Endoplasmic reticulum-mitochondria associations and amyotrophic lateral sclerosis

Stoica, Radu

Awarding institution: King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.

END USER LICENCE AGREEMENT

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to:

• Share: to copy, distribute and transmit the work

Under the following conditions:

• Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work).
• Non Commercial: You may not use this work for commercial purposes.
• No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above.

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
ENDOPLASMIC RETICULUM-MITOCHONDRIA ASSOCIATIONS AND AMYOTROPHIC LATERAL SCLEROSIS

Radu Stoica MBBS

Thesis submitted in fulfilment of the degree of Doctor of Philosophy,
King’s College London, Institute of Psychiatry (University of London)

February 2013
ABSTRACT

Damage to both mitochondria and the endoplasmic reticulum (ER) involving ER stress and the unfolded protein response (UPR) are characteristic features in amyotrophic lateral sclerosis (ALS). However, how these two pathological features might be linked in a common disease pathway is unclear. Approximately 5-20% of the mitochondrial surface is closely apposed to ER and tethers linking the two organelles can be visualised via electron microscopy. These regions mediate a number of physiological processes including Ca2+ and phospholipid exchange between ER and mitochondria, ER and mitochondrial stress responses and apoptosis. Moreover, defects in ER-mitochondria associations are now known to contribute to neurodegenerative diseases. To properly investigate the role of ER-mitochondria associations in physiological processes and disease situations, the identity of the molecular tethers that physically link ER with mitochondria needs to be established. Previous work from our research group identified the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51) as a binding partner for the resident ER protein vesicle-associated membrane protein-associated protein-B (VAPB). As such, VAPB and PTPIP51 represent plausible candidates for mediating ER-mitochondria associations. In order to test this possibility, ER and mitochondria associations were quantified following the experimental manipulation of VAPB and/or PTPIP51 expression. The results strongly support a role for VAPB and PTPIP51 in controlling ER-mitochondria associations.

TAR DNA-binding protein-43 (TDP-43) is strongly linked to ALS and mutations in \textit{TARDBP}, the gene encoding TDP-43, are the cause of some familial forms of the disease. The effects of TDP-43 expression on ER-mitochondria associations and
binding of VAPB to PTPIP51 were investigated. The results showed that both wild-type and ALS mutant TDP-43 disrupt ER-mitochondria associations and that this is accompanied by decreased binding of VAPB to PTPIP51. Mutations in the genes encoding fused in sarcoma (FUS) and Cu/Zn superoxide dismutase-1 (SOD1) also cause some familial forms of ALS and preliminary investigations revealed that FUS but not SOD1 also decreases VAPB-PTPIP51 interactions.

Finally, the mechanisms that regulate binding of VAPB to PTPIP51 were investigated. Phosphorylation is known to influence protein-protein interactions and phosphorylation sites in VAPB and PTPIP51 were identified by mass spectrometry. However, mutation of these sites did not influence VAPB-PTPIP51 binding.
ACKNOWLEDGEMENTS

I wish to thank my supervisor Chris Miller for giving me the opportunity to work in his laboratory and for all the guidance and encouragement throughout, my second supervisor Kurt De Vos for his valuable feedback and constructive science conversations. I would also like to thank everyone in the department who helped me all these years one way or another.

My grateful thanks are extended to Gema Vizcay (Centre for Ultrastructural Imaging, King’s College London) for embedding and sectioning the electron microscopy specimens, Winston Vetharoy (Rayne Institute, King’s College London) for assisting with the cell sorting procedure and Steven Lynham (Institute of Psychiatry) for performing the mass spectrometry analyses.

Finally, a special thank you goes to my family and close friends for their patience and continuous support. This thesis is dedicated to my father who always encouraged me to pursue my career goals no matter how far; he is sorely missed.

This work was funded by the European Union’s 7th Framework Programme (MitoTarget Project) and also supported by the Medical Research Council, the Wellcome Trust and Alzheimer’s Research UK.
TABLE OF CONTENTS

- ABSTRACT... 2
- ACKNOWLEDGEMENTS.. 4
- TABLE OF CONTENTS.. 5
- LIST OF FIGURES AND TABLES.. 10
- ABBREVIATIONS.. 13
- CHAPTER 1: INTRODUCTION... 20
 - 1.1 Motor neuron diseases and amyotrophic lateral sclerosis................................. 21
 - 1.1.1 Epidemiology... 21
 - 1.1.2 Clinical aspects and current treatments... 22
 - 1.1.3 Pathology of ALS.. 24
 - 1.2 ALS genetics –overview... 28
 - 1.2.1 SOD1 and ALS... 30
 - 1.2.2 TDP-43 and ALS.. 32
 - 1.2.3 FUS and ALS... 34
 - 1.2.4 VAPB and ALS... 36
 - 1.3 Neurodegeneration mechanisms in ALS... 42
 - 1.3.1 Excitotoxicity... 42
 - 1.3.2 Oxidative stress.. 44
 - 1.3.3 Pathological protein aggregation... 46
 - 1.3.4 Mitochondrial dysfunction... 48
 - 1.3.5 Axonal transport dysfunction... 50
 - 1.3.6 Damage to mRNA metabolism.. 52
 - 1.3.7 ER stress and the unfolded protein response (UPR)...................................... 54
1.4 The ER-mitochondria axis and neurodegenerative diseases.........................58
 1.4.1 Neurodegenerative diseases and alterations to ER-mitochondria associations.. 60
 1.4.2 ER-mitochondria tethering proteins .. 61

1.5 Aims of the thesis .. 64

CHAPTER 2: MATERIALS AND METHODS .. 65

2.1 Materials ... 67
 2.1.1 Stock solutions .. 67
 2.1.2 General molecular biology reagents ... 69
 2.1.2.1 Plasmids .. 69
 2.1.2.2 Oligonucleotides ... 70
 2.1.2.3 Growth of E. coli for DNA purification: media 71
 2.1.2.4 Plasmid DNA preparation from E. Coli .. 72
 2.1.2.5 Agarose gel electrophoresis of nucleic acids 72
 2.1.2.6 Site-directed mutagenesis ... 73
 2.1.3 Protein analysis .. 74
 2.1.3.1 Protein sample preparation ... 74
 2.1.3.2 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)
 .. 75
 2.1.3.3 Immobilisation of proteins on nitrocellulose membranes 76
 2.1.3.4 Antibody probing of membrane-bound proteins 76
 2.1.3.5 Protein staining .. 77
 2.1.4 Immunoprecipitation reagents ... 77
 2.1.5 Antibodies ... 78
 2.1.5.1 Primary antibodies ... 78
 2.1.5.2 Secondary antibodies ... 80
2.1.6 Fluorescence microscopy

2.1.7 Duolink® *in situ* Proximity Ligation Assay (PLA)

2.1.8 Electron microscopy

2.1.9 Mammalian cell culture

2.2 Methods

2.2.1 General microbiology methods

2.2.1.1 Storage and growth of *E. coli* for DNA purification

2.2.1.2 Preparation of plasmid DNA

2.2.1.3 Quantitation of nucleic acids

2.2.1.4 Restriction enzyme digestion of plasmid DNA

2.2.1.5 Agarose gel electrophoresis of plasmid DNA

2.2.1.6 PCR-based site-directed mutagenesis

2.2.1.7 Digesting the PCR product

2.2.1.8 Transformation into XL10-Gold® ultracompetent cells

2.2.2 Protein analysis

2.2.2.1 Protein concentration determination (Bradford Assay)

2.2.2.2 SDS-PAGE of protein samples

2.2.2.3 Immunoblotting (Western Blotting)

2.2.2.4 Antibody probing of membrane-bound proteins

2.2.2.5 Immunoprecipitation

2.2.2.6 Mass spectrometry studies

2.2.3 Microscopy

2.2.3.1 Immunofluorescence

2.2.3.2 *In situ* Proximity Ligation Assay™ (PLA™)

2.2.3.3 Transmission electron microscopy
2.2.4 Mammalian cell culture and transfection methods ... 100
 2.2.4.1 NSC34, CV-1, CHO and HEK293 cell culture ... 100
 2.2.4.2 Transient transfection .. 100
 2.2.4.3 Delivery of siRNA to cell cultures .. 102
 2.2.5 Treatment of HEK293 cells with the tyrosine phosphatase inhibitor pervanadate ... 104
 2.2.6 Fluorescence-activated cell sorting (FACS) of NSC34 cells 104

CHAPTER 3: VAPB AND PTPIP51 MEDIATE ER-MITOCHONDRIA ASSOCIATIONS ... 106
3.1 Introduction ... 107
3.2 Results .. 110
 3.2.1 VAPB and PTPIP51 mediate ER-mitochondria associations in electron
 microscopy studies using NSC34 cells ... 110
 3.2.2 VAPB and PTPIP51 mediate ER-mitochondria co-localization in confocal light
 microscopy studies using CV1 cells ... 112
3.3 Discussion ... 124

CHAPTER 4: BOTH WILD-TYPE AND ALS MUTANT TDP-43
REDUCE ER-MITOCHONDRIA ASSOCIATIONS 128
4.1 Introduction ... 129
4.2 Results .. 132
 4.2.1 Expression of wild-type and ALS mutant TDP-43 disrupt ER-mitochondria
 associations in electron microscopy studies using NSC34 cells 132
 4.2.2 TDP-43 disrupts ER-mitochondria co-localization in confocal microscopy
 studies using CV1 cells .. 133
 4.2.3 TDP-43 does not affect expression of VAPB, PTPIP51 or mitofusin-2............. 133
4.2.4 TDP-43 induced disruption of ER-mitochondria associations is accompanied by changes in VAPB-PTPIP51 interaction ... 134

4.2.5 ALS associated FUS but not SOD1 disrupts VAPB binding to PTPIP51 in immunoprecipitation assays .. 136

4.3 Discussion ... 147

CHAPTER 5: VAPB AND PTPIP51 PHOSPHORYLATION AS A REGULATORY MECHANISM FOR CONTROLLING THEIR INTERACTION ... 151

5.1 Introduction ... 152

5.2 Results .. 154

5.2.1 Purification of PTPIP51 by immunoprecipitation and separation on SDS-PAGE ... 154

5.2.2 Identification of phosphorylation sites in PTPIP51 by mass spectrometry 155

5.2.3 PTPIP51 is phosphorylated on tyrosine residue(s) .. 155

5.2.4 Purification of VAPB by immunoprecipitation and separation on SDS-PAGE .. 157

5.2.5 Identification of phosphorylation sites in VAPB by mass spectrometry 157

5.2.6 Mutation of the PTPIP51 and VAPB phosphorylation sites does not affect the PTPIP51-VAPB interaction ... 158

5.3 Discussion ... 176

CHAPTER 6: SUMMARY AND FUTURE DIRECTIONS 179

6.1 Summary .. 180

6.2 Future directions ... 182

REFERENCES ... 185
LIST OF FIGURES AND TABLES

Figures

Figure 1.1 The Awaji-shima diagnosis criteria (de Carvalho et al., 2008) 24
Figure 1.2 Pathological protein aggregates in sporadic and familial ALS 28
Figure 1.3 Schematic representation of VAPB structure showing protein domains and
the localization of ALS-associated pathogenic mutations within the MSP domain 37
Figure 1.4 The vertebrate UPR .. 57
Figure 3.1 siRNA knockdown of VAPB or PTPIP51 .. 114
Figure 3.2 siRNA knockdown of VAPB or PTPIP51 reduces ER-mitochondria
associations .. 115
Figure 3.3 FACS post-sorting analyses demonstrating high purity of ECFP/AcGFP
positive samples ... 116
Figure 3.4 Confirmation of cell sorting purification of ECFP-VAPB and PTPIP51-HA
expressing cells. .. 118
Figure 3.5 Overexpression of VAPB and/or PTPIP51 increases ER-mitochondria
associations .. 119
Figure 3.6 siRNA knockdown of VAPB or PTPIP51 reduces co-localization of ER and
mitochondria ... 121
Figure 3.7 Overexpression of VAPB, PTPIP51 and VAPB with PTPIP51 all increase
co-localization of ER and mitochondria .. 122
Figure 4.1 FACS post-sorting analyses demonstrating purification of EGFP positive
samples ... 137
Figure 4.2 Expression of wild type and ALS mutant TDP-43 reduce ER-mitochondria
associations .. 138
Figure 4.3 Expression of wild type or ALS mutant TDP-43 reduce ER-mitochondria co-localization

Figure 4.4 Overexpression of wild-type or ALS associated mutant TDP-43 do not alter expression of VAPB, PTPIP51 or mitofusin-2 (MFN2)

Figure 4.5 Specificity of the Duolink proximity ligation assay for VAPB and PTPIP51

Figure 4.6 Expression of wild-type or ALS associated mutants of TDP-43 all reduce the interaction of VAPB with PTPIP51 in proximity ligation assays

Figure 4.7 Expression of wild-type or ALS associated mutants of TDP-43 (TDP-43 Q331K, TDP-43 M337V, TDP-43 G348C and TDP-43 A382T) reduce the binding of VAPB to PTPIP51 in immunoprecipitation assays

Figure 4.8 Expression of wild-type or ALS associated mutants of FUS (FUS R521C, FUS R521G, FUS R521H and FUS R518K) reduce the binding of VAPB to PTPIP51 in immunoprecipitation assays

Figure 4.9 Expression of wild-type or ALS associated mutants of SOD1 (SOD1 G93A, SOD1 A4V) do not influence the binding of VAPB to PTPIP51 in immunoprecipitation assays

Figure 5.1 Purification of PTPIP51-HA by immunoprecipitation

Figure 5.2 Phosphorylation sites identified in PTPIP51

Figure 5.3 Identification of PTPIP51 S44 as a phosphorylation site by LC/MS/MS

Figure 5.4 Identification of PTPIP51 S46 as a phosphorylation site by LC/MS/MS

Figure 5.5 Identification of PTPIP51 S50 as a phosphorylation site by LC/MS/MS

Figure 5.6 Identification of PTPIP51 S212 as a phosphorylation site by LC/MS/MS

Figure 5.7 Schematic representation of PTPIP51 structure showing positions of phosphorylation sites identified by mass spectrometry
Figure 5.8 PTPIP51 is phosphorylated on tyrosine residue(s) .. 168
Figure 5.9 Purification of myc-VAPB by immunoprecipitation .. 169
Figure 5.10 Phosphorylation sites identified in VAPB ... 170
Figure 5.11 Identification of VAPB T150 as a phosphorylation site by LC/MS/MS ... 171
Figure 5.12 Identification of VAPB S158 as a phosphorylation site by LC/MS/MS ... 172
Figure 5.13 Schematic representation of VAPB structure showing positions of phosphorylation sites identified by mass spectrometry .. 173
Figure 5.14 Mutation of PTPIP51 residues to alanine to preclude phosphorylation and aspartate to mimic permanent phosphorylation do not affect PTPIP51 binding to VAPB ... 174
Figure 5.15 Mutation of VAPB residues to alanine to preclude phosphorylation and aspartate to mimic permanent phosphorylation does not affect VAPB binding to PTPIP51 ... 175

Tables
Table 1.1 Classification of motor neuron diseases ... 22
Table 2.1 Vectors .. 69
Table 2.2 Mammalian expression plasmids ... 69
Table 2.3 Mutagenic primers ... 70
Table 2.4 Primary antibodies ... 79
Table 2.5 Secondary antibodies ... 80
Table 2.6 PCR-based site-directed mutagenesis cycling parameters 88
Table 2.7 Amounts of reagents for ExGen 500 based transient transfection 101
Table 2.8 Delivery of human VAPB and PTPIP51 siRNA to CV1 cells 103
Table 2.9 Delivery of mouse VAPB and PTPIP51 siRNA to NSC34 cells 104
ABBREVIATIONS

