of iron in brain tissue are to be overcome and it is to have a role as a biomarker for Parkinson’s disease (Martin et al., 2008). A seminal paper on brain MRI iron measurement has been recently published (Martin-Bastida et al., 2017). They studied seventy patients with mild to moderate Parkinson’s disease and twenty age- and gender-matched healthy volunteers and found an increased iron accumulation in the putamen, globus pallidus and substantia nigra at SWI-MRI in Parkinson’s disease patients, which appeared to be stratified according to disease motor severity and correlated with UPDRS-III and bradykinesia-rigidity subscores, but not with tremor subscores. This study suggests that a semi-quantitative in vivo iron assessment with SWI-MRI could prove useful for objectively monitoring Parkinson’s disease progression, especially in clinical trials concerning iron chelation therapies (Martin-Bastida et al., 2017).

We did not attempt nigral subdivision into pars compacta and pars reticulata, such as can be performed at higher magnetic field (Lotfipour et al., 2012; Lehericy et al., 2014). The region of interest definitions we have used are however strongly tied to the contrast in the images. Differences in location and morphology of the substantia nigra are apparent in the region-of-interests defined for our NM- and SWI MRI. Langley et al. have recently found NM and SWI
contrasts to be selectively sensitive to caudal and rostral compartments of the substantia nigra respectively (Langley et al., 2015). They proposed that the two histologically sub-regions of the substantia nigra, the SNpc and the substantia nigra pars reticulata, are delineated by NM and SWI MRI, respectively. Considering this complementary role in their respective sensitivities to neuronal death, such that study of the progression of neurodegeneration in the substantia nigra is likely to benefit from their combined use. This confirms also why NM and iron were not correlated in the substantia nigra in our study.

We did not find any differences in DTI FA and MD values in early de novo patients compared to healthy controls, which is in line with a recent meta-analysis that questioned the stability and validity of this measure as a Parkinson’s disease biomarker (Schwarz et al., 2013). Whereas at baseline Parkinson’s disease patients and controls did not consistently differ from controls with regards to diffusion measures, as the disease progresses a significant decrease of nigral FA and an increase of nigral MD become apparent, both in comparison with the controls and longitudinally (Parkinson’s disease baseline vs Parkinson’s disease follow up) (Loane et al., 2016). In our study, early levodopa-treated Parkinson’s disease had four years longer disease duration and showed lower MD and increased FA in the striatum and substantia nigra, in line with this finding. However, DTI reports of striatal diffusion over time in Parkinson’s disease are not concordant (Loane, Politis et al. 2016), and we do not suggest using this technique as biomarker of Parkinson’s disease pathology.

Imaging of Parkinson's disease pathology and non-motor symptoms

Our findings indicate that PDE10A does not correlate with non-motor or premotor symptoms. Thalamic atrophy is associated with greater non-motor symptoms burden, substantia nigra atrophy
is associated with depressive symptoms, autonomic dysfunction and olfactory dysfunction and locus coeruleus atrophy is associated with excessive daytime sleepiness, RBD symptoms and autonomic dysfunction in Parkinson’s disease patients. However, further studies, investigating morphological brain changes and non-motor symptoms burden in a larger cohort of Parkinson’s disease patients are needed to confirm our findings.

In summary, NM-MRI is a reliable tool to quantify Parkinson’s disease pathology in the substantia nigra, strictly correlated with loss of striatal DAT and PDE10A expression over the time and with worsening of motor symptoms. Further studies with a longitudinal multi-imaging design are needed to validate this novel imaging marker of Parkinson’s disease for clinical practice and trials.
Chapter 7. Future directions

This chapter summarizes the future directions based on the results of this thesis, which includes the potential use in clinical practice of PDE10A PET, the development of PDE10A SPECT tracers, the potential use in clinical practice of PE2I PET, the development of PE2I SPECT tracers, the potential use in clinical practice of novel MRI techniques for diagnosis of Parkinson’s disease, and the potential use in clinical trials of these novel biomarkers (PDE10A, DAT PET, NM or SWI MRI) stronger than the ones currently used (DAT SPECT or FDOPA).