Amino acids: single letter code and abbreviations

<table>
<thead>
<tr>
<th>Single letter code</th>
<th>Abbreviation</th>
<th>Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ala</td>
<td>Alanine</td>
</tr>
<tr>
<td>C</td>
<td>Cys</td>
<td>Cysteine</td>
</tr>
<tr>
<td>D</td>
<td>Asp</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>E</td>
<td>Glu</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>F</td>
<td>Phe</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>G</td>
<td>Gly</td>
<td>Glycine</td>
</tr>
<tr>
<td>H</td>
<td>His</td>
<td>Histidine</td>
</tr>
<tr>
<td>I</td>
<td>Ile</td>
<td>Isoleucine</td>
</tr>
<tr>
<td>K</td>
<td>Lys</td>
<td>Lysine</td>
</tr>
<tr>
<td>L</td>
<td>Leu</td>
<td>Leucine</td>
</tr>
<tr>
<td>M</td>
<td>Met</td>
<td>Methionine</td>
</tr>
<tr>
<td>N</td>
<td>Asn</td>
<td>Asparagine</td>
</tr>
<tr>
<td>P</td>
<td>Pro</td>
<td>Proline</td>
</tr>
<tr>
<td>Q</td>
<td>Gln</td>
<td>Glutamine</td>
</tr>
<tr>
<td>R</td>
<td>Arg</td>
<td>Arginine</td>
</tr>
<tr>
<td>S</td>
<td>Ser</td>
<td>Serine</td>
</tr>
<tr>
<td>T</td>
<td>Thr</td>
<td>Threonine</td>
</tr>
<tr>
<td>V</td>
<td>Val</td>
<td>Valine</td>
</tr>
<tr>
<td>W</td>
<td>Trp</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>Y</td>
<td>Tyr</td>
<td>Tyrosine</td>
</tr>
</tbody>
</table>
Other abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aβ</td>
<td>amyloid β</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>Amp</td>
<td>ampicillin</td>
</tr>
<tr>
<td>ALS</td>
<td>amyotrophic lateral sclerosis</td>
</tr>
<tr>
<td>AMPA</td>
<td>alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>APP</td>
<td>amyloid precursor protein</td>
</tr>
<tr>
<td>APS</td>
<td>ammonium persulphate</td>
</tr>
<tr>
<td>ASK1</td>
<td>apoptosis signal-regulating kinase 1</td>
</tr>
<tr>
<td>ATF</td>
<td>activating transcription factor</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>B-cell lymphoma-2</td>
</tr>
<tr>
<td>BiP/GRP78</td>
<td>binding immunoglobulin protein/glucose-regulated protein 78</td>
</tr>
<tr>
<td>bp</td>
<td>nucleotide base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>C. elegans</td>
<td>Caenorhabditis elegans</td>
</tr>
<tr>
<td>C-terminus</td>
<td>carboxyl-terminus</td>
</tr>
<tr>
<td>C9ORF72</td>
<td>chromosome 9 open reading frame 72 gene</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>calcium</td>
</tr>
<tr>
<td>Caspase-12</td>
<td>cysteinyl aspartate-specific protease-12</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary cell line</td>
</tr>
<tr>
<td>CHOP</td>
<td>CCAAT/enhancer binding protein homologous protein</td>
</tr>
<tr>
<td>CLR-1</td>
<td>caterpillar-like receptor-1</td>
</tr>
<tr>
<td>COPI/COPII</td>
<td>coat protein I/II</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>CTRL</td>
<td>control</td>
</tr>
<tr>
<td>Cu</td>
<td>copper</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>double distilled water</td>
</tr>
<tr>
<td>DH5α</td>
<td>Douglas Hanahan bacterial strain 5α</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EAAT2</td>
<td>excitatory amino acid transporter 2</td>
</tr>
<tr>
<td>ECFP</td>
<td>enhanced cyan fluorescent protein</td>
</tr>
<tr>
<td>ECL</td>
<td>enhanced chemiluminescence</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGFP</td>
<td>enhanced green fluorescent protein</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethyleneglycol-bis (β-aminoethylether) N,N,N′,N′-tetraacetic acid</td>
</tr>
<tr>
<td>EM</td>
<td>electron microscopy</td>
</tr>
<tr>
<td>EphR</td>
<td>ephrin receptors</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>ERAD</td>
<td>ER-associated protein degradation</td>
</tr>
<tr>
<td>ERGIC</td>
<td>ER Golgi intermediate compartment</td>
</tr>
<tr>
<td>ERMES</td>
<td>ER-mitochondria encounter structure</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>FFAT</td>
<td>two phenylalanines (FF) in acidic tract</td>
</tr>
<tr>
<td>FTD</td>
<td>frontotemporal dementia</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>FTLD</td>
<td>frontotemporal lobar degeneration</td>
</tr>
<tr>
<td>FUS</td>
<td>fused in sarcoma</td>
</tr>
<tr>
<td>GluR2</td>
<td>glutamate receptor 2</td>
</tr>
<tr>
<td>GRIP1</td>
<td>glutamate receptor interacting protein 1</td>
</tr>
<tr>
<td>HA</td>
<td>hemagglutinin</td>
</tr>
<tr>
<td>HDAC6</td>
<td>histone deacetylase 6</td>
</tr>
<tr>
<td>HEK293</td>
<td>human embryonic kidney 293</td>
</tr>
<tr>
<td>HIV-1</td>
<td>human immunodeficiency virus type 1</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>HSP</td>
<td>hereditary spastic paraplegia</td>
</tr>
<tr>
<td>IB</td>
<td>immunoblot</td>
</tr>
<tr>
<td>ICA</td>
<td>intensity correlation analysis</td>
</tr>
<tr>
<td>ICQ</td>
<td>intensity correlation quotient</td>
</tr>
<tr>
<td>IF</td>
<td>immunofluorescence</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin gamma</td>
</tr>
<tr>
<td>IP3R</td>
<td>inositol-1,4,5-triphosphate receptor</td>
</tr>
<tr>
<td>IRE1</td>
<td>inositol requiring enzyme 1</td>
</tr>
<tr>
<td>IRES</td>
<td>internal ribosome entry site</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>kDa</td>
<td>kiloDalton</td>
</tr>
<tr>
<td>Lar</td>
<td>leukocyte common antigen-related-like</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>LMN</td>
<td>lower motor neuron</td>
</tr>
<tr>
<td>MAM</td>
<td>mitochondria-associated ER membranes</td>
</tr>
<tr>
<td>Mfn2</td>
<td>mitofusin-2</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MSP</td>
<td>major sperm protein</td>
</tr>
<tr>
<td>N-terminus</td>
<td>amino-terminus</td>
</tr>
<tr>
<td>NADPH</td>
<td>nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>Nir</td>
<td>N-terminal domain-interacting receptor</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>NRF2</td>
<td>nuclear factor (erythroid derived 2)-related factor 2</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PACS-2</td>
<td>phosphofurin acidic cluster sorting protein 2</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PDI</td>
<td>protein disulphide isomerase</td>
</tr>
<tr>
<td>PERK</td>
<td>protein kinase RNA-like endoplasmic reticulum kinase</td>
</tr>
<tr>
<td>PFA</td>
<td>paraformaldehyde</td>
</tr>
<tr>
<td>pH</td>
<td>inverse log of hydrogen ion concentration</td>
</tr>
<tr>
<td>PLA</td>
<td>proximity ligation assay</td>
</tr>
<tr>
<td>PLS</td>
<td>primary lateral sclreosis</td>
</tr>
<tr>
<td>PML</td>
<td>promielocytic leukemia protein</td>
</tr>
<tr>
<td>pmol</td>
<td>picomole</td>
</tr>
<tr>
<td>PMSF</td>
<td>phenylmethyl sulphonyl fluoride</td>
</tr>
<tr>
<td>PtdSer</td>
<td>phosphatidylserine</td>
</tr>
<tr>
<td>PtdEtn</td>
<td>phosphatidylethanolamine</td>
</tr>
<tr>
<td>PTP1B</td>
<td>protein tyrosine phosphatase-1B</td>
</tr>
<tr>
<td>PTPIP51</td>
<td>protein tyrosine phosphatase-interacting protein 51</td>
</tr>
<tr>
<td>RIDD</td>
<td>regulated IRE1-dependent decay</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>RMD</td>
<td>required for meiotic nuclear division</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>Robo</td>
<td>roundabout receptor</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RyR</td>
<td>ryanodine receptor</td>
</tr>
<tr>
<td>SAX-3</td>
<td>sensory axon guidance-3 receptor</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of mean</td>
</tr>
<tr>
<td>SERCA</td>
<td>sarco/endoplasmic reticulum Ca(^{2+}) ATP-ase</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>SMA</td>
<td>spinal muscular atrophy</td>
</tr>
<tr>
<td>SNARE</td>
<td>soluble N-ethylmaleimide-sensitive factor-attached protein receptor</td>
</tr>
<tr>
<td>SOD1</td>
<td>Cu/Zn superoxide dismutase 1</td>
</tr>
<tr>
<td>TAE</td>
<td>tris-acetate-EDTA</td>
</tr>
<tr>
<td>TARDBP</td>
<td>TAR DNA binding protein gene</td>
</tr>
<tr>
<td>TBS</td>
<td>tris-buffered saline</td>
</tr>
<tr>
<td>TDP-43</td>
<td>transactive response (TAR) DNA binding protein 43</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission EM</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-Tetramethylethylenediamine</td>
</tr>
<tr>
<td>TLS</td>
<td>translated in liposarcoma</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TOM20</td>
<td>translocase of the outer mitochondrial membrane protein-20</td>
</tr>
<tr>
<td>Tris</td>
<td>tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>Tween-20</td>
<td>polyoxyethylene-sorbitan monolaurate</td>
</tr>
<tr>
<td>UBQLN2</td>
<td>ubiquilin 2</td>
</tr>
<tr>
<td>UMN</td>
<td>upper motor neuron</td>
</tr>
<tr>
<td>UPR</td>
<td>unfolded protein response</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>VAMP</td>
<td>vesicle associated membrane protein</td>
</tr>
<tr>
<td>VAPB</td>
<td>vesicle-associated membrane protein-associated protein B</td>
</tr>
<tr>
<td>VCP</td>
<td>valosin-containing protein</td>
</tr>
<tr>
<td>VDAC1</td>
<td>voltage-dependent anion channel 1</td>
</tr>
<tr>
<td>XBP1</td>
<td>X-box-binding protein 1</td>
</tr>
<tr>
<td>xg</td>
<td>centrifugal force</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION
1.1 Motor neuron diseases and amyotrophic lateral sclerosis

Motor neuron diseases are a group of neurological disorders characterized by progressive muscle weakness and/or spasticity that are caused by selective degeneration of lower motor neurons (LMN) and/or upper motor neurons (UMN). These include amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal bulbar muscular atrophy (SBMA), hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS) and lethal congenital contracture syndrome (LCCS) (Dion et al., 2009) (Table 1.1).

The most prevalent motor neuron disease is ALS, a devastating adult-onset neurodegenerative disease initially described by the 19th century neurologist Jean-Martin Charcot. The name stems from his observation of a characteristic “myelin pallor” in the lateral portions of the spinal cord, corresponding to the loss of descending UMN axons (“lateral sclerosis”). “Amyotrophy” refers to muscle fibre atrophy after losing the neuronal input from the anterior horn of the spinal cord. The disease affects both LMN and UMN and is usually fatal within 3 years from symptom onset when denervation of respiratory muscles occurs (Hardiman et al., 2011).

1.1.1 Epidemiology

ALS incidence averages 2.13 cases per 100,000 population and most reports suggest a uniform distribution across Western countries (Logroscino et al., 2011; Wolfson et al., 2009). The overall lifetime risk of developing the disease is 1:400 and the mean age of onset is around 60 years with a slight male predominance (male:female ratio is approximately 1.5:1) (Alonso et al., 2009; Manjaly et al., 2010).
<table>
<thead>
<tr>
<th>Disease</th>
<th>Motor neuron involvement</th>
<th>Clinical features</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS</td>
<td>UMN+LMN</td>
<td>Progressive muscle atrophy and spasticity</td>
</tr>
<tr>
<td>HSP</td>
<td>UMN</td>
<td>Progressive spasticity in the lower extremity</td>
</tr>
<tr>
<td>PLS</td>
<td>UMN</td>
<td>Spinal and bulbar spasticity</td>
</tr>
<tr>
<td>SMA</td>
<td>LMN</td>
<td>Symmetrical muscle weakness and atrophy</td>
</tr>
<tr>
<td>SBMA</td>
<td>LMN</td>
<td>Slowly progressive limb and bulbar muscle weakness and muscle atrophy</td>
</tr>
<tr>
<td>LCCS</td>
<td>UMN+LMN</td>
<td>Fetal hydrops and akinesia, degeneration of anterior horn motor neurons and skeletal muscle atrophy</td>
</tr>
</tbody>
</table>

Table 1.1 Classification of motor neuron diseases

1.1.2 Clinical aspects and current treatments

Since there is no established biological marker for ALS, the diagnosis is based almost entirely on characteristic clinical findings. In 1994, the World Federation of Neurology developed the “El Escorial” diagnostic criteria (Brooks, 1994) which were revised in 2000 (Brooks et al., 2000) and 2006 to include electrophysiological criteria that facilitate a more secure diagnosis (de Carvalho et al., 2008) (Figure 1.1). Symptom onset is usually asymmetrical and the initial clinical presentation depends on the sites affected first in the neuraxis. The neurological examination usually reveals a combination of UMN and LMN dysfunction, for example spasticity combined with flaccid paralysis and fasciculation. The dysfunctions will spread to contiguous anatomic regions producing increasingly diffuse and symmetrical phenotypes. The progression rate is linear within each individual but it can vary from 1 year to over 10 years between
different patients (Ravits and La Spada, 2009). In addition to motor symptoms, half of
the ALS patients develop various levels of cognitive, behavioural or executive function
impairment (Lomen-Hoerth et al., 2003). Moreover, it is now recognized that 15% of
ALS patients meet criteria for frontotemporal dementia (FTD), a condition
characterized by personality change, poor insight and irritability (Ringholz et al., 2005).
This is consistent with a long known neuropathological overlap between ALS and FTD
(Wightman et al., 1992), a link strengthened by recent key findings (see for reviews
(Morris et al., 2012; Rademakers et al., 2012)). These neuropathological findings,
discussed in greater detail below (see Section 1.1.3), prompt the need for new
diagnostic approaches and disease classification.

Despite significant advances on the understanding of ALS disease mechanisms, the
therapeutic options for ALS remain limited. The only approved disease modifying
medication is riluzole, a compound with a modest effect on disease progression and
survival (Bensimon et al., 1994; Miller et al., 2012). Measures aimed at symptom
control and quality of life preservation include pain management, treatment of
spasticity, enteral tube feeding and respiratory support for advanced stages (Hardiman et
al., 2011). Several therapeutic compounds such as antioxidants, ciliary neurotrophic
growth factor, insulin-like growth factor I or more recently lithium carbonate were
tested in clinical trials but they have failed so far to show any significant benefits
(Aggarwal et al., 2010; Orrell, 2009).
1.1.3 Pathology of ALS

The classic pathological hallmarks of ALS are the degeneration and loss of motor neurons together with astrocitosis and intracellular aggregates in degenerating motor neurons and glia. UMN pathology is characterized by the loss of Betz cells and astrocitosis in the motor cortex accompanied by axonal loss and myelin pallor within the descending pyramidal motor pathway (Hammer et al., 1979; Kamo et al., 1987; Oyanagi et al., 1995). LMN pathology affects the ventral horn of the spinal cord and the motor neurons in the brainstem. Autopsy findings include a reduced number of LMN and reactive astrocitosis (Ekblom et al., 1993; Tsukagoshi et al., 1979). The surviving
neurons are atrophic and contain 3 types of intraneuronal inclusions: Bunina bodies, neurofilament accumulations and ubiquitinated inclusions.

Bunina bodies are cytoplasmic eosinophilic inclusions initially described by the Russian neuropathologist Bunina who suspected them to be the sign of a viral infection (Bunina, 1962). Found mostly in the remaining LMN, Bunina bodies are present in approximately 85% of ALS cases and are generally considered a specific pathologic finding (Piao et al., 2003). They are thought to be of lysosomal origin and are seen more frequently in patients with shorter disease durations and patients with dementia and ALS (Okamoto et al., 2008). Cystatin C, transferrin and more recently peripherin have been identified as major components of these inclusions but despite numerous investigations, their origin and significance are still unclear (Mizuno et al., 2006; Mizuno et al., 2011; Okamoto et al., 1993).

Another long known feature of ALS is the accumulation of phosphorylated neurofilaments and peripherin in affected motor neuron perikarya and their proximal axons (Carpenter, 1968; Corbo and Hays, 1992; Hirano et al., 1984; Munoz et al., 1988). However, these inclusions are not specific to ALS, since aberrant accumulation of neurofilaments occurs in other neurodegenerative diseases including Parkinson’s disease, dementia with Lewy bodies, Alzheimer’s disease and progressive supranuclear palsy (Al-Chalabi and Miller, 2003). The association with other conditions suggests they might play a role in disease pathogenesis, a hypothesis supported by the finding that point mutations in the light neurofilament subunit gene cause forms of the sensory and motor neuropathy Charcot-Marie-Tooth disease (Mersiyanova et al., 2000). Interestingly, modulation of neurofilament expression in ALS transgenic mice can alter
the disease course and mutations of the neurofilament heavy chain gene have been proposed as risk factors for ALS (Al-Chalabi et al., 1999; Figlewicz et al., 1994; Tomkins et al., 1998). Furthermore, neurofilament accumulations have also been linked with slowed neurofilament transport through axons, which is caused by glutamate-induced phosphorylation and rescued by riluzole (Ackerley et al., 2000; Stevenson et al., 2009).

The third pathological hallmark of ALS is the presence of ubiquitin-positive inclusions in affected motor neurons (see Figure 1.2). These probably indicate the cell’s effort to label damaged proteins for proteasomal degradation (Leigh et al., 1988; Lowe et al., 1989). Interestingly, ubiquitinated inclusions are also a common finding in tau-negative frontotemporal lobar degeneration (FTLD), a condition clinically overlapping with ALS, suggesting a common underlying pathophysiology (Shi et al., 2005). This link remained unknown until recently, when transactive response DNA binding protein 43 (TDP-43) was identified as a major component of these inclusions in most ALS and FTLD cases (Arai et al., 2006; Neumann et al., 2006). This seminal discovery prompted the reconsideration of these disorders as a clinicopathological spectrum and led to the development of a new classification system for FTLD and ALS (Mackenzie et al., 2010). Interestingly, TDP-43 pathology has also been detected in Alzheimer’s disease cases (Amador-Ortiz et al., 2007) and in disorders such as Huntington disease, corticobasal degeneration and dementia with Lewy bodies, suggesting it might play a more general role in the neurodegenerative process (Chen-Plotkin et al., 2010).

However, a notable exception from TDP-43 pathology is familial ALS caused by mutations in the Cu/Zn superoxide dismutase 1 (SOD1) gene, characterized by ubiquitin
inclusions that are largely negative for TDP-43 but positive for SOD1, possibly indicating a different pathogenic mechanism (Mackenzie et al., 2007). TDP-43 inclusions are also absent in a subset of familial ALS cases associated with mutations in the fused in sarcoma (FUS) gene, where intracytoplasmic FUS aggregates are observed (Kwiatkowski et al., 2009; Vance et al., 2009). FUS inclusions have subsequently been detected in many non-SOD1 ALS cases, indicating an involvement in the pathogenic cascade (Deng et al., 2010).

Optineurin, another protein recently linked to ALS was reported to form inclusions in TDP-43, FUS and SOD1 cases and in several other neurodegenerative disorders (Ito et al., 2011b; Maruyama et al., 2010; Osawa et al., 2011). However, a different group identified it in only a minority of TDP-43 positive cases (Hortobagyi et al., 2012) making its significance difficult to assess.

Finally, recent studies have shown that a large proportion of familial ALS and related FTLD are caused by a GGGGCC repeat expansion within the C9ORF72 gene (DeJesus-Hernandez et al., 2011; Renton et al., 2011). Although ubiquitin and p62 positive TDP-43 inclusions have been identified in these cases, some of the ubiquitin/p62 inclusions do not label for TDP-43, thus suggesting the presence of another pathological protein (Al-Sarraj et al., 2011; Cooper-Knock et al., 2012; Stewart et al., 2012).
1.2 ALS genetics –overview

Although the cause of ALS is unknown, it is likely the result of a complex interplay between genetic and environmental factors. Most cases occur in an apparently random manner and are termed sporadic ALS, while around 5-10% of patients have a family history and show a Mendelian pattern of inheritance (Byrne et al., 2011). Familial ALS is genetically heterogeneous and a complete list of the causative mutations identified to date is available in the ALS Online Database (http://alsod.iop.kcl.ac.uk/). Interestingly, most mutations are also found in a subset of the apparently sporadic cases, indicating an underestimation of the genetic involvement in ALS (Andersen and Al-Chalabi, 2011).

Since sporadic and familial ALS are clinically indistinguishable, motor neuron demise likely occurs through common molecular pathways and insights into the known gene mutations are believed to advance the understanding of sporadic disease.
The number of known ALS-associated mutations has increased dramatically since the first reports of families carrying pathogenic variants of SOD1 almost two decades ago (Rosen et al., 1993). Interestingly, mutations in C9ORF72, TDP-43, FUS, UBQLN2 and valosin-containing protein (VCP) were found to be responsible for both ALS and FTLD cases and this is consistent with the previously documented overlap between the two disorders (Deng et al., 2011; Johnson et al., 2010; Kwiatkowski et al., 2009; Seelaar et al., 2007; Sreedharan et al., 2008; Vance et al., 2009). These compelling clinical, pathological and genetic findings have produced a paradigm shift in the understanding of ALS and FTLD, which are now considered part of a disease continuum. Another piece of the puzzle was the linkage to chromosome 9p observed in a subset of families with ALS, FTLD or both (Morita et al., 2006; Valdmanis et al., 2007; Vance et al., 2006). However, the underlying genetic defect remained unknown until two groups identified it as a GGGGCC repeat expansion in a non-coding region of the uncharacterized gene C9ORF72 (DeJesus-Hernandez et al., 2011; Renton et al., 2011). The repeat expansion is accountable for 39% of familial ALS cases and 4-7% of sporadic cases, making it the most prevalent genetic cause of ALS to date (Majounie et al., 2012).