PDE10A PET imaging might be used in clinical practice to aid in the diagnosis of Parkinson’s disease. Our study confirms that patients with Parkinson’s disease have a loss of both DAT and PDE10A in the striatum. This will open avenues to investigate PDE10A in Parkinsonism with unaffected DAT levels, the so-called Scan Without Evidence of Dopaminergic Deficit (SWEDD). This population represents about 10% of patients enrolled in clinical trials and having a second independent measure of Parkinson’s disease pathology might be fundamental for a better identification of the candidate of neuroprotective drugs. PDE10A PET imaging can be used to monitor disease progression, independently of the use of dopaminergic supplementation or antidepressants. In this instance, also DAT-PET with $[^{11}\text{C}]$PE2I showed a greater power and specificity compared to DAT-SPECT with $[^{123}\text{I}]$FP-CIT, which suggests that DAT-PET (over DAT-SPECT) should be used in Parkinson’s disease clinical trials. PDE10A might also be investigated in atypical parkinsonism, where an overlap with DAT imaging is currently present. Further studies using both PDE10A and DAT PET imaging should be performed in patients with multiple system atrophy, progressive supranuclear palsy and corticobasal syndrome. As previously indicated in Huntington’s disease, we expected a profound loss of PDE10A that can be diagnostic in the earliest phase of these conditions, complex to diagnosis in clinical practice. Another area to investigate further is the relationship between PDE10A expression...
and the development of cognitive decline. Our and experimental data suggests that the PDE10A system is a dynamic player within large-scale brain networks and more local neurotransmitter circuits. Limbic loss of PDE10A might be an important determinant of neuropsychiatric changes and the presence of more severe neuropsychiatric symptoms may serve as a risk factor for dementia in Parkinson’s disease. Great loss of PDE10A might be also associated with falls, slow gait speed, freezing of gait, sensory processing during postural control and dyskinesias in PD. The development of motor complications and its relationship with PDE10A is another area to investigate further. Several drug acting directly or indirectly on PDE10A activity might be tested in Parkinson’s disease patients to improve not only motor symptoms but also motor complications. A diffuse use of molecular imaging of the PDE10A system is poised to guide and evaluate future drug development in Parkinson’s disease.

Currently only PET ligands are available for the in vivo assessment of PDE10A whereas DAT levels can be measured with SPECT imaging. Future studies might focus on the development of a SPECT PDE10A tracer, which will facilitate the extension of the use of PDE10A in clinical practice. Having a PDE10A SPECT tracer will reduce the cost-effective use of this novel molecular imaging technique. There are however several technical constrains in the development of reliable SPECT tracers. Several attempts have been performed to finally obtain a reliable PET tracer for PDE10A, thus, the costs of implementation and development of novel SPECT tracer might be higher than the actual clinical benefit gained afterwards.

Another interesting topic suggested by the results of this thesis is that DAT-PET with $^{[1]}$CPE2I might be implement in clinical practice. Although the cost are currently about 3-4 times higher than DAT-SPECT with $^{[12]}$FP-CIT, the main advantage will be a lower exposure to ionizing radiation with
$[^{11}\text{C}]$PE2I (about 1.5 mSv) compared to $[^{123}\text{I}]$FP-CIT (about 4.5 mSv). DAT-PET with $[^{11}\text{C}]$PE2I might be useful in the patients that take antidepressants or high dose of levodopa. The greater power of DAT-PET with $[^{11}\text{C}]$PE2I might also be useful in the identification of atypical Parkinsonism. Although a DAT-SPECT with $[^{123}\text{I}]$PE2I is currently possible, as the tracer already used in the past, this exam is not licenced or available in clinical practice.

Our findings corroborate the recent evidence that advanced MRI might be useful in clinical practice for diagnosis of Parkinson’s disease. Brain MRI is widely available and do not involve the use of ionizing radiation. The identification of a reliable MRI biomarker to monitor disease progression would be the cornerstone in the neuroimaging research on Parkinson’s disease. However, the ones we identified are more useful for diagnosis in the early (NM and SWI) or more advanced (DTI, Freesurfer) stages and did not show a linear progressive loss, as instead shown by PDE10A or DAT expression. Brain MRI in Parkinson’s disease can became crucial in supporting the pathophysiological pathways underlying the specific symptoms developed by the Parkinson’s disease patients. Abnormalities of structural and microstructural may be indeed detected in the earlier stages of the disease, even before the onset of motor symptoms and may used to track development and progression of complications over the disease course. At this stage, divergent and sometimes conflicting results are probably due to different methodological approaches, thus, the development of international validated approach is a necessary condition to move forward with the brain MRI imaging. Further studies are needed to be performed with multicentre desing in order to standardize the research protocols and improve the current techniques. Finally, our findings increase the potential array of biomarkers available for use in clinical trials. We anticipate that PDE10A-PET, DAT-PET, NM and SWI-MRI are powerful and specific biomarkers of Parkinson’s disease pathology and should be used over current ones, such as DAT-SPECT or $[^{18}\text{F}]$FDOPA-PET.
Chapter 8. References

Andre VM, Cepeda C, Levine MS. Dopamine and glutamate in Huntington's disease: A balancing act. CNS Neurosci Ther 2010; 16(3): 163-78.

Garau L, Govoni S, Stefanini E, Trabucchi M, Spano PF. Dopamine receptors: pharmacological and anatomical evidences indicate that two distinct dopamine receptor populations are present in rat striatum. Life Sci 1978; 23(17-18): 1745-50.

Insel PA, Zhang L, Murray F, Yokouchi H, Zambon AC. Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol (Oxf) 2012; 204(2): 277-87.

Richter W. 3',5' Cyclic nucleotide phosphodiesterases class III: members, structure, and catalytic mechanism. Proteins 2002; 46(3): 278-86.