The work in this thesis involves four proteins where mutants have been shown to cause ALS. These are SOD1, TDP-43, FUS and vesicle-associated membrane protein-associated protein B (VAPB). These proteins and their links to ALS are thus described in more detail below.
1.2.1 SOD1 and ALS

The first genetic defects associated with ALS were identified in the Cu/Zn superoxide dismutase (SOD1) gene in 1993 (Rosen et al., 1993). These account for approximately 20% of familial ALS and a small percentage of the sporadic cases (Millecamps et al., 2010) and until recently, SOD1 was believed to be the most common genetic cause for ALS. The identification of mutations in SOD1 facilitated the creation of the first transgenic ALS mouse models, which recapitulate the rapidly progressive motor neuron degeneration seen in human patients (Gurney et al., 1994).

SOD1 is a ubiquitously expressed antioxidant enzyme, which converts superoxide radicals to hydrogen peroxide and molecular oxygen. The protein is encoded by a single gene on chromosome 21 and to date, 166 different mutations have been reported involving most of its 153 amino acids (Andersen and Al-Chalabi, 2011). It was first hypothesised that loss of its dismutase activity might lead to motor neuron degeneration, but a number ALS mutants have been shown to maintain a normal enzymatic activity (Borchelt et al., 1994). Moreover, analyses of transgenic mice that express mutant SOD1 have provided strong evidence that the toxicity is not via a loss of SOD1 activity (Bruijn and Cleveland, 1996). If loss of SOD1 activity was responsible for the observed ALS phenotype, then manipulating this activity would be predicted to alter disease onset and/or progression. However, crossing of mutant SOD1 mice with mice overexpressing wild-type SOD1 or in which the wild-type SOD1 gene has been ablated does not alter disease onset or progression (Bruijn et al., 1998). These results suggest that the toxicity of mutant SOD1 involves a novel toxic gain of function. The nature of this toxicity is still not clear but there is evidence for several mechanisms. These include oxidative damage, accumulation of intracellular aggregates, mitochondrial dysfunction,
growth factor deficiency, astroglial cell pathology, glutamate excitotoxicity, ER stress and damage to axonal transport (see for review (Rothstein, 2009)).

Although SOD1 is ubiquitously expressed, its pathogenic effect was thought to occur strictly within motor neurons. This view was challenged by analyses of transgenic mice with mutant SOD1 expression restricted to neurons or astrocytes, which failed to develop disease (Gong et al., 2000; Pramatarova et al., 2001). Furthermore, pathogenic SOD1 expression in motor neurons surrounded by a wild-type environment prolonged their survival, while normal motor neurons surrounded by mutant SOD1 nonneuronal cells developed ALS pathology (Clement et al., 2003; Yamanaka et al., 2008). These studies have provided evidence that motor neuron degeneration is a non-cell autonomous process or in other words, SOD1 toxicity in nonneuronal cells contributes to the pathogenic cascade. To identify the contributing cells, mice expressing a deletable SOD1 gene were designed. Diminishing mutant SOD1 levels within motor neurons increased survival by delaying disease onset and early progression. Conversely, excising the mutant SOD1 gene in microglia or astrocytes had little effect on the early disease, but sharply slowed disease progression and increased overall survival (Beers et al., 2006; Boillee et al., 2006; Yamanaka et al., 2008). Surprisingly, selective reduction of mutant SOD1 in Schwann cells had the opposite effect, significantly accelerating the late phase of the disease (Lobsiger et al., 2009).

Finally, skeletal muscle pathology in ALS was long considered a secondary event. However, mutant SOD1 expression restricted to skeletal muscle is sufficient to cause muscle atrophy and motor neuron degeneration (Dobrowolny et al., 2008; Wong and Martin, 2010).
Despite the significant progress made since its discovery, the exact pathogenic mechanisms underlying SOD1 toxicity as well as the initial toxic events have yet to be established.

1.2.2 TDP-43 and ALS

Our understanding of ALS pathology was significantly advanced after TDP-43 was identified as the major component of ubiquitin inclusions in most ALS and FTLD cases (Arai et al., 2006; Neumann et al., 2006). This result highlighted a possible role for TDP-43 in disease pathogenesis, confirmed by the finding that missense mutations in TARDBP, the gene encoding TDP-43, cause familial forms of ALS (Kabashi et al., 2008; Sreedharan et al., 2008). To date, over 44 mutations in TARDBP have been found and these account for approximately 5% of familial ALS cases (Millecamps et al., 2010). These are characterized by earlier, predominantly upper limb onset and longer disease duration compared to sporadic ALS (Corcia et al., 2012).

TARDBP encodes TDP-43, a highly conserved, ubiquitously expressed 414 amino acid protein, initially identified to bind TAR DNA, a regulatory element of HIV-1 (Ou et al., 1995). The protein is predominantly localized to the nucleus and contains two RNA recognition motifs and a glycine rich domain which facilitates binding to nucleic acids and ribonuclear proteins (Wang et al., 2004). The C-terminal glycine-rich domain harbours the majority of ALS associated mutations, which induce fragmentation and mislocalization of TDP-43 to the cytoplasm, where it forms ubiquitinated aggregates (Neumann et al., 2006). Moreover, nuclear TDP-43 depletion in cells with cytoplasmic
aggregates has been observed and lead to the hypothesis that TDP-43 toxicity may be caused by a loss of its nuclear function.

TDP-43 functions include regulation of mRNA alternative splicing and transcription (Ayala et al., 2008; Buratti and Baralle, 2008), mRNA stabilization and transport (Volkening et al., 2009) and formation of RNA stress granules (Colombrita et al., 2009). A recent study characterizing the RNA targets of TDP-43 found several mRNA isoforms that encode proteins relevant for neurological diseases and normal development (Tollervey et al., 2011). TDP-43 knockout mice die early in the embryonic stage and suggest a critical developmental role for this protein (Sephton et al., 2010). To circumvent this, conditional knockout mice have been created and a recent report describes an ALS-like phenotype in mice with post-natal TDP-43 inactivation targeted to the spinal cord motor neurons (Wu et al., 2012).

Overexpression of wild-type TDP-43 has consistently been found to be toxic in most transgenic mouse models (Shan et al., 2010; Tsai et al., 2010; Wils et al., 2010; Xu et al., 2010). The observed phenotypes include motor abnormalities, growth retardation, cognitive impairment or early lethality and can vary greatly according to the promoter used and the TDP-43 expression levels (Da Cruz and Cleveland, 2011). Mice overexpressing ALS-associated TDP-43 mutants have also been created and they exhibit a similar progressive motor phenotype and reduced survival (Stallings et al., 2010; Wegorzewska et al., 2009; Xu et al., 2011b). Both wild-type and mutant transgenic mice are characterized by a selective loss of neurons in the frontal cortex and the anterior horn of the spinal cord, accompanied by ubiquitin aggregates and reactive gliosis (Da Cruz and Cleveland, 2011). Although these clinical and pathological
features are reminiscent of both ALS and FTD, it is difficult to differentiate between mutant and wild-type TDP-43 toxicity. Moreover, it is currently unclear whether TDP-43 is inducing motor neuron degeneration through a loss of function, through a toxic gain of function or both.

1.2.3 FUS and ALS

Shortly after the discovery of TDP-43 involvement in ALS, mutations in the fused in sarcoma (FUS) gene, encoding another RNA/DNA binding protein, were identified in ALS families (Kwiatkowski et al., 2009; Vance et al., 2009). So far, 42 different FUS pathogenic mutations have been reported and these account for 4-6% of familial ALS cases (Andersen and Al-Chalabi, 2011). The associated phenotype is consistent with a predominantly LMN involvement, early disease onset and rapid progression (Millecamps et al., 2010).

FUS, also known as translocated in liposarcoma (TLS), is a ubiquitously expressed 526 amino acid protein originally described as a component of fusion oncogenes in human cancer (Rabbitts et al., 1993). It contains an N-terminal Gln-Gly-Ser-Tyr-rich domain, a Gly-rich domain, an RNA recognition motif, multiple Arg-Gly-Gly repeats and a C-terminal zinc finger motif (Lagier-Tourenne and Cleveland, 2009). Most pathogenic mutations are missense and cluster in the extreme C-terminus of the protein, a highly conserved region functioning as a nuclear localization signal (Mackenzie et al., 2010; Zakaryan and Gehring, 2006). Although the protein resides mainly in the nucleus, analyses of brains and spinal cords from patients with FUS mutations reveals loss of nuclear FUS and ubiquitinated cytoplasmic inclusions positive for FUS, but negative for TDP-43 (Tateishi et al., 2010; Vance et al., 2009).
FUS is an RNA binding protein with structure and functions similar to TDP-43, raising the possibility that RNA misprocessing is a key feature in motor neuron degeneration. The protein shuttles between the nucleus and the cytoplasm (Zinszner et al., 1997) and is involved in cell proliferation, DNA repair, alternative splicing, transcription regulation, RNA and microRNA processing (Janknecht, 2005; Lagier-Tourenne et al., 2010; Law et al., 2006). The FUS gene knockout in inbred mice causes perinatal death accompanied by major B lymphocyte defects (Hicks et al., 2000), while only male sterility was reported in FUS deficient mice on an outbred background (Kuroda et al., 2000).

Transgenic rats overexpressing ALS-associated mutant FUS develop progressive paralysis secondary to axonal degeneration and a significant loss of neurons in the frontal cortex and hippocampus recapitulating features of ALS and FTD (Huang et al., 2011). Similar to TDP-43, expression of human wild-type FUS in rats is sufficient to induce cognitive deficits and mild neuronal loss at a more advanced age (Huang et al., 2011). In both cases, neuronal loss is accompanied by FUS distribution to the cytoplasm, ubiquitin aggregation and reactive gliosis in the brain and spinal cord. Interestingly, a compound blocking glial inflammation managed to preserve the cognitive function of mutant FUS transgenic rats (Huang et al., 2012).

In a recent study, mice expressing wild-type FUS develop progressive paralysis and death in a dose dependent manner and are characterized by loss of spinal motor neurons, muscle atrophy, astrogliosis and ubiquitin-negative cytoplasmic FUS inclusions (Mitchell et al., 2012). Although mutant FUS transgenic mice are not available yet,
these results suggest FUS could induce disease through a toxic gain of function in the cytoplasm.

1.2.4 VAPB and ALS

A dominant missense mutation causing a proline to serine substitution at residue 56 in the VAPB gene was initially identified in eight Brazilian families with phenotypes ranging from typical ALS to late-onset SMA (Nishimura et al., 2004). A further mutation causing a threonine to isoleucine change at position 46 has also been associated with ALS (Chen et al., 2010) (Figure 1.3). Interestingly, transgenic mice expressing VAPB P56S develop cytoplasmic TDP-43 accumulations in the spinal cord, but fail to develop overt motor neuron disease (Tudor et al., 2010).

There are two VAP isoforms in mammals termed VAPA and VAPB that are encoded by different genes and which share approximately 63% sequence identity; both are expressed in most tissues and cell types including the nervous system (Amarilio et al., 2005; Gkogkas et al., 2008; Kim et al., 2010a; Nishimura et al., 1999; Skehel et al., 2000; Teuling et al., 2007). VAPB comprises an N-terminal major sperm protein (MSP) domain, named for its similarity to the nematode MSP, a central coiled-coil domain and a C-terminal transmembrane domain which anchors it in the ER membrane (Nishimura et al., 1999; Skehel et al., 2000; Soussan et al., 1999) (Figure 1.3).
Figure 1.3 Schematic representation of VAPB structure showing protein domains and the localization of ALS-associated pathogenic mutations within the MSP domain

The function of VAPB is not properly understood and it has been implicated in a variety of cellular processes. These include ER to Golgi transport (Amarilio et al., 2005), lipid transport and metabolism (Peretti et al., 2008), bouton formation at the neuromuscular junction and microtubule organisation (Pennetta et al., 2002), the unfolded protein response (UPR) in response to ER stress (Gkogkas et al., 2008; Kanekura et al., 2006; Langou et al., 2010; Suzuki et al., 2009) and signalling via ephrin receptors (Han et al., 2012; Tsuda et al., 2008). Finally, VAPB has recently been shown to play a role in Ca^{2+} homeostasis (De Vos et al., 2012). To carry out these putative functions, VAPB interacts with several proteins including soluble N-ethylmaleimide-sensitive factor-attached protein receptor (SNARE) proteins (Skehel et al., 1995), two phenylalanines (FF) in acidic tract (FFAT) motif-containing proteins (Amarilio et al., 2005), microtubules (Pennetta et al., 2002; Skehel et al., 2000), protein tyrosine phosphatase-interacting protein 51 (PTPIP51) (De Vos et al., 2012), activating transcription factor 6 (ATF6) (Gkogkas et al., 2008) and viral proteins (Hamamoto et al., 2005).

VAPB was originally identified as binding partner for the synaptic vesicle SNARE protein vesicle-associated membrane protein (VAMP)/synaptobrevin in Aplysia californica and this suggests a role in vesicle trafficking (Skehel et al., 1995). Aside from this, several other lines of evidence indicate that VAPB is involved in the transport
of vesicles between ER and Golgi and in intra-Golgi transport. Transport through the Golgi apparatus and from the Golgi to ER is mediated by coat protein I (COPI)-coated vesicles (Letourneur et al., 1994; Orci et al., 1997). Vesicle transport from ER to Golgi is mediated by coat protein II (COPII)-coated vesicles via the ER-Golgi intermediate compartment (ERGIC) (Barlowe et al., 1994; Campbell and Schekman, 1997). VAPB co-localizes with COPI vesicles, ERGIC and the COPII vesicle marker secretion-defective 23 (Sec23) (Moumen et al., 2011; Tran et al., 2012). In addition, VAPB also interacts with the FFAT motif-containing N-terminal domain-interacting receptor (Nir) proteins Nir2 and Nir3 (Amarilio et al., 2005; Loewen et al., 2003), and overexpression of VAPB and Nir2 causes remodelling of the ER and blocks protein export from the ER to the Golgi apparatus (Amarilio et al., 2005). Together, these findings support a role for VAPB in the regulation of vesicle trafficking.

There is also evidence that VAPB is involved in lipid metabolism. Thus, VAPB binds to the FFAT motif-containing lipid transferring, binding and sensing proteins Nir2, oxysterol binding protein and ceramide transfer protein (Amarilio et al., 2005; Kawano et al., 2006; Loewen et al., 2003). The VAPB-FFAT motif interaction is essential for lipid transfer between the ER and Golgi, and also for lipid metabolism (Loewen et al., 2003; Peretti et al., 2008). The VAPB homologue in yeast also binds to the FFAT motif containing protein overproducer of inositol 1 which functions to regulate transcription of genes involved in phospholipid synthesis (Gavin et al., 2002; Loewen et al., 2003).

VAPB has also been implicated in microtubule organisation and in particular, microtubule regulation of bouton formation at the neuromuscular junction. Thus, VAPB interacts either directly or indirectly with microtubules (Amarilio et al., 2005; Pennetta
et al., 2002; Skehel et al., 2000). Via its interaction with microtubules, VAPB influences the neuromuscular junction structure in *Drosophila melanogaster* (Pennetta et al., 2002) and also ER structure in mammals (Amarilio et al., 2005). Also, via its binding to Nir3, VAPB modulates microtubule stability and overexpression of VAPB can induce rearrangement of the ER and microtubule networks (Amarilio et al., 2005).

There is also strong evidence that VAPB plays a role in the UPR following ER stress. Increased protein trafficking through the ER or insults that affect protein folding in the ER lumen can lead to ER stress. To sense ER and respond to ER stress, eukaryotic organisms have evolved the UPR which activates pathways that include transcriptional changes to adjust the ER protein folding capacity and rectify the stress (Bernales et al., 2006; Lin et al., 2008). There are three major branches to the UPR which involve different ER resident proteins. These proteins are inositol-requiring protein 1 (IRE1), double stranded RNA activated protein kinase RNA-like endoplasmic reticulum kinase (PERK) and ATF6 (see Figure 1.3 page 58). These proteins all contain domains that protrude into the ER lumen so as to sense ER stress and also have cytosolic effector domains (Bernales et al., 2006; Lin et al., 2008).

Although a number of lines of evidence suggest that VAPB functions in the UPR, the precise details are unclear. Thus, in some reports overexpression of VAPB promotes UPR and loss of VAPB blocks activation of UPR (Kanekura et al., 2006; Langou et al., 2010; Moumen et al., 2011). Moreover, this role of VAPB in the UPR has been shown to involve IRE1 and X-box binding protein-1 (XBP1) signalling (Kanekura et al., 2006; Suzuki et al., 2009). By contrast, others have shown that VAPB binds to ATF6 and overexpression of VAPB blocks UPR via an effect on ATF6 (Gkogkas et al., 2008).
Studies primarily conducted in *Drosophila* and *C. elegans* have provided evidence that VAPB is cleaved and a region containing the MSP and coiled-coil domains is then secreted to function as a ligand for some growth factor receptors (Han et al., 2012; Tsuda et al., 2008). These secreted VAPB domains function as ligands for ephrin receptors (EphR), sensory axon guidance-3 receptor Roundabout (SAX-3 Robo) receptors and caterpillar-like receptor-1 leukocyte common antigen-related-like (CLR-1 Lar) receptors (Han et al., 2012; Tsuda et al., 2008). EphR, SAX-3 Robo and CLR-1 Lar are located in neuronal growth cones and are involved in axon guidance (Chang et al., 2004; Sun et al., 2000; Wang and Anderson, 1997). Furthermore, Han and co-workers have demonstrated that the secreted MSP domain of VAPB influences mitochondrial localization in striated muscles via SAX-3, Robo and CLR-1 Lar receptors (Han et al., 2012).

Finally, recent work has provided evidence that VAPB is involved in intracellular Ca$^{2+}$ homeostasis (De Vos et al., 2012; Langou et al., 2010). In particular VAPB has been shown to bind to the outer mitochondrial membrane protein PTPIP51 to regulate Ca$^{2+}$ exchange between ER and mitochondria (De Vos et al., 2012). Both ER and mitochondria are Ca$^{2+}$ stores and following release from the ER, Ca$^{2+}$ can be taken up by mitochondria. The VAPB-PTPIP51 interaction has been shown to regulate Ca$^{2+}$ exchange from ER to mitochondria after induction of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca$^{2+}$ release from ER stores (De Vos et al., 2012).

Since the functions of VAPB are not properly understood, the mechanisms by which ALS-associated VAPB P56S causes disease are also not clear. However, VAPB P56S
has been shown to aggregate and induce the formation of abnormal ER-derived inclusions (Fasana et al., 2010; Langou et al., 2010; Nishimura et al., 2004; Teuling et al., 2007; Tudor et al., 2010). The biological consequences of these inclusions and their relationship to the neurodegenerative process are unclear. In particular, the effect of VAPB P56S on UPR has generated conflicting results. Thus, in some reports, expression of VAPB induces UPR and VAPB P56S inhibits this process (Chen et al., 2010; Kanekura et al., 2006; Suzuki et al., 2009). In another, expression of VAPB and VAPB P56S both inhibit UPR but VAPB P56S is more potent in this effect (Gkogkas et al., 2008). Finally, other studies have shown that VAPB and/or VAPB P56S can induce ER stress and UPR (Langou et al., 2010; Tsuda et al., 2008). Studies on the effect of VAPB P56S on Ca\(^{2+}\) homeostasis have provided more consistent results with two groups showing that VAPB P56S elevates intracellular Ca\(^{2+}\) levels (De Vos et al., 2012; Langou et al., 2010). Whether VAPB P56S induces disease via a loss or gain of function is thus unclear. VAPB P56S may inhibit VAPB function by sequestering wild-type VAPB to the inclusions and preventing its interaction with other proteins (Kanekura et al., 2006; Mitne-Neto et al., 2007; Ratnaparkhi et al., 2008; Suzuki et al., 2009; Teuling et al., 2008). Alternatively, VAPB P56S could be a toxic gain-of-function mutant because VAPB P56S overexpression has been shown to induce the UPR (Gkogkas et al., 2008; Tsuda et al., 2008). Support for a loss of function comes from the finding that VAPB levels are reduced in ALS spinal cord and also in motor neurons derived from induced pluripotent stem cell of patients that harbour the VAPB P56S mutation (Anagnostou et al., 2010; Mitne-Neto et al., 2007).
1.3 Neurodegeneration mechanisms in ALS

Several mechanisms have been proposed to induce motor neuron degeneration in ALS and these have recently been reviewed (Ferraiuolo et al., 2011). They include glutamatergic excitotoxicity, oxidative stress, pathological protein aggregation, mitochondrial dysfunction, damage to RNA processing, axonal transport dysfunction and ER stress. None of these mechanisms are mutually exclusive and it is plausible that they all contribute to the disease process to some extent. In addition, it has become clear that ALS is not just a disease of motor neurons, but that other cell types such as astrocytes and microglia actively participate in the disease process (for review see (Ferraiuolo et al., 2011)). In the following section of this thesis, I discuss the evidence supporting the different pathogenic mechanisms.

1.3.1 Excitotoxicity

Glutamate is the major excitatory neurotransmitter in the central nervous system. After its release from the presynaptic terminal, it binds to and activates ionotropic and metabotropic receptors (Nicoletti et al., 2011; Traynelis et al., 2010). Glutamate is then re-internalized into either glia or neurons by re-uptake systems (Kanai and Hediger, 2004), of which the astroglial excitatory amino acid transporter 2 (EAAT2) is the most common (Danbolt, 2001). Excessive activation of glutamate receptors is capable of inducing neuronal damage through a process called excitotoxicity, which can elicit an excessive \(\text{Ca}^{2+} \) influx and the activation of cell death programmes (Berliocchi et al., 2005). Excitotoxicity is a well established pathogenic component in many neurological disorders and considerable evidence also points to its involvement in ALS (Foran and Trotti, 2009).
An early hint of glutamate metabolism disruption was the observation of elevated glutamate levels in the cerebrospinal fluid (CSF) of ALS patients (Rothstein et al., 1990). Subsequently, a decreased EAAT2 activity was detected in ALS brain and spinal cord, raising the possibility that the increased glutamate levels reflected defective clearance of glutamate (Rothstein et al., 1992).

Interestingly, the intrinsic properties of motor neurons make them especially vulnerable to alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor mediated excitotoxicity (Carriedo et al., 1996; Van Den Bosch et al., 2000). First, motor neurons show a relative deficiency in the glutamate receptor-2 (GluR2) subunit, which normally regulates the AMPA receptor’s permeability to Ca\(^{2+}\) (Van Damme et al., 2002). Therefore, motor neurons have a high number of Ca\(^{2+}\)-permeable AMPA receptors. Second, motor neurons express low levels of Ca\(^{2+}\) buffering proteins (Ince et al., 1993), which makes them rely heavily on the mitochondrial Ca\(^{2+}\) buffering capacity (Alexianu et al., 1994). Thus, upon repeated AMPA stimulation, mitochondrial Ca\(^{2+}\) buffering is saturated, leading to a persistent elevation in baseline cytosolic Ca\(^{2+}\) (Grosskreutz et al., 2007). Furthermore, excessive Ca\(^{2+}\) entry into motor neurons and mitochondrial Ca\(^{2+}\) overload can lead to loss of mitochondrial membrane potential and the generation of reactive oxygen species (ROS) (Carriedo et al., 2000). Finally, there is considerable evidence for altered mitochondrial function in ALS (see Section 1.3.4), which could also increase the susceptibility of motor neurons to excitotoxicity.

Mutations in alsin, a guanine nucleotide exchange factor, cause autosomal recessive juvenile onset ALS, infantile-onset HSP, and juvenile PLS (Eymard-Pierre et al., 2002; Gros-Louis et al., 2003; Otomo et al., 2003). Alsin was found to interact with glutamate
receptor interacting protein 1 (GRIP1), a protein responsible for GluR2 shuttling to the synapse. When deficient, alsin alters the distribution of GRIP1 and reduces the amount of GluR2, rendering motor neurons more vulnerable to excitotoxicity (Lai et al., 2006).

Finally, riluzole, the only disease modifying agent approved for the treatment of ALS has anti-glutamatergic properties. Thus, riluzole blocks presynaptic glutamate release and modulates N-methyl-D-aspartate (NMDA) and AMPA receptors (Albo et al., 2004; Bensimon et al., 1994; Debono et al., 1993; Lacomblez et al., 1996). However, other anti-glutamate compounds such as topiramate and lamotrigine have failed in clinical trials, suggesting the neuroprotective effect of riluzole might also depend on other pathways (Cudkowicz et al., 2003; Ryberg et al., 2003).

1.3.2 Oxidative stress

The aerobic metabolism is constantly generating potentially toxic by-products in the form of reactive oxygen species (ROS). Cellular ROS arise mostly due to an incomplete reduction of molecular oxygen during oxidative phosphorylation. However, under normal conditions the cell’s antioxidant mechanisms are constantly scavenging the ROS and preventing or repairing the damage they cause. Oxidative stress occurs when the balance between ROS production and the physiologic antioxidant defence is perturbed (Halliwell, 1994).

Several lines of evidence suggest oxidative stress is involved in ALS pathogenesis. Initially, evidence of oxidative damage was identified in post-mortem ALS spinal cord and motor cortex (Ferrante et al., 1997; Shaw et al., 1995). This was confirmed by biological samples from ALS patients which showed oxidative damage to lipids, DNA
and protein (Bogdanov et al., 2000; Simpson et al., 2004; Smith et al., 1998). The oxidation of mRNA, leading to decreased expression of key proteins is also an important feature in patients and mutant SOD1 mice (Chang et al., 2008). The link between ALS and oxidative stress was strengthened after the discovery of causative ALS mutations in the antioxidant enzyme SOD1 and mutant SOD1 transgenic mice recapitulate the oxidative damage characteristic of human ALS (Andrus et al., 1998; Casoni et al., 2005; Liu et al., 1998; Zimmerman et al., 2007). More recently, ALS mutant TDP-43 has been shown to induce oxidative injury in motor neuron cell lines (Duan et al., 2010). It is now widely accepted that loss of SOD1 dismutase activity does not occur in all ALS mutants and is not sufficient to cause disease. However, genes involved in the antioxidant response, including nuclear factor erythroid 2-related factor 2 (NRF2) are down-regulated in cells expressing mutant SOD1 (Kirby et al., 2005). NRF2 induces gene expression in response to oxidative stress and also maintains the basal expression of antioxidant enzymes (Nguyen et al., 2009). In addition, decreased levels of NRF2 have been reported in the CNS of ALS patients (Sarlette et al., 2008).

An important source of ROS in ALS is represented by microglia. Activated microglia increase the production of superoxide through the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase as a form of defence against pathogens (Bedard and Krause, 2007). Mutant SOD1 expressed in microglia binds to the NADPH oxidase activator Rac1 and blocks the enzyme in an active state, generating harmful amounts of superoxide ions (Harraz et al., 2008). Moreover, the activation of NADPH oxidase was also detected in the spinal cords of sporadic ALS patients (Wu et al., 2006) and the administration of apocynin, a NADPH oxidase inhibitor, increased survival in SOD1 transgenic mice (Harraz et al., 2008). Interestingly, mutant SOD1 can also induce
activation of microglia following its secretion from neighbouring neurons or astrocytes (Zhao et al., 2010) and extracellular SOD1 has been detected in the CSF of ALS patients and transgenic mice (Turner and Talbot, 2008; Urushitani et al., 2006).

Ageing is an important risk factor for developing ALS and ROS production is known to increase with age. This is unlikely to be the causative event, but in the presence of other pathogenic insults, it could be enough to tip the homeostatic balance and initiate an irreversible cycle of cellular injury. Although antioxidant therapies have extended survival in transgenic animal models (see for review (Turner and Talbot, 2008)), most human trials have failed so far (Barber and Shaw, 2010).

1.3.3 Pathological protein aggregation

The accumulation of ubiquitinated proteins in motor neurons is a hallmark pathology of ALS (see for review (Ince et al., 2011)). The major component of the ubiquitinated inclusions was recently identified as TDP-43, a DNA/RNA binding protein (Neumann et al., 2006). Although TDP-43 resides predominantly in the nucleus in physiological conditions, pathological TDP-43 is cleaved and redistributed to the cytoplasm, where it becomes abnormally phosphorylated and ubiquitinated (Neumann et al., 2006). Since TARDBP mutations are capable of causing familial and sporadic ALS (Kabashi et al., 2008; Sreedharan et al., 2008), it has been speculated that abnormal aggregation of TDP-43 contribute to the disease process.

The classical ALS pathology also features accumulations of other proteins. These include phosphorylated neurofilaments, which accumulate in axons and cell bodies and could have detrimental effects on axonal homeostasis (see for review (Al-Chalabi and
Miller, 2003)) and misfolded SOD1 which is also present in ALS spinal cords (Shibata et al., 1996) and in SOD1 transgenic animals (Bruijn et al., 1998). Antibodies selectively detecting misfolded SOD1 have been created (Rakhit et al., 2007) and these label mutant SOD1 inclusions in familial ALS and an oxidized form of wild-type SOD1 in a subset of sporadic ALS cases (Bosco et al., 2010). Finally, mutations in FUS, a nuclear protein, induce its aberrant localization to the cytoplasm, where it forms inclusions (Kwiatkowski et al., 2009; Vance et al., 2009). Recently, the number of FUS inclusions has been shown to increase with disease duration (Suzuki et al., 2012).

Other recently identified causative ALS mutations support a role for abnormal protein aggregation in disease pathogenesis. Mutations in the valosin-containing protein (VCP) gene on chromosome 9 have been found in patients with familial ALS (Johnson et al., 2010). VCP is an abundantly expressed adenosine triphosphate (ATP)ase involved in a wide variety of cellular processes including ER and mitochondrial protein degradation, endosomal sorting, the ubiquitin proteasome system, ER and Golgi reassembly, nuclear envelope formation and the cell cycle (Acharya et al., 1995; Cao et al., 2003; Dai and Li, 2001; Latterich et al., 1995; Rabouille et al., 1995; Ritz et al., 2011; Xu et al., 2011a). Pathogenic VCP mutations have been found to impair the clearance of aggregated proteins (Ju et al., 2008), perturb endolysosomal sorting (Ritz et al., 2011) and induce autophagosome accumulation (Ju et al., 2009). Interestingly, VCP can escort ubiquitinated proteins to the proteasome for degradation by binding to Derlin-1, thus playing a central role in ER-associated protein degradation (ERAD) (Ye et al., 2005).

Mutations in ubiquilin 2 (UBQLN2) cause X-chromosome linked dominantly inherited ALS with or without FTD (Deng et al., 2011). The gene encodes a ubiquitin-like protein
which interacts with polyubiquitin chains and proteasome subunits, and is thought to regulate protein degradation (Ko et al., 2004). Mutant UBQLN2 perturbs the ubiquitin proteasome system suggesting a mechanism linked to impaired protein clearance in ALS (Deng et al., 2011).

1.3.4 Mitochondrial dysfunction
Mitochondria are organelles essential for energy production, Ca2+ buffering and mediating apoptosis. Abnormalities in mitochondrial morphology, such as mitochondrial swelling or vacuolization have long been observed in ALS motor neurons (Sasaki and Iwata, 2007). Moreover, these changes correlate with functional alterations such as defects in ATP production and the electron transport chain, and reduced Ca2+ buffering capacity (Carri et al., 1997; Fujita et al., 1996; Siklos et al., 1996; Wiedemann et al., 2002).

Mitochondrial abnormalities and functional deficits have been consistently reported in mutant SOD1 transgenic mice and mutant SOD1 expressing cells (Dal Canto and Gurney, 1995; Kong and Xu, 1998; Liu et al., 2004; Pasinelli et al., 2004; Sotelo-Silveira et al., 2009; Vande Velde et al., 2011; Wong et al., 1995). A proportion of mutant SOD1 is present on the outer mitochondrial membrane, in the intermembrane space and mitochondrial matrix, suggesting that it may directly damage mitochondria (Higgins et al., 2002; Liu et al., 2004; Mattiazzi et al., 2002; Pasinelli et al., 2004; Vande Velde et al., 2008; Vijayvergiya et al., 2005). This abnormal localization of mutant SOD1 is specific for spinal cord mitochondria and is not found in brain or liver, indicating its direct relevance for disease (Mattiazzi et al., 2002; Pasinelli et al., 2004; Vande Velde et al., 2008).
Some specific molecular targets for mutant SOD1 toxicity have been identified. One of them is the outer mitochondrial membrane voltage-dependent anion channel 1 (VDAC1), which directly binds mutant SOD1 (Israelson et al., 2010). VDAC1 regulates the ion and metabolite flux between mitochondria and cytosol and plays a key role in the mitochondrial permeability transition pore apoptotic pathway (McCommis and Baines, 2012). Interaction of mutant SOD1 with VDAC1 impairs channel conductance and adenosine diphosphate (ADP) import across the outer mitochondrial membrane (Israelson et al., 2010). This can lead to reduced ATP production and may explain the perturbation of ATP synthesis observed in mutant SOD1 models (Carri et al., 1997; Damiano et al., 2006). VDAC1 is involved in Ca2+ exchange between ER and mitochondria via its interaction with inositol-1,4,5-triphosphate receptors (IP3R) (Rapizzi et al., 2002; Szabadkai et al., 2006) and mutant SOD1 binding to VDAC1 may also underlie the aberrant Ca2+ handling and impaired Ca2+ buffering observed in mutant SOD1 models (Grosskreutz et al., 2007; Jaiswal and Keller, 2009). Aberrant mitochondrial Ca2+ handling has also been described in VAPB-related ALS (De Vos et al., 2012; Langou et al., 2010) and ALS patients (Siklos et al., 1996) but it is not clear whether this involves VDAC1. Nevertheless, impaired mitochondrial Ca2+ handling and increased cytosolic Ca2+ are common findings in ALS that could be primary pathogenic events or act indirectly by inducing defects in axonal transport (MacAskill and Kittler, 2010; Wang and Schwarz, 2009) or by rendering motor neurons vulnerable to excitotoxicity (see Section 1.3.1).

Another target of mutant SOD1 is the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) in spinal cord mitochondria, which is sequestered into SOD1 aggregates (Pasinelli et al.,
2004). Bcl-2 depletion from motor neurons could be the underlying cause of cytochrome c release and caspase activation in mutant SOD1 models (Kirkinezos et al., 2005; Takeuchi et al., 2002).

1.3.5 Axonal transport dysfunction

The proper transport of protein and organelle cargoes along the cytoskeleton is a vital process for virtually all mammalian cells. This process is particularly important in neurons, since they are polarized cells with axons and dendrites usually extending over great distances. Since most neuronal proteins are synthesised in the cell body and then transported to their final destination, neurons require highly efficient transport of cargoes to the distal regions of axons and dendrites to permit functioning of synapses. Likewise, trophic factors need to be shipped from the synapse to the cell body. Transport from cell body to the axon terminal is termed anterograde axonal transport and transport from the axon terminal to the cell body is termed retrograde axonal transport.

Most long range transport through axons is mediated by kinesin and dynein molecular motors that move along microtubules. Within axons, microtubules are mostly orientated with their plus ends (the ends to which tubulin subunits are added) towards the synapse. Most kinesins move towards the plus end of microtubules (anterograde transport) whereas dynein moves towards the minus end of microtubules (retrograde transport) (Hirokawa and Noda, 2008).

A number of lines of evidence suggest that defective axonal transport contributes to neurodegenerative diseases including ALS (for review see (De Vos et al., 2008)).
Firstly, mutations in dynactin, a component of the dynein motor, can cause a familial form of ALS (Munch et al., 2004; Puls et al., 2003) and mutant dynactin damages dynein function (Levy et al., 2006).

Secondly, the presence of protein/organelle accumulations in ALS such as neurofilament and mitochondria in the proximal axon suggest that axonal transport is disrupted (Ackerley et al., 2004; Carpenter, 1968; Hirano et al., 1984; Ince et al., 1998; Sasaki and Iwata, 2007). Thirdly, damage to axonal transport has been described in ALS transgenic animals and cellular models. Defective axonal transport of components of the cytoskeleton, mitochondria and vesicles are observed in mutant SOD1 mice that develop ALS (Bilsland et al., 2010; De Vos et al., 2007; Kieran et al., 2005; Williamson and Cleveland, 1999; Zhang et al., 1997). Also overexpression of neurofilaments can model ALS in mice and damage to axonal transport is seen in these models (Collard et al., 1995; Millecamps et al., 2006).

Finally, disrupting molecular motor function can model ALS in transgenic mice. The Legs-at-odd-angles and Cramping 1 mutant mice develop a progressive locomotor phenotype including motor neuron cell loss, and the genetic defect in these animals has been shown to involve the dynein gene (Hafezparast et al., 2003). Furthermore, overexpression of dynamitin (which disrupts dynein function) causes motor neuron disease in transgenic mice (LaMonte et al., 2002).

In contrast, some evidence suggests that damage to axonal transport of mitochondria might not be mechanistic in the ALS disease process. Syntaphilin is a protein that anchors mitochondria to microtubules in axons and syntaphilin knockout mice show
increased mitochondrial movement (Kang et al., 2008). Crossing mutant SOD1 mice with syntaphilin knockout mice increases axonal transport of mitochondria but it does not slow disease progression (Zhu and Sheng, 2011). However, there is evidence that damage to mitochondrial transport is anterograde specific in ALS (De Vos et al., 2007; Morotz et al., 2012) and loss of syntaphilin increases overall transport so does not properly correct the defect. Others have also reported that SOD1 G85R transgenic mice develop ALS despite having no axonal transport defects (Marinkovic et al., 2012). However, this finding is in disagreement with studies from other groups (Williamson and Cleveland, 1999) and the weight of evidence supports a role for defective axonal transport in ALS.

1.3.6 Damage to mRNA metabolism

Defective splicing of mRNA for the glial glutamate transporter EAAT2 in ALS patients was one of the first pieces of evidence linking RNA processing defects to excitotoxicity and motor neuron degeneration (Lin et al., 1998). Moreover, mRNA oxidation in motor neurons is a common finding in ALS patients and SOD1 transgenic mice (Chang et al., 2008). More recently, the importance of RNA metabolism has been highlighted by the discovery that mutations in genes encoding Senataxin, an RNA helicase, Angiogenin, a ribonuclease and RNA/DNA interacting proteins TDP43 and FUS all cause familial forms of ALS (Chen et al., 2004; Greenway et al., 2006; Kwiatkowski et al., 2009; Sreedharan et al., 2008; Vance et al., 2009).

TDP-43 is a predominantly nuclear protein that regulates mRNA expression, splicing, translation and gene transcription (Cohen et al., 2011). Expression of mutant TDP-43 in cells leads to an abnormal localization to the cytoplasm, particularly in stress granules.
(Liu-Yesucevitz et al., 2010). Certain conditions such as oxidative stress or ischemia trigger a global translational silencing and the formation of stress granules, cytoplasmic aggregates which transiently sequester mRNA and RNA binding proteins and can modulate the signalling balance between apoptosis and survival (Thomas et al., 2011). More than 6000 TDP-43 RNA targets have now been identified and these include several that are linked to ALS such as FUS, EAAT1, progranulin and TDP-43 itself (Polymenidou et al., 2011; Sephton et al., 2011; Tollervey et al., 2011).

In a similar manner to TDP-43, ALS mutant FUS shows abnormal cytoplasmic localization and can induce the formation of FUS containing cytoplasmic stress granules (Dormann et al., 2010; Ito et al., 2011a; Kwiatkowski et al., 2009; Vance et al., 2009). FUS is also a component of mRNA transporting granules and might contribute to mRNA shuttling to synapses for local translation (Kanai et al., 2004). Recently, FUS has been shown to facilitate exon 10 skipping in the gene encoding Tau (Ishigaki et al., 2012). This generates 3-repeat Tau, an isoform which is relatively increased in neurodegenerative disorders (Yoshida, 2006). In addition, TDP-43 and FUS interact to regulate mRNA expression of histone deacetylase 6 (HDAC6) (Kim et al., 2010b), a protein involved in autophagy and stress granule formation (d'Ydewalle et al., 2012).

Lastly, a GGGGCC hexanucleotide repeat expansion in a non-coding region of C9ORF72 is currently the most common genetic defect in both ALS and FTD (Cooper-Knock et al., 2012; DeJesus-Hernandez et al., 2011; Majounie et al., 2012; Renton et al., 2011). In one scenario, the expanded hexanucleotide repeats can act through a toxic gain of function at the mRNA level and form intranuclear accumulations that sequester mRNA binding proteins to disrupt mRNA metabolism. Indeed, C9ORF72 RNA foci
have been identified in the spinal cords and frontal cortex of patients carrying the expansion (DeJesus-Hernandez et al., 2011). This toxic mRNA disease mechanism has been described in other forms of neurodegeneration such as myotonic dystrophies and ataxias (Todd and Paulson, 2010).

1.3.7 ER stress and the unfolded protein response (UPR)

In order to survive, all living cells must carry out a quality control programme which regulates protein biosynthesis, folding, translocation, assembly/disassembly, and clearance (degradation). This complex regulatory network requires the coordinated action of chaperones and proteolytic systems and is called protein homeostasis or proteostasis (see for reviews (Bar-Lavan et al., 2012; Hartl et al., 2011)). Molecular chaperones prevent protein aggregation by stabilizing or helping proteins acquire their final conformation (Hartl et al., 2011). When the chaperone machinery is overwhelmed, two major systems mediate the complete degradation of abnormal proteins: the proteasome and the lysosome (Wong and Cuervo, 2010). The proteasome selectively recognizes substrates tagged with ubiquitin, which are mostly short-lived proteins. Autophagy denotes the delivery of cytosolic components and organelles (dubbed mitophagy in case of mitochondria) to the lysosome, where they undergo catalytic degradation.

Under normal conditions, proteins fold in the ER lumen and are prepared for delivery to the cell compartment where they are needed. Finely tuned molecular sensors in the ER lumen are capable of detecting a deficit in the ER folding capacity (i.e. ER stress) and activate signalling pathways collectively termed the UPR (see for reviews (Hetz, 2012; Lin et al., 2008)). The UPR tries to decrease the load of misfolded proteins and restore
proteostasis by (i) attenuation of translation, (ii) induction of chaperones to aid protein folding, and (iii) upregulation of degradation pathways such as ERAD and autophagy to completely remove misfolded proteins (see Figure 1.3). However, if ER stress persists and elicits a prolonged induction of UPR, the cell initiates apoptosis (Nakagawa et al., 2000; Nishitoh et al., 2002).

Several lines of evidence suggest an important role for ER stress in the pathogenic cascade of ALS. Firstly, ER stress and activation of the UPR has been described in mutant SOD1 transgenic mice and in cell lines that express mutant SOD1 (Atkin et al., 2006; Kikuchi et al., 2006; Nishitoh et al., 2008; Saxena et al., 2009; Tobisawa et al., 2003). Furthermore, the induction of UPR stress sensor kinases, chaperones and apoptotic mediators have been detected in the CSF of ALS patients and in postmortem sporadic ALS motor neurons (Atkin et al., 2008; Sasaki, 2010). Interestingly, in mutant SOD1 expressing mice, the upregulation of the ER resident misfolded protein sensor glucose-regulated protein 78/immunoglobulin heavy-chain binding protein (GRP78/BiP), which is indicative of UPR activation, appears to be specific for the fast-fatigable motor neurons, which are most susceptible to disease in ALS and was observed as early as postnatal day 5 (Saxena et al., 2009). It is not clear how mutant SOD1 induces ER stress but there is evidence that mutant SOD1 aggregates accumulate in the ER lumen and on the cytosolic surface of the ER where they interact with BiP and Derlin-1 (Kikuchi et al., 2006; Nishitoh et al., 2008). Binding of mutant SOD1 to Derlin-1 inhibits ERAD and increases ER stress and UPR (Nishitoh et al., 2008). The aberrant interaction between mutant SOD1 and BiP may also lead to an uncontrolled and prolonged UPR by preventing BiP interaction with ER stress sensors (Kikuchi et al., 2006). Mutant SOD1 also upregulates protein-disulfide isomerase (PDI), an ER-
resident chaperone which colocalizes with SOD1 aggregates and is suggested to have a protective role in SOD1 models (Atkin et al., 2006). Prolonged ER stress and UPR have deleterious effects on homeostasis and eventually activate apoptosis via cysteiny1 aspartate-specific protease-12 (caspase-12) and apoptosis signal-regulating kinase 1 (ASK1) (Nakagawa et al., 2000; Nishitoh et al., 2002). Both caspase-12 and ASK1 are activated in ALS mutant SOD1 expressing transgenic mice suggesting that UPR dependent apoptosis might contribute to neurodegeneration in ALS (Atkin et al., 2006; Holasek et al., 2005; Wengenack et al., 2004; Wootz et al., 2004).

A second line of evidence implicating ER stress in ALS comes from the finding that mutations in the gene encoding VAPB cause a form of familial ALS; VAPB functions in mediating the UPR in response to ER stress (Gkogkas et al., 2008; Kanekura et al., 2006; Suzuki et al., 2009). However, there are some inconsistencies regarding the role of VAPB in the UPR. Thus, in some reports, expression of VAPB induces UPR and ALS mutant VAPB inhibits this process (Chen et al., 2010; Kanekura et al., 2006; Suzuki et al., 2009). In another, expression of VAPB and ALS mutant VAPB both inhibit UPR but mutant VAPB is more potent in this effect (Gkogkas et al., 2008). Finally, other studies have shown that VAPB and/or mutant VAPB can induce ER stress and UPR (Langou et al., 2010; Tsuda et al., 2008).

Finally, there is evidence that ALS mutant TDP-43 and FUS can induce ER stress and UPR. TDP-43 is cleaved into toxic ubiquitinated hyperphosphorylated 25 kDa fragments (Neumann et al., 2006) and chemical induction of ER stress promotes TDP-43 cleavage via caspase-12 (Suzuki et al., 2011). Also expression of mutant FUS induces ER stress and mutant FUS interacts with and upregulates PDI (Farg et al.,
Together, these findings support a role for ER stress and UPR induction in the ALS pathogenic cascade.

Figure 1.4 The vertebrate UPR

When unfolded proteins accumulate in the ER, the stress sensors PERK, IRE1 and ATF6 initiate signalling cascades known as the UPR. Initially, activated PERK inhibits translation via EIF2α to reduce protein influx in the ER. Subsequently, regulated mRNA splicing and transcriptional activation act on specialized target genes. These genes encode proteins involved in protein folding, autophagy, ERAD and redox mechanisms, in an attempt to re-establish protein homeostasis. If ER homeostasis cannot be restored from the combined action of the three pathways, the cell undergoes apoptosis. RIDD -
1.4 The ER-mitochondria axis and neurodegenerative diseases

As detailed above, defects in a number of apparently disparate cellular functions can be seen in ALS. Understanding how these different pathological changes might be linked in a common pathway remains a major challenge for comprehending ALS disease processes. Recently, several studies have highlighted the role of ER-mitochondria communications in neurodegenerative diseases such as ALS (see for reviews (Cali et al., 2011; Giorgi et al., 2012; Lautenschlaeger et al., 2012; Rowland and Voeltz, 2012; Schon and Area-Gomez, 2012)).

Both ER and mitochondria play pivotal roles in a number of essential cellular functions. Thus, the ER is involved in protein synthesis, lipid metabolism and Ca\(^{2+}\) homeostasis, while mitochondria function in energy metabolism, Ca\(^{2+}\) homeostasis, lipid synthesis and apoptosis. These functions require a dynamic spatial organization that permits relaying of signals between different organelles. In particular, mitochondria and ER display close associations with between 5 and 20% of the mitochondrial surface closely apposed (10-25 nm distance) to ER membranes (Csordas et al., 2006; Rizzuto et al., 1998). These ER membrane domains are known as mitochondria-associated ER membranes (MAM). A large body of evidence demonstrates that mitochondria communicate directly with ER through MAM to facilitate a number of intracellular signaling processes. These include Ca\(^{2+}\) and phospholipid exchange, ER and mitochondrial stress responses, and apoptosis (Giorgi et al., 2009; Hayashi et al., 2009; Pinton et al., 2008; Rowland and Voeltz, 2012).
A number of ALS associated insults are now known to target either MAM proteins, or mitochondrial proteins at the MAM interface. Thus, VAPB is a known MAM protein and ALS mutant VAPB disrupts ER structure and ER to mitochondria Ca\(^{2+}\) exchange (De Vos et al., 2012; Fasana et al., 2010; Kim et al., 2010a; Langou et al., 2010; Nishimura et al., 2004; Teuling et al., 2007; Tudor et al., 2010). Also, MAM is involved in ER stress and the UPR (Simmen et al., 2010; Verfaillie et al., 2012) and ALS mutant SOD1, TDP-43 and FUS all induce prolonged UPR (Farg et al., 2012; Saxena et al., 2009; Suzuki et al., 2011; Tong et al., 2012). Likewise, mutant SOD1 damages VDAC1 (Israelson et al., 2010) which is located in the outer mitochondrial membrane and interacts with IP3Rs in MAM via BiP (Rapizzi et al., 2002; Szabadkai et al., 2006).

Such perturbations to ER-mitochondria communications are predicted to induce some of the other pathogenic features of ALS. For example, altered Ca\(^{2+}\) exchange between ER and mitochondria is likely to impact on axonal transport of mitochondria since Ca\(^{2+}\) regulates this process (Chang et al., 2006; Macaskill et al., 2009; Rintoul et al., 2003; Saotome et al., 2008; Wang and Schwarz, 2009). Indeed, ALS mutant VAPB disrupts axonal transport and this is linked to ER-mitochondria Ca\(^{2+}\) exchange (De Vos et al., 2012; Morotz et al., 2012). Thus, a number of ALS associated insults can be linked to the ER-mitochondria axis and damage to this axis is likely to induce some of the pathogenic features of ALS.

Alterations to ER-mitochondria associations are predicted to have particularly detrimental effects to neurons. Tightening of contacts is likely to increase Ca\(^{2+}\) signalling between the two organelles, leading to mitochondria Ca\(^{2+}\) overload. This in
turn stimulates opening of the mitochondrial permeability transition pore and induction of apoptosis (Csordas et al., 2006; Rowland and Voeltz, 2012). By contrast, loosening of contacts will affect Ca\(^{2+}\)-dependent regulation of the tricarboxylic acid cycle and ATP synthesis in mitochondria (Csordas et al., 2006; Rowland and Voeltz, 2012). Mitochondria are enriched in synapses where they are required for generating ATP to maintain ionic potential and for regulating Ca\(^{2+}\) homeostasis. Thus, any damage to mitochondria or reduction in their ability to generate ATP is likely to have detrimental effects at the synapse. Synaptic loss is a key and early feature of ALS (Dadon-Nachum et al., 2011; De Vos et al., 2008).

1.4.1 Neurodegenerative diseases and alterations to ER-mitochondria associations

Studies such as those described above which highlight how neurodegenerative disease insults might target MAM and mitochondria proteins at the MAM interface have prompted examinations of ER-mitochondria connections in some disease states. To date, direct studies on the effects of neurodegenerative disease insults on ER-mitochondria contacts are restricted to Alzheimer’s disease and Parkinson’s disease.

Mutations in the genes encoding presenilins cause some forms of familial Alzheimer’s disease. The presenilins (presenilin-1 and presenilin-2) are part of the \(\gamma\)-secretase complex that processes the amyloid precursor protein (APP) to release amyloid \(\beta\)-peptide (A\(\beta\)) that is deposited in the brains of Alzheimer’s disease patients. Alterations to processing of APP and production of A\(\beta\) are believed to be major events in Alzheimer’s disease. The presenilins are resident ER proteins (see for reviews (De Strooper and Annaert, 2010; Ho and Shen, 2011; Selkoe and Wolfe, 2007)). Moreover, both presenilin-1 and presenilin-2 are enriched in MAM (Area-Gomez et al., 2009).
Recently, the effects of Alzheimer’s disease mutant presenilins on ER-mitochondria contacts have been studied although the results are a little conflicting. In one study, presenilin-2 but not presenilin-1 increases ER-mitochondria contacts whereas in the other, presenilin-1 increases ER-mitochondria contacts (Area-Gomez et al., 2012; Zampese et al., 2011). The presenilin-induced changes to ER-mitochondria contacts have been shown to induce alterations to both Ca\(^{2+}\) and lipid metabolism (Area-Gomez et al., 2012; Zampese et al., 2011).

\(\alpha\)-synuclein is a major component of Lewy bodies that are a pathological feature of Parkinson’s disease and some forms of dementia. Mutations in the \(\alpha\)-synuclein gene cause familial forms of Parkinson’s disease (see for reviews (Goedert et al., 2012; Lee and Trojanowski, 2006)). Damage to mitochondria is strongly linked to Parkinson’s disease and some other mutant genes that cause familial Parkinson’s disease encode mitochondrial proteins (see for reviews (Exner et al., 2012; Youle and van der Bliek, 2012)). A proportion of \(\alpha\)-synuclein localizes to mitochondria (Cole et al., 2008; Devi et al., 2008; Shavali et al., 2008) and recently, \(\alpha\)-synuclein has been shown to increase ER-mitochondria contacts and to influence mitochondrial Ca\(^{2+}\) levels (Cali et al., 2012).

Finally, mutations in the Mitofusin-2 gene cause some Charcot-Marie-Tooth disease type 2A (Barisic et al., 2008) and there is evidence that mitofusin-2 forms some of the molecular tethers that directly link ER and mitochondria (de Brito and Scorrano, 2008).

1.4.2 ER-mitochondria tethering proteins

Despite the importance of ER-mitochondria interactions to fundamental biological processes, the mechanisms that control these interactions and in particular, the
molecular identity of the tethers that physically connect ER and mitochondria are poorly understood. Electron tomography studies reveal that ER and mitochondria are linked by structures of different length (10 nm at smooth ER and 25 nm at rough ER) and this suggests that a number of proteins can physically connect these organelles (Csordas et al., 2006).

In yeast, proteins of the ER-mitochondria encounter structure (ERMES) act as a molecular tether between ER and mitochondria but ERMES orthologs in higher eukaryotes have not so far been identified (Kornmann et al., 2009). In a major study, mitofusin-2 was shown to link ER and mitochondria in mammalian cells (de Brito and Scorrano, 2008) but these findings have not been properly replicated. Indeed, strong evidence has just been presented that mitofusin-2 does not play any role in juxtaposing ER and mitochondria (Cosson et al., 2012).

Phosphofurin acidic cluster sorting protein-2 (PACS-2) is a sorting protein believed to be involved in mediating vesicle sorting and trafficking and which is associated with both ER and mitochondria (Simmen et al., 2005). Silencing of PACS-2 uncouples ER from mitochondria but since this involves mitochondrial fragmentation and altered morphology, it has been concluded that this effect on ER-mitochondria associations is probably indirect (Simmen et al., 2005).

IP3R in MAM and VDAC in mitochondria physically interact via the molecular chaperone BiP and this prompted the suggestion that these molecules represent ER-mitochondria tethers (Rapizzi et al., 2002; Szabadkai et al., 2006). However, IP3R
knockout cells have intact ER-mitochondria interactions ruling out a major role for these proteins as structural linkers (Csordas et al., 2006).

Recently, work from our research group identified the mitochondrial protein, PTPIP51 as a binding partner for the resident ER protein VAPB (De Vos et al., 2012). VAPB is anchored in the ER via a C-terminal membrane-spanning domain and its N-terminus projects into the cytoplasm (Kagiwada et al., 1998). PTPIP51 is anchored in the outer mitochondrial membrane via an N-terminal mitochondrial targeting sequence such that its C-terminus projects into the cytoplasm (De Vos et al., 2012). As such, VAPB and PTPIP51 represent candidate proteins for the structural tethers connecting ER with mitochondria that can be visualised by electron microscopy.

VAPB is described in detail above (see Section 1.2.4). PTPIP51 is a relatively poorly studied protein that is also known as family with sequence similarity 82 member A2 (FAM82A2), human cerebral protein-10 and regulator of microtubule dynamics protein-3 (RMD-3). PTPIP51 binds to protein tyrosine phosphatase-1B (PTP1B) and T-cell protein tyrosine phosphatase (Brobeil et al., 2010; Stenzinger et al., 2005) but the functional significance of these interactions is unclear. PTPIP51 also binds 14-3-3 proteins (Brobeil et al., 2012; Petri et al., 2011; Yu et al., 2008) but again, it is not clear how these interactions impact upon cellular function. RMD-3 is a putative homologue of PTPIP51 in C. elegans and another RMD family member, RMD-1 functions in chromosome segregation (Oishi et al., 2007). However, in mammalian cells PTPIP51 is an outer mitochondrial protein of unclear function that has been implicated in the regulation of cell morphology, motility and apoptosis and which contains an N-terminal transmembrane domain and a central coiled-coil domain (Brobeil et al., 2011; De Vos et
al., 2012; Lv et al., 2006; Yu et al., 2008). Both VAPB and PTPIP51 are ubiquitously expressed although their expression levels vary in different tissues (Lv et al., 2006; Skehel et al., 2000; Stenzinger et al., 2005).

1.5 Aims of the thesis

As detailed above, the finding that VAPB and PTPIP51 interact raised the possibility that these proteins represent at least some of the molecular tethers visualised in electron microscopy studies that physically link ER and mitochondria. Moreover, since mutant VAPB causes some forms of ALS, it is possible that defects in ER-mitochondria tethering and especially any involving VAPB and PTPIP51 might feature in ALS. The aims of this thesis were to investigate further these possibilities and specifically, to test two related hypotheses. The first is that the VAPB-PTPIP51 interaction mediates ER-mitochondria associations. The second is that ALS associated TDP-43 disrupts ER-mitochondria associations and that this disruption is linked to changes in the VAPB-PTPIP51 interaction. In addition, studies were commenced to investigate how mutant SOD1 and FUS influence the VAPB-PTPIP51 interaction and to test whether phosphorylation of either VAPB or PTPIP51 regulates their binding.
CHAPTER 2: MATERIALS AND METHODS
Unless stated otherwise, all chemicals were purchased from Sigma-Aldrich Co. (UK). All solutions and buffers were prepared using ultrapure water (resistivity $\geq 18.2 \text{ M}\Omega\text{-cm}$) from an ELGA Purelab Ultra purification system (Veolia Water Systems Ltd., UK). When required, solutions were sterilised either by autoclaving or by filtration through a 0.2μm pore size syringe filter (Nalgene).

In the text, some commonly used organic compounds are referred to using their non-systematic instead of systematic names, according to the guidelines of the International Union of Pure and Applied Chemistry: e.g., bromophenol blue was used instead of $4'$-(1,1-dioxido-3H-2,1-benzoxathiole-3,3-diyl)bis(2,6-dibromophenol) (Panico, 1993). All units are written according to the guidelines of the Bureau International des Poids et Mesures (International Bureau of Weights and Measures) (BIPM, 2006).
2.1 Materials

2.1.1 Stock solutions

Acrylamide-bis-acrylamide (30%, 37:5:1 stabilised solution; Geneflow, UK)

Ammonium persulphate (APS; 10% (w/v); Geneflow, UK)

Ampicillin (amp; 100 mg/ml, filter sterilised)

β-mercaptoethanol (100%)

Bovine serum albumin (BSA; 5% (w/v))

Brilliant Blue G-Colloidal Coomassie

Citric acid (1 M)

4′, 6-diamidino-2-phenylindole (DAPI; 0.5 mg/ml in DMSO)

Dimethyl sulfoxide (DMSO; 100%)

Dithiothreitol (DTT; 1 M)

Ethanol (70% v/v)

Ethidium bromide (10 mg/ml)

Ethylenediaminetetraacetic acid (EDTA; 0.5 M)

Ethylene glycol-bis (β-aminoethylether) N,N,N′,N′-tetraacetic acid (EGTA; 0.5 M)

Fetal bovine serum (100%; Sera Laboratories)

Glacial acetic acid (100%)

Glycerol (10%, 50% and 100% v/v, autoclaved)

Glutaraldehyde (50%, distilled/EM grade; TAAB)

Hydrogen chloride (HCl; 1 M)

Hydrogen peroxide (30% w/w)

Kanamycin (100 mg/ml, filter sterilised)

K-HEPES ((4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid); 1 M; buffered with KOH to pH 7.4)
L-glutamine (200 mM; Invitrogen)

Magnesium chloride (MgCl₂; 1 M)

Methanol (100%)

Paraformaldehyde (PFA; 4% w/v in PBS)

Penicillin (10,000 IU/ml) and streptomycin (10 mg/ml; PAA Laboratories)

Pervanadate (100X)

Phenylmethysulphonyl fluoride (PMSF; 100 mM in isopropanol)

Phosphate-buffered saline (PBS; 10 mM phosphate buffer, 2.7 mM potassium chloride, 137 mM sodium chloride, pH 7.4 tablets)

Sodium azide (10% w/v)

Sodium dodecyl sulphate (SDS; 10% (w/v))

Sodium chloride (NaCl; 5 M)

Sodium hydroxide (NaOH; 10 M)

Sodium orthovanadate (Na₃VO₄; 200 mM, activated, pH 10.0)

N,N,N',N'-Tetramethylethylenediamine (TEMED; 100%)

Tris (hydroxymethyl) amino methane (Tris-HCl, buffered with HCl to pH 6.8-8.8)

Tris-buffered saline (TBS; 50 mM Tris, 150 mM NaCl, buffered with HCl to pH 7.6)

Trypsin-EDTA solution (1x; 0.05% trypsin, 0.02% EDTA in PBS; PAA Laboratories)

Tris-citrate (1 M Tris; buffered with citric acid to pH 7.4)

Triton X-100 (100%)

Tween-20 (100%)
2.1.2 General molecular biology reagents

2.1.2.1 Plasmids

See Tables 2.1 and 2.2 below

Table 2.1 Vectors

<table>
<thead>
<tr>
<th>Vector</th>
<th>Vector Use</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCI-neo</td>
<td>Mammalian expression vector</td>
<td>Promega</td>
</tr>
<tr>
<td>pEGFP-C1</td>
<td>Mammalian expression vector</td>
<td>Clontech</td>
</tr>
<tr>
<td>pECFP-N1</td>
<td>Mammalian expression vector</td>
<td>Clontech</td>
</tr>
<tr>
<td>pIRES2-AcGFP</td>
<td>Mammalian expression vector</td>
<td>Clontech</td>
</tr>
</tbody>
</table>

Table 2.2 Mammalian expression plasmids

<table>
<thead>
<tr>
<th>Protein expressed</th>
<th>Vector backbone</th>
<th>Reference or source of plasmid</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTPIP51-HA+ phosphomutants</td>
<td>pCI-neo</td>
<td>(De Vos et al., 2012)</td>
</tr>
<tr>
<td>Myc-VAPB+ phosphomutants</td>
<td>pCI-neo</td>
<td>(De Vos et al., 2012)</td>
</tr>
<tr>
<td>EGFP</td>
<td>pEGFP-C1</td>
<td>Clontech</td>
</tr>
<tr>
<td>ECFP</td>
<td>pECFP-N1</td>
<td>Kurt De Vos (IoP)</td>
</tr>
<tr>
<td>ECFP-VAPB</td>
<td>pECFP-N1</td>
<td>Kurt De Vos (IoP)</td>
</tr>
<tr>
<td>pIRES2-GFP-PTPIP51-HA</td>
<td>pIRES2-AcGFP</td>
<td>Kurt De Vos (IoP)</td>
</tr>
<tr>
<td>EGFP-SOD1</td>
<td>pEGFP-C1</td>
<td>(De Vos et al., 2007)</td>
</tr>
<tr>
<td>EGFP-SOD1 G93A</td>
<td>pEGFP-C1</td>
<td>(Sreedharan et al., 2008)</td>
</tr>
<tr>
<td>EGFP-SOD1 A4V</td>
<td>pEGFP-C1</td>
<td></td>
</tr>
<tr>
<td>EGFP-TDP-43</td>
<td>pEGFP-C1</td>
<td></td>
</tr>
<tr>
<td>EGFP-TDP-43 M337V</td>
<td>pEGFP-C1</td>
<td></td>
</tr>
<tr>
<td>EGFP-TDP-43 Q331K</td>
<td>pEGFP-C1</td>
<td></td>
</tr>
<tr>
<td>EGFP-TDP-43 A382T</td>
<td>pEGFP-C1</td>
<td></td>
</tr>
<tr>
<td>EGFP-TDP-43 G348C</td>
<td>pEGFP-C1</td>
<td></td>
</tr>
</tbody>
</table>
2.1.2.2 Oligonucleotides

All the mutagenic oligonucleotides I used in these studies are listed in Table 2.3. PTPIP51S44A/S46A/S50A, PTPIP51S44D/S46D/S50D, PTPIP51S212A/S221A/S225A, PTPIP51S212A/S221A/S225D, PTPIP51S44A/S46A/S50A/S212A/S221A/S225A and PTPIP51S44D/S46D/S50D/S212D/S221D/S225D were obtained by mutating serine to alanine or aspartate respectively. In order to generate PTPIP51 constructs with all 6 phosphorylation sites mutated to alanine or aspartate, PTPIP51S212A/S221A/S225A and PTPIP51S212D/S221D/S225D were used as a template in a mutagenesis reaction with the primers for serine positions 44, 46 and 50. VAPBT150A/S158A, VAPBT150D/S158D, VAPBS146A/T150A/S156A/S158A/S159A/S160A and VAPBS146D/T150D/S156D/S158D/S159D/S160D were obtained by mutating serine or threonine to alanine and aspartate respectively.

Table 2.3 Mutagenic primers

<table>
<thead>
<tr>
<th>Construct</th>
<th>Mutagenic primers</th>
</tr>
</thead>
</table>
| PTPIP51S44A/S46A/S50A | 5'-CAGCGTCATGGGCAGCCGTAGGCGCCAGGCACCGCCTGCCGACGCACGC-3’
| | 5’-CTGCGTATAGTCCAGGGCGCGTGGGCAGGCCTGGGCGCGGCCATGACGCTG-3’
| PTPIP51S44D/S46D/S50D | 5’-CAGCGTCATGGGCAGCCGTAGGCGCCAGGCACCGCCTGCCGACGCACGC-3’
<p>| | 5’-CTGCGTATAGTCCAGGGCGCGTGGGCAGGCCTGGGCGCGGCCATGACGCTG-3’ |</p>
<table>
<thead>
<tr>
<th>Protein</th>
<th>Strain Combination</th>
<th>5' Oligonucleotide Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTPIP51</td>
<td>S212A/S221A/S225A</td>
<td>5'-GGGAGAAGGATGCTCTTGACTTGAGGAAGGAGG
CAGCTGCAGGTGCCCTCCGCTGCCCTGGAGGCTGG-3'
5'-CCAGCTCCTCCAGGGCAGCGGAGGCACCTGAGCAGTGC
CTTTCTCCTCAAGAGCATCCTTTTCTCC-3'</td>
</tr>
<tr>
<td>PTPIP51</td>
<td>S212D/S221D/S225D</td>
<td>5'-GGGAGAAGGATGCTCTTGACTTGAGGAAGGAGG
CAGCTGCAGGTGCCCTCCGCTGCCCTGGAGGCTGG-3'
5'-CCAGCTCCTCCAGGGCAGCGGAGGCACCTGAGCAGTGC
CTTTCTCCTCAAGAGCATCCTTTTCTCC-3'</td>
</tr>
<tr>
<td>VAPB</td>
<td>T150A/S158A</td>
<td>5'-CAAAGACAGAAGCACAATAGTGCTAAAGTCTCTG
GCTTCTTCTTTTGG-3'
5'-CCAAAGAAGAAGCCAGAGACTTAGACACTATTGG
TGCTTCTGTCTTTG-3'</td>
</tr>
<tr>
<td>VAPB</td>
<td>T150D/S158D</td>
<td>5'-CAAAGACAGAAGCACAATAGTGCTAAAGTCTCTG
ATTCTTCTTTTGG-3'
5'-CCAAAGAAGAATCCAGAGACTTAGACACTATTGG
TGCTTCTGTCTTTG-3'</td>
</tr>
<tr>
<td>VAPB</td>
<td>S146A/T150A/S156A/S158A/S159A/S160A</td>
<td>5'-CCACAACTGCAGCAGACAGAGACCAATAGTG
TCTAAGGCTCTGGCTTGCTTTGGATGACACCAGAAG-3'
5'-CTTCGCTGTCATCCAAAGCAGCAGAGCCAGCCACTTA
GACACTATTGGTGCTTCTGTCTTTGGATGAGTTG-3'</td>
</tr>
<tr>
<td>VAPB</td>
<td>S146D/T150D/S156D/S158D/S159D/S160D</td>
<td>5'-CCACAACTGCAGCAGACAGAGACCAATAGTG
TCTAAGGATGATGATGATGATGATGATGAGGATGACACCAGAAG-3'
5'-CTTCGCTGTCATCCAAATCATCATCACCAGATCCTTAG
ACACTATTGGTGCTTCTGTCTTGCTCAGTGTTG-3'</td>
</tr>
</tbody>
</table>

2.1.2.3 Growth of *E. coli* for DNA purification: media

Luria Bertani (LB) broth (powder; Invitrogen), 20 g/L sterilsed by autoclaving

LB agar (powder; Invitrogen), 32 g/L sterilsed by autoclaving

LB-amp broth (LB broth; ampicillin 100 µg/ml)

LB-kan broth (LB broth; kanamycin 80 µg/ml)
LB-amp/LB-kan agar (LB agar; ampicillin 100 µg/ml or kanamycin 80 µg/ml added when agar is less than 55°C)

Bacteria containing plasmids of interest were stored at -70°C in sterile 25% glycerol (v/v) solution in LB-amp or LB-kan broth.

2.1.2.4 Plasmid DNA preparation from *E. Coli*

Plasmids were isolated using a QIAprep® Spin Miniprep Kit (Qiagen Ltd, Hilden, Germany); the following reagents are provided with the kit:

- Resuspension buffer P1 supplemented with RNase A
- Lysis buffer P2
- Neutralisation buffer N3
- Wash buffer PB
- Wash buffer PE supplemented with ethanol (70% (v/v) final ethanol concentration)
- Elution buffer TE (10 mM Tris-HCl pH 8.0)

2.1.2.5 Agarose gel electrophoresis of nucleic acids

Solution for loading DNA samples in agarose gels (6X solution)

- 0.25% Bromophenol blue (w/v)
- 40% Sucrose (w/v)

Tris-Acetate-EDTA (TAE) running buffer (50X solution)

- 2 M Tris
- 5.7 % glacial acetic acid (v/v)
- 50 mM EDTA
- pH to 8
Nucleic acid size markers

Phage λ DNA digested with Hind III (sizes in base pairs): 23,131; 9419; 6434; 4335; 2322; 2023; 564; 125.

1 kb DNA ladder (NEB; sizes in kilo bases): 10; 8; 6; 5; 4; 3; 2; 1.5; 1; 0.5.

2.1.2.6 Site-directed mutagenesis

Site-directed mutagenesis was performed using the QuikChange® XL mutagenesis kit (Stratagene). XL10-Gold® ultracompetent cells were provided with the kit. The following materials are supplied with the QuikChange® XL PCR-based site-directed mutagenesis kit:

Oligonucleotide control primer #1 (100 ng/µl):
5’-CCATGATTACGCCAAGCGCGCAATTAACCCTCAC-3’

Oligonucleotide control primer #2 (100 ng/µl):
5’-GTGAGGGTTAATTGCGCGCTTGGCGTAATCATGG-3’

pWhitescript™ 4.5 kb control template (5 µg/µl)

pUC18 transformation control plasmid (0.1 ng/µl in TE buffer)

QuickSolution

PfuTurbo® DNA polymerase

Dpn I restriction enzyme

XL10-Gold® ultracompetent cells

XL10-Gold® β-mercaptoethanol mix

Deoxyribonucleotide triphosphate (dNTP) mix (the composition of the mix is proprietary)
10X mutagenesis buffer

200 mM Tris-HCl (pH 8.8)
100 mM KCl
100 mM (NH₄)₂SO₄
20 mM MgSO₄
1% Triton X-100 (v/v)
1 mg/ml BSA

2.1.3 Protein analysis

2.1.3.1 Protein sample preparation

1X SDS sample buffer

50 mM Tris-HCl pH 6.8
2% SDS (w/v)
0.1% Bromophenol blue (w/v)
10% Glycerol (v/v)
100 mM DTT

5X SDS sample buffer

250 mM Tris-HCl pH 6.8
10% SDS (w/v)
0.5% Bromophenol blue (w/v)
50% Glycerol (v/v)
500 mM DTT
2.1.3.2 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)

Resolving gel

- 375 mM Tris-HCl pH 8.8
- 8-12% Acrylamide (v/v)
- 0.1% SDS (w/v)
- 0.1% APS (w/v)
- 0.05% TEMED

Stacking gel

- 125 mM Tris-HCl pH 6.8
- 5% Acrylamide (v/v)
- 0.1% SDS (w/v)
- 0.1% APS
- 0.1% TEMED

Running Buffer

- 25 mM Tris
- 250 mM Glycine
- 0.1% SDS (w/v)

Electrophoresis markers

PageRuler™ Prestained Protein Ladder (Fermentas); 3-color ladder with 10 protein bands, sizes in kDa: 170; 130; 100; 70; 55; 40; 35; 25; 15; 10.

Precision Plus Protein Standards (Biorad); high molecular weight, sizes in kDa: 250; 150; 100; 75; 50; 37, 25; 20; 15; 10.
2.1.3.3 Immobilisation of proteins on nitrocellulose membranes

Blotting (transfer) buffer

25 mM Tris

192 mM Glycine

20% Methanol (v/v)

TBS-Tween (Tris-HCl buffered saline; Tween-20)

TBS pH 7.6

0.1% Tween-20 (v/v)

2.1.3.4 Antibody probing of membrane-bound proteins

Blocking buffer

0.1% (v/v) Tween-20

5% (w/v) dried skimmed milk in TBS

TBS-Tween

0.1% (v/v) Tween-20 in TBS

Enhanced chemiluminescence (ECL) development reagent kit (GE Healthcare)

The following reagents are provided with the kit:

Detection solution A (luminol solution)

Detection solution B (peroxide solution)
2.1.3.5 Protein staining

Colloidal Coomassie

16% Brilliant Blue G-Colloidal Coomassie (v/v)

20% Methanol (v/v)

Destain I

7% Glacial acetic acid (v/v)

25% Methanol (v/v)

Destain II

2% Glacial acetic acid (v/v)

25% Methanol (v/v)

Ponceau S red solution for staining of immunoblots

0.2% Ponceau S (w/v) in 7% glacial acetic acid (v/v)

2.1.4 Immunoprecipitation reagents

Immunoprecipitation lysis buffer

50 mM Tris-citrate pH 7.4

150 mM NaCl

1% (v/v) Triton X-100

5 mM EGTA

5 mM EDTA

EDTA-free Complete™ Protease Inhibitor Cocktail
PBS-Triton

0.1% (v/v) Triton X-100 in PBS

2.1.5 Antibodies

2.1.5.1 Primary antibodies

For a list of primary antibodies used in these studies see Table 2.4
Table 2.4 Primary antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Supplier</th>
<th>Monoclonal/Polyclonal, Species</th>
<th>Working dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFP</td>
<td>Abcam</td>
<td>Polyclonal, rabbit</td>
<td>1:5000 (IB)</td>
</tr>
<tr>
<td>HA</td>
<td>Sigma</td>
<td>Polyclonal, rabbit</td>
<td>1:5000 (IB)</td>
</tr>
<tr>
<td>9B11 (myc-tag)</td>
<td>Cell Signaling</td>
<td>Monoclonal, mouse</td>
<td>1:5000 (IB)</td>
</tr>
<tr>
<td>Actin (AC-40)</td>
<td>Sigma</td>
<td>Monoclonal, mouse</td>
<td>1:5000 (IB)</td>
</tr>
<tr>
<td>α-tubulin (DM1A)</td>
<td>Sigma</td>
<td>Monoclonal, mouse</td>
<td>1:40,000 (IB)</td>
</tr>
<tr>
<td>TOM20</td>
<td>Santa Cruz Biotechnology</td>
<td>Polyclonal, rabbit</td>
<td>1:200 (IF)</td>
</tr>
<tr>
<td>FAM82A2</td>
<td>Atlas Antibodies</td>
<td>Polyclonal, rabbit</td>
<td>1:1000 (IB)</td>
</tr>
<tr>
<td>PTPIP51 (#skr10)</td>
<td>In house;</td>
<td>Polyclonal, rabbit</td>
<td>1:200 (IF)</td>
</tr>
<tr>
<td></td>
<td>(De Vos et al., 2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAPB (#SK83)</td>
<td>In house;</td>
<td>Polyclonal, rat</td>
<td>1:2000 (IB)</td>
</tr>
<tr>
<td></td>
<td>(Tudor et al., 2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAPB (#3503)</td>
<td>In house;</td>
<td>Polyclonal, rabbit</td>
<td>1:200 (IF)</td>
</tr>
<tr>
<td></td>
<td>(Tudor et al., 2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitofusin2</td>
<td>Sigma</td>
<td>Polyclonal, rabbit</td>
<td>1:5000 (IB)</td>
</tr>
<tr>
<td>Phospho-tyrosine (4G10)</td>
<td>Chemicon</td>
<td>Monoclonal, mouse</td>
<td>1:5000 (IB)</td>
</tr>
</tbody>
</table>

IB-immunoblot, IF-immunofluorescence, IP-immunoprecipitation
2.1.5.2 Secondary antibodies

For a list of secondary antibodies used in these studies see Table 2.5

Table 2.5 Secondary antibodies

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Supplier</th>
<th>Monoclonal/Polyclonal, Species</th>
<th>Working dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-mouse Ig conjugated to horseradish peroxidase</td>
<td>Dako</td>
<td>Polyclonal, rabbit</td>
<td>1:5000 (IB)</td>
</tr>
<tr>
<td>Anti-rabbit Ig conjugated to horseradish peroxidase</td>
<td>Dako</td>
<td>Polyclonal, goat</td>
<td>1:5000 (IB)</td>
</tr>
<tr>
<td>Anti-rat Ig conjugated to horseradish peroxidase</td>
<td>Southern Biotech</td>
<td>Polyclonal, goat</td>
<td>1:5000 (IB)</td>
</tr>
<tr>
<td>Anti-mouse IgG coupled with Alexa Fluor 488</td>
<td>Invitrogen</td>
<td>Polyclonal, goat</td>
<td>1:500 (IF)</td>
</tr>
<tr>
<td>Anti-mouse IgG coupled with Alexa Fluor 568</td>
<td>Invitrogen</td>
<td>Polyclonal, goat</td>
<td>1:500 (IF)</td>
</tr>
<tr>
<td>Anti-rabbit IgG coupled with Alexa Fluor 647</td>
<td>Invitrogen</td>
<td>Polyclonal, goat</td>
<td>1:500 (IF)</td>
</tr>
<tr>
<td>Anti-mouse IgG coupled with Alexa Fluor 350</td>
<td>Invitrogen</td>
<td>Polyclonal, goat</td>
<td>1:500 (IF)</td>
</tr>
</tbody>
</table>

IB-immunoblot, IF-immunofluorescence

2.1.6 Fluorescence microscopy

Fixing solution

4% paraformaldehyde in PBS (v/v) 0.1% glutaraldehyde (v/v)

Quenching solution

0.05 M NH₄Cl in PBS
Permeabilising solution

0.25% Triton X-100 in PBS (v/v)

Blocking/antibody incubation solution

3% BSA in PBS (w/v)

Mowiol-DABCO mounting medium

10% (w/v) Mowiol® 4-88 (Calbiochem)
25% (w/v) glycerol
100 mM Tris-HCl pH 8.5
2.5% (w/v) DABCO (1,4-diazobicyclo[2.2.2]octane)

2.1.7 Duolink® in situ Proximity Ligation Assay (PLA)

The following reagents are provided with the Duolink® in situ PLA™ kit (Olink Bioscience, Uppsala, Sweden):

PLA probes MINUS and PLUS (secondary antibodies conjugated with a PLA nucleotide)

Antibody Diluent

Detection Reagent Orange (579 nm emission)

Ligation solution (5x) – Contains oligonucleotides that hybridize to the PLA probes and all components needed for ligation except the Ligase

Ligase (1 U/μl)

Amplification solution (5x) – Contains all components needed for Rolling Circle Amplification (RCA) except the Polymerase. Included are also oligonucleotide probes labeled with a fluorophore that hybridize to the RCA product
Polymerase (10 U/μl)
Wash Buffers A and B

2.1.8 Electron microscopy

Fixing solution

2.5% glutaraldehyde in 0.1M cacodylate buffer pH 7.2

Post-fixation solution

1% osmium tetroxide in 0.1M cacodylate buffer

Staining solutions

saturated uranyl acetate in 50% ethanol
0.1N lead citrate in NaOH

2.1.9 Mammalian cell culture

Chinese Hamster Ovary (CHO) cell medium

Nutrient Mixture Ham F-12 (HAM) with L-glutamine
10% fetal bovine serum (v/v)
100 U/ml Penicillin
100 μg/ml Streptomycin

CV-1, HEK293 and NSC34 cell medium

DMEM with 4.5 g/L glucose and L-glutamine
10% fetal bovine serum (v/v)
100 U/ml Penicillin
100 µg/ml Streptomycin

IX Trypsin-EDTA solution

0.25% Trypsin

1 mM EDTA
2.2 Methods

2.2.1 General microbiology methods

2.2.1.1 Storage and growth of *E. coli* for DNA purification

E. coli containing plasmids of interest were stored at -70 °C in sterile 25% (v/v) glycerol solution in LB broth containing the appropriate antibiotic for the plasmid vector.

To grow bacteria for DNA purification, *E. coli* containing the plasmid of interest were streaked out on LB agar plates (see section 2.1.2.3) containing the appropriate antibiotic for the plasmid vector and grown for 16 hours at 37°C. Single bacterial colonies were picked and grown in 5 ml LB-ampicillin broth or LB-kanamycin broth (see section 2.1.2.3) for approximately 16 hours at 37°C while shaking at 220 rpm. For larger culture volumes, 1 ml of confluent *E. coli* culture was added for each 100 ml of LB broth and cultured for a further 16 hours.

2.2.1.2 Preparation of plasmid DNA

The QIAfilter Plasmid Maxi and QIAGen Miniprep Kits (Qiagen Ltd.) were used according to manufacturer’s instructions. These kits are based on the alkaline lysis method of DNA recovery (Sambrook et al., 1989). Typically 200 ml of culture was used for the Maxi Kit, resulting in approximately 500 μg of pure plasmid DNA and 5 ml of culture was used for the Miniprep Kit, resulting in approximately 25 μg of pure plasmid DNA.
2.2.1.3 Quantitation of nucleic acids

Spectrophotometric quantitation of plasmid DNA was performed using a NanoDrop 1000 (Thermo Scientific) spectrophotometer. The absorbance of samples at 260 nm and 280 nm was recorded. An optical density (OD) reading of 1 at a wavelength of 260 nm corresponds to a concentration of 50 µg/ml for double stranded DNA. Proteins are known to strongly absorb at a wavelength of 280 nm thus the ratio of OD readings at 260 and 280 nm (OD\textsubscript{260/280}) gives an indication of purity of the sample. Pure DNA has an OD\textsubscript{260/280} value of 1.8 (Sambrook et al., 1989).

Plasmid DNA concentrations were also roughly quantified using ethidium bromide fluorescent quantitation. This method relies on the ability of ethidium bromide to bind to DNA. UV-induced fluorescence emitted by DNA-linked ethidium bromide is proportional to the total mass of DNA. The amount of DNA in a sample could then be quantified by visual comparison with the UV-induced fluorescence of a known quantity of a DNA standard or series of standards. This technique has a detection limit of as little as 5 ng of DNA.

2.2.1.4 Restriction enzyme digestion of plasmid DNA

Plasmid DNA was digested using the appropriate restriction enzyme and corresponding buffer according to the manufacturer’s instructions (Invitrogen). 10 units of enzyme were used per µg of DNA (1 unit is usually the amount of enzyme required to cleave 1 µg of DNA in 1 hour at 37°C in the appropriate buffer). The volume of enzyme never exceeded 10% (v/v) of final reaction volume and the incubation time with the enzyme was 2 hours at 37°C. A typical diagnostic reaction contained 500 ng plasmid, 1 µl (10
units) restriction enzyme, 2 μl of 10x buffer in a final volume of 20 μl; all of the reaction was loaded and analysed by agarose gel electrophoresis.

2.2.1.5 Agarose gel electrophoresis of plasmid DNA
Agarose (ultra pure, electrophoresis grade, Invitrogen) was dissolved in boiling TAE buffer (see section 2.1.2.5) in a final concentration of 0.6-1.5% (w/v) and cast on a gel bed with a suitable comb using a horizontal gel apparatus (Hybaid). On setting, gels were placed in an electrophoresis tank containing TAE buffer to a level just above the gel surface. DNA samples containing DNA loading buffer (see Section 2.1.2.5) were loaded into the sample wells and were run at 100 V. Gels were stained with 10 μg/ml ethidium bromide to visualise DNA. Gels were then placed on a 3UV™ transilluminator emitting ultra violet light (λ=302 nm), visualised on a Sony video monitor and videographed using a Sony video graphic printer.

To determine the size of the separated DNA, nucleic acid size markers were used:
Phage λ DNA digested with Hind III, 1 kb DNA ladder.

2.2.1.6 PCR-based site-directed mutagenesis
PTPIP51-HA and myc-VAPB alanine/aspartate mutant constructs were generated using the mutagenic primers listed in Section 2.1.2.2 and a QuikChange® XL site-directed mutagenesis kit (Stratagene) according to the manufacturer’s instructions (see Section 2.1.2.6).

The QuikChange® XL site-directed mutagenesis system is designed to produce mutations in double stranded plasmids using primers containing the entire mutation and
the high fidelity, thermostable PfuTurbo® DNA polymerase in PCR. Experimental reactions and control reactions, to test mutation efficiency using pWhitescript™ control plasmid, were set up as shown below and used for PCR as shown in Table 2.6. The pWhitescript™ mutagenesis control plasmid contains a stop codon instead of a glutamine codon in the gene of β-galactosidase thus β-galactosidase is inactive in cells containing this plasmid. Competent cells containing this plasmid appear white on LB-ampicillin agar plates pre-spread with X-gal (5-bromo-4-chloro-3-indoyl-β-D-galactopyranoside) and IPTG (isopropyl-1-thio-β-D-galactopyranoside) because the inactive β-galactosidase enzyme is unable to cleave X-gal to galactose and an insoluble blue product. During the mutagenesis the control primers mutate the stop codon back to glutamine in the β-galactosidase gene. The active β-galactosidase is able to cleave X-gal and the appearing blue products are obvious markers of the successful mutagenesis.

Reactions were performed in 0.2 ml PCR tubes (Thermo Fisher). Reactions were mixed gently by pipetting and then placed in a T3 Thermocycler (Biometra) for the PCR (cycling parameters are shown in Table 2.6). The lowest number of amplification cycles was used to minimise the possibility of errors by the DNA polymerase whilst at the same time generating enough amplified product for DNA purification. A sample of each PCR product was analysed for size, quality and quantity by restriction enzyme digestion and agarose gel electrophoresis alongside appropriate DNA markers (see Section 2.2.1.5).

Control reaction (reagents, except H₂O were supplied with the kit):
2 μl (10 ng) of pWhitescript™ control template DNA
5 μl of 10x mutagenesis buffer (see Section 2.1.2.6)
1 μl of dNTP mix
1.25 μl (125 ng) of oligonucleotide control primer #1
1.25 μl (125 ng) of oligonucleotide control primer #2
3 μl QuickSolution
36.5 μl H₂O to final volume of 50 μl
1 μl (2.5 U/μl) PfuTurbo® DNA polymerase

Experimental reaction (reagents, except DNA template, oligonucleotides and H₂O, were supplied with the kit):
5 μl of 10x mutagenesis buffer
10 ng DNA template
1 μl dNTP mix
125 ng of each oligonucleotide
3 μl QuickSolution
H₂O to a final volume of 50 μl
1 μl (2.5 U/μl) PfuTurbo® DNA polymerase

Table 2.6 PCR-based site-directed mutagenesis cycling parameters

<table>
<thead>
<tr>
<th>Step</th>
<th>Cycles</th>
<th>Temperature (°C)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>95</td>
<td>1 minute</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>95</td>
<td>50 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>50 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68</td>
<td>1 minute/kb of plasmid length</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>68</td>
<td>7 minutes</td>
</tr>
</tbody>
</table>
2.2.1.7 Digesting the PCR product

Following PCR, the reactions were placed on ice, 1 μl (10 U/μl) of the Dpn I restriction enzyme (supplied with the kit) was added and the reaction was incubated at 37°C for 1 hour. The Dpn I endonuclease (target sequence 5’-Gm6ATC-3’) is specific for methylated and hemimethylated DNA and is used to digest parental DNA and to select for mutation-containing amplified DNA.

2.2.1.8 Transformation into XL10-Gold® ultracompetent cells

2 μl of XL10-Gold® β-mercaptoethanol mix (provided with the kit) was added to 45 μl thawed XL10-Gold® ultracompetent cells (provided with the kit) and the reaction incubated on ice for 10 minutes. 2 μl of the Dpn I-treated DNA was transferred to the competent cells and the reaction incubated on ice for 30 minutes. A second control was set up to verify transformation efficiency: 0.1 ng of pUC18 transformation control plasmid (provided with the kit) was added to 45 μl XL10-Gold® ultracompetent cells and incubated on ice for 30 minutes. The cells were then heat pulsed for 30 seconds at 42°C, and then placed on ice for 2 minutes. Following the heat pulse, 0.5 ml of super optimal broth with catabolite repression (S.O.C.) medium (Invitrogen) was added to the cells. Following incubation at 37°C for 1 hour with shaking at 220 rpm, the samples were spread on LB-kanamycin agar plates. The transformed control pWhitescript™ and pUC18 cells were plated on LB-ampicillin agar plates pre-spread with 40 μl of X-gal (20 mg/ml in DMSO) and 20 μl of 100 mM IPTG for colour selection. The plates were incubated at 37°C for 16 hours. The successfully mutagenised pWhitescript™ control colonies appeared as blue colonies. The number of pUC18 control colonies was greater than 100 colonies and most of them displayed the blue phenotype. The number of the
colonies for the experimental reaction was about 50 colonies. Plasmid DNAs were sequenced by Eurofins MWG Operon, UK to confirm the mutagenesis.

2.2.2 Protein analysis

2.2.2.1 Protein concentration determination (Bradford Assay)

Determination of protein concentration was carried out using a Bio-Rad protein assay kit according to the manufacturer’s instructions (Bio-Rad, UK). The assay is using the colorimetric reaction described by Bradford (Bradford, 1976). The assay is based on the observation that the maximum absorbance for an acidic solution of Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm when binding to protein occurs. In brief, eight dilutions were prepared from a freshly prepared BSA standard and four dilutions from each protein sample with the Bradford reagent. 50 µl of each dilution was transferred to a 96 well microtiter plate and absorbance readings were recorded at a wavelength of 595 nm using a VICTOR3 multilabel plate reader (Perkin Elmer). Sample protein concentrations were calculated using the recorded absorbance values and a standard curve drawn from the freshly prepared BSA standard.

2.2.2.2 SDS-PAGE of protein samples

For SDS-PAGE analyses of cell lysates, cells were washed in PBS, lysed on ice in appropriate amounts of 1x SDS sample buffer (final concentration 2 % SDS; see section 2.1.3.1) and then heated on a heat block for 5 minutes at 100 ºC. The protein samples were then separated by SDS-PAGE using the Mini-PROTEAN 3 gel electrophoresis system (Bio-Rad) with a discontinuous buffer system. Depending on the size of the proteins of interest, 8, 10 or 12% (v/v) acrylamide gels (see Section 2.1.3.2) were run at
a voltage of 100 V, until the dye front reached the bottom of the gel or proteins were separated as necessary.

To follow the progress of protein separation and to determine protein size, Precision Plus Protein Standards (Biorad) were used (see Section 2.1.3.2).

2.2.2.3 Immunoblotting (Western Blotting)

After SDS-PAGE, proteins were transferred from gels to a Protran nitrocellulose membrane (0.45 μm pore size; Whatman) using the wet method with the following filter sandwich:

Cathode – sponge / extra thick cellulose blot paper (Whatman) / SDS-PAGE gel / nitrocellulose membrane / extra thick cellulose blot paper / sponge – Anode.

This sandwich was assembled whilst totally immersed in transfer buffer (see Section 2.1.3.3), secured in cassettes and placed in a Mini Trans-Blot electrophoretic transfer cell (Biorad), and run at 100 V for 60 minutes or at 30 V for 16 h. Membranes containing transferred proteins were referred to as “blots”. Blots were incubated with Ponceau S solution (see Section 2.1.3.5) for 1 to 2 minutes to determine the efficiency of protein transfer. Blots were then rinsed for 1 to 2 minutes with ultrapure water to destain.

2.2.2.4 Antibody probing of membrane-bound proteins

Blots were incubated in blocking buffer (see Section 2.1.3.4) for 30 minutes at 20°C to reduce non-specific antibody binding. Blots were then incubated with an appropriate dilution of primary antibody in blocking buffer for 16 h at 4 °C (table 2.4 gives the
details of all primary antibodies used). Blots were then washed (3 x 10 minutes) in TBS-Tween (see Section 2.1.3.4) and an appropriate dilution of horseradish peroxidase-coupled secondary antibody in TBS-Tween was added for 1 hour at 20°C. Secondary antibodies were used depending on the species in which the primary antibody was raised (for details see Table 2.5). Following washing with TBS-Tween (3 x 10 minutes), immunoreactive species were visualised using enhanced chemiluminescence (ECL) development reagents (see Section 2.1.3.4) and Hyperfilm-ECL (GE Healthcare), according to the manufacturer’s instructions. ECL protein signal visualisation is based on antibody bound horseradish peroxidase catalysed oxidation of luminol in the presence of hydrogen peroxide in alkaline conditions. Oxidised luminol is in an increased energy state and when luminol returns to ground state it emits the energy as light. In ECL detection the light output of luminol is enhanced by the presence of chemical enhancers (Whitehead et al., 1979). The light emission maximum of luminol is at 428 nm which is easily detectable by blue light sensitive autoradiography films. To visualise nitrocellulose membrane-bound proteins, detection solution A (luminol solution) and detection solution B (peroxide solution) were mixed in a 1:1 ratio in a final volume of 0.125 ml/cm² nitrocellulose membrane and incubated with the blot for 3 minutes at 20 °C. Following incubation, blots were placed in an X-ray film cassette and Hyperfilm-ECL was placed on top of the membrane in a dark room, and exposed for a time varying between 5 seconds and 1 hour. The Hyperfilm-ECL was developed using a Konica Minolta SRX-101A developer.

Developed films were scanned using an Epson Perfection V700 Photo scanner (Seiko Epson Corp.). Signals on films were background-corrected and quantified using ImageJ developed by Wayne Rasband (NIH, Bethesda, USA; http://rsb.info.nih.gov/ij/) (Staal
et al., 2004). Each of the background-corrected OD signals was compared to an OD calibration curve obtained from a calibrated OD step tablet (Kodak) to ensure that signals were obtained within the linear range of the film. Only the signals within the linear OD range were used for statistical analysis.

In experiments investigating the effects of TDP-43, FUS and SOD1 on binding of PTPIP51 to VAPB (Chapter 4), signals from co-immunoprecipitating VAPB were normalized to immunoprecipitated PTPIP51-HA signals. The individual values were then compared to control EGFP signals; control signals were assigned a reference value of 1. In experiments investigating the effects of mutated phosphorylation sites in PTPIP51 (Chapter 5), signals from co-immunoprecipitating VAPB were normalized to immunoprecipitated PTPIP51-HA signals. The individual values from the mutants were then compared to wild-type PTPIP51 signals. Finally, in experiments investigating the effects of mutated phosphorylation sites in VAPB (Chapter 5), signals from co-immunoprecipitating PTPIP51 were normalized to immunoprecipitated myc-VAPB signals. The individual values from the mutants were then compared to wild-type VAPB signals. Statistical analyses were performed using GraphPad Prism 5 software (GraphPad Software Inc., San Diego, CA). The statistical tests performed are detailed in the figure legends.

2.2.2.5 Immunoprecipitation

All steps of immunoprecipitation (IP) experiments were performed at 4°C or on ice. Cells were harvested by trypsinisation and washed once in PBS. 1/20 of the sample was removed (“Input”) and lysed in 5X SDS sample buffer (see Section 2.1.3.1). The rest of the sample was incubated in immunoprecipitation lysis buffer (see Section 2.1.4) for 1
hour after which the lysates were centrifuged at 100,000xg for 40 minutes to pellet insoluble particles. Supernatants were transferred to fresh tubes and were precleared by incubation with 25 μl of Protein G-sepharose beads (50% (v/v) in PBS-Triton) (see Section 2.1.4) for 30 minutes. Following centrifugation at 2,000xg for 30s to settle the beads, supernatants were transferred to fresh tubes and total protein concentrations were quantified by Bradford assay (see Section 2.2.2.1). The protein concentration was adjusted to 1 μg/μl if needed and equal amounts of protein (500 μg) for each sample were then used for immunoprecipitation. The appropriate primary antibody was added (see Table 2.4) and the samples were incubated with mild mixing on a rotary shaker for 16 hours at 4°C. After the addition of 30 μl Protein G-sepharose beads (50% (v/v) in PBS-Triton), the samples were incubated for a further 2 hours on a rotary shaker before centrifuging at 2,000xg for 30 s to pellet the beads. The pelleted beads were retained and washed four times with 1 ml PBS-Triton. The bound proteins were then eluted from the beads by incubation in 50 μl of 1X SDS sample buffer, heated at 100°C for 5 minutes and used for SDS-PAGE.

2.2.2.6 Mass spectrometry studies

Mass spectrometry studies were performed in collaboration with the Proteomics Facility at the Institute of Psychiatry. Identification of phosphorylation sites from transfected cells was performed essentially as described previously for other proteins (Standen et al., 2003). Briefly, VAPB and PTPIP51 were immunoprecipitated from transfected CHO cells using the myc- or the HA-tags. The two proteins were resolved by SDS-PAGE, the gels stained with Colloidal Coomassie (see section 2.1.3.5) and the band corresponding to VAPB or PTPIP51 excised, reduced with 10 mM dithiothreitol (30 minutes at 56°C) and derivatised with 55 mM iodoacetamide (20 minutes in the dark at
20°C). The proteins were then digested with trypsin (Roche Molecular Biochemical) for 4 hours at 37°C. Digested peptides were extracted from the gel pieces with two wash cycles of 50 mM NH₄HCO₃ and acetonitrile, lyophilised and resuspended in 20 µl of 50 mM NH₄HCO₃.

Peptide digests were analysed by liquid chromatography tandem mass spectrometry (LC/MS/MS). Chromatographic separations were performed using an Ultimate LC system (Dionex, UK). Peptides were resolved by reversed-phase chromatography on a 75 µm, C18 PepMap column. A gradient of acetonitrile in 0.05% formic acid was delivered over 60 minutes to elute the peptides at a flow rate of 200 nl/min. Peptides were ionised by electrospray ionisation using a Z-spray source fitted to a QTof-micro (Waters Corp.). The instrument was set to run in automated switching mode, selecting precursor ions based on their intensity and charge state, for sequencing by collision-induced fragmentation. The MS/MS analyses were conducted using collision energy profiles that were chosen based on the mass-to-charge ratio (m/z) and the charge state of the peptides.

The mass spectral data was processed into peak lists containing the m/z value of each precursor ion and the corresponding fragment ion m/z values and intensities. Data were searched against a custom-built database using the Mascot searching algorithm (Matrix Science, UK). Peptides and phospho-peptides of VAPB and PTPIP51 were identified by matching the MS/MS data against mass values generated from the theoretical fragmentation of peptides based on the search criteria set. Specifically, tryptic cleavage with up to 3 missed cleavages, carbamidomethyl modification of cysteine residues, oxidised methionine, N-acetylation of the protein and phosphorylation of
serine/threonine and tyrosine residues. All the amino acid modifications were selected as variable modifications in the software. The exact location of phosphorylation within each peptide was determined by the pattern of fragment ions produced.

2.2.3 Microscopy

2.2.3.1 Immunofluorescence

All steps of the procedure were performed at 20 °C. CV1 cells grown on glass coverslips were washed once with PBS (see Section 2.1.1) to remove culture medium and incubated in fixing solution (see Section 2.1.6) for 10 minutes. Cells were then washed twice with PBS to remove the fixing solution and quenching solution (see Section 2.1.6) was added for 15 minutes to remove excess paraformaldehyde and reduce autofluorescence. Following quenching, the cells were washed once with PBS, permeabilised for 3 minutes and blocked with blocking solution (see Section 2.1.6) for 30 minutes to reduce non-specific binding for 30 minutes. Incubation with primary antibodies in blocking solution was then carried out for 1 hour. All primary antibodies that were used during the experiments are listed in Table 2.4. The cells were then washed five times with PBS for 5 minutes before being incubated with the secondary antibody in blocking solution for 45 minutes. Fluorescent labelled secondary antibodies were chosen depending on the species in which the primary antibody was raised and the fluorophore (for details see Table 2.5).

Following incubation with the secondary antibody the cells were washed three times with PBS. Nucleic acids were stained with 50 μg 4′,6-Diamidino-2-phenylindole (DAPI; see Section 2.1.1) for 5 minutes, followed by a further 5-6 washes in PBS. Finally, coverslips were mounted onto slides using Mowiol-DABCO mounting medium.
(see Section 2.1.6). Conventional images were captured using Leica LAS AF software on a Leica DM5000 B microscope equipped with a Leica DFC360 FX camera and 10x/0.30NA, 40x/0.75NA or 63x/1.25NA HCX-PL-FLUOTAR objectives (all from Leica Microsystems CMS GmbH, Mannheim, Germany). Confocal images were captured using a Zeiss LSM 510 META confocal microscope at the appropriate excitation wavelengths with a 63x/1.4NA Zeiss Plan-APOCHROMAT objective (Carl Zeiss AG, Oberkochen, Germany).

Co-localization of PDI (an ER marker) with TOM20 (a mitochondrial marker) was identified and quantified using ImageJ with the Intensity Correlation Analysis plug-in on whole cells. Intensity correlation analysis represents a robust method for quantitatively determining the relative co-localization of dye signals obtained from advanced microscopy. Conventional dye overlay methods that are often used in double immunofluorescence microscopy are limited in that they can report incorrect co-localization of two proteins. By contrast, intensity correlation analysis determines whether the pixel intensities from two signals vary in synchrony, making it a powerful method for judging whether two proteins co-localize. The values obtained from the analyses are reported as an intensity correlation quotient (ICQ), which is a statistically testable, single value assessment of the relationship between two stained protein pairs (Li et al., 2004). For dependent staining (co-localization) 0<ICQ≤+0.5, for random staining ICQ=0, and for segregated staining 0>ICQ≥-0.5 (no co-localization). Comparison of means was carried out using a one-way ANOVA combined with the Tukey post-hoc analysis to adjust for multiple comparisons.
2.2.3.2 *In situ* Proximity Ligation Assay™ (PLA™)

Interactions between PTPIP51 and VAPB were visualized and quantified using a proximity ligation assay (Soderberg et al., 2006). For these experiments, a commercial kit (Olink Bioscience, Uppsala, Sweden) was used according to the manufacturer’s instructions. In this assay, fixed cells are probed with primary antibodies and then secondary antibodies coupled with complementary oligonucleotides are applied. If the distance between the two antibody-coupled oligonucleotides is less than 40 nm, they can interact through subsequent addition of two further oligonucleotides and join to form a closed circle. This can then be amplified by rolling-circle amplification with DNA polymerase to produce a concatemeric DNA strand onto which the detection probes hybridise.

CV1 cells grown on glass coverslips were fixed, probed with VAPB and PTPIP51 primary antibodies followed by Duolink secondary antibodies. All following incubations were performed using the reagents provided in the Duolink kit (Section 2.1.7). Complementary PLA probes raised in the appropriate species were mixed with the Duolink Antibody Diluent and incubated with the samples in a pre-heated humidity chamber for 1 h at 37°C. The coverslips were then washed twice for 5 minutes with Wash Buffer A and incubated with the Ligation solution in a pre-heated humidity chamber for 30 minutes at 37°C. The reagents used in the amplification step are light sensitive and all the subsequent procedures were performed avoiding direct exposure to light. After two 2 minutes washes with Wash Buffer A, the coverslips were incubated with the Amplification-Polymerase solution in a pre-heated humidity chamber for 100 minutes at 37°C. After two 10 minute washes in Wash Buffer B, the coverslips were air-dried, mounted, and viewed using a Leica DM5000 fluorescence microscope (Leica
Microsystems GmbH, Wetzlar, Germany). Images were captured using a 63x/1.25NA HCX-PL-FLUOTAR oil immersion lens and PLA signals were analyzed using the Particle analysis function of ImageJ (National Institute of Mental Health, Bethesda, Maryland, USA).

2.2.3.3 Transmission electron microscopy

NSC34 cells grown on 60 mm Petri dishes were washed once with 0.1 M cacodylate buffer and then fixed with 2.5% glutaraldehyde in cacodylate buffer (see Section 2.1.8) for 3 hours at 20°C. The cells were then gently removed from the surface of the dish with a plastic scraper and centrifuged at 800xg for 10 minutes to form a pellet. The cell pellet was washed in 0.1 M cacodylate buffer pH 7.2 and then post-fixed for 1 hour in 1% osmium tetroxide in 0.1M cacodylate buffer. Following a wash in 0.1 M cacodylate buffer, the samples were block stained for 1 hour with 1% uranyl acetate in water before dehydration through a graded series of alcohols and embedding in Taab resin. 70 nm sections were cut on a Leica Ultracut E microtome and stained with lead citrate (0.1N).

Samples were viewed on a Tecnai 12 electron microscope (FEI) fitted with an AMT camera and digital images were captured at a magnification of 2900x, 4800x and 6800x. The mitochondrial perimeter, the length of ER apposed to mitochondria and the lengths of tethers connecting mitochondrial outer membranes to ER membranes were determined in a blind manner using the ImageJ software (NIH, Bethesda, USA; http://rsb.info.nih.gov/ij/).
2.2.4 Mammalian cell culture and transfection methods

2.2.4.1 NSC34, CV-1, CHO and HEK293 cell culture

The cells were maintained in monolayer culture in DMEM/HAM media containing 10% FBS and supplements (see Section 2.1.9) at 37°C under an atmosphere of 5% CO₂. Cells were passaged when they formed an approximately 80% confluent layer in the culture vessel. Medium was removed and cells were washed once with sterile PBS (see Section 2.1.1). To dislodge cells from the surface of the vessel, enough trypsin-EDTA solution (see Section 2.1.9) was added to cover the monolayer (e.g. 1 ml trypsin-EDTA solution for a 25 cm² flask) and the cells were incubated at 37°C for 2-3 minutes. Full media (e.g. 4 ml for a 25 cm² flask) was then added to inactivate the trypsin, and cells were pipetted up and down to triturate them. Finally, the cell suspension was distributed into vessels for further culturing.

2.2.4.2 Transient transfection

Transient transfection of CV-1 cell cultures

CV-1 cells were transfected using ExGen 500 (Thermo Scientific), a polyethylenimine based transfection reagent. Polyethylenimine is a cationic polymer with high proton buffer capacity (“proton sponge effect”). The mechanism of polyethylenimine based transfection has been described (Boussif et al., 1995; Sonawane et al., 2003). The positively charged polyethylenimine polymer interacts with negatively charged DNA and forms small particles (polyplexes). Polyplexes settle on and bind to anionic cell surface residues and are taken up by the cells via endocytosis (Boussif et al., 1995). The “proton sponge effect” of polyethylenimine neutralises the acidic pH of the endosome/lysosome and this results in a charge driven chloride influx into the endosome. The chloride influx causes osmotic swelling and disruption of the endosome.
and allows the escape of the polyplexes from the endosome (Sonawane et al., 2003). The DNA then dissociates from the polyplex and translocates to the nucleus.

Transfections were conducted according to the manufacturer’s instructions. Cells were plated on 13 mm diameter coverslips in 24 well plates (Greiner Bio-One) the day before transfection so that they reached approximately 50% confluence on the day of transfection. For each transfection, the amounts of reagents were vortexed as indicated in Table 2.7 for 10 s. The transfection solution was then incubated for 10 minutes at 20°C and added drop-wise to the cells. The cells were analysed 24-48 hours post-transfection.

Table 2.7 Amounts of reagents for ExGen 500 based transient transfection

<table>
<thead>
<tr>
<th>Plate Format</th>
<th>DNA/well (µg)</th>
<th>ExGen 500/well (µl)</th>
<th>150 mM NaCl/well (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 well plate</td>
<td>0.5</td>
<td>2.1</td>
<td>25</td>
</tr>
<tr>
<td>12 well plate</td>
<td>1</td>
<td>4.3</td>
<td>50</td>
</tr>
</tbody>
</table>

Lipid based transfection of CHO cell cultures

CHO cells were transfected with Lipofectamine (Invitrogen) according to the manufacturer's instructions, using 10 µg plasmid DNA and 40 µl Lipofectamine™ per 10 cm diameter Petri dish. The cells were plated out the day before the transfection experiment so that they reached 50-80% confluence on the day of transfection, and were harvested for analysis 24 hours post-transfection.
Lipid based transfection of HEK293 cell cultures

HEK293 cells were transfected with FuGENE-6 (Promega) at a 3:1 ratio (FuGENE-6:DNA) according to manufacturer’s instructions, using 1 μg of plasmid DNA and 3 μl FuGENE-6 for a well in a 6 well plate. The cells were plated 24 hours prior to transfection so that they reached 50% confluency on the day of transfection, and were harvested for immunoprecipitation experiments 24-48 hours post-transfection.

Lipid based transfection of NSC34 cell cultures

NSC34 cells were transfected with Lipofectamine 2000 (Invitrogen) according to the manufacturer's instructions, using 20 μg plasmid DNA and 80 μl Lipofectamine 2000 per 175 cm² flask. The cells were plated out 24 hours before the transfection experiment so that they reached 25-30% confluency on the day of transfection, and were harvested for analysis 24 hours post-transfection.

2.2.4.3 Delivery of siRNA to cell cultures

Small interfering RNA (siRNA) duplexes (VAPB, PTPIP51 and non-targeting control) were purchased from Dharmacon and Origene and were described previously (De Vos et al., 2012). Duplexes were diluted in 1x resuspension buffer purchased from Dharmacon (60 mM KCl, 6 mM HEPES pH 7.5, and 200 mM MgCl₂) and stored as 100 μM aliquots at -20°C.

Human VAPB siRNA sequence (Dharmacon):
UGUUACAGCCUUUCGAUUAUU

Human PTPIP51 siRNA sequence (Dharmacon):
CCUUAGACCUUGCUGAGAUUU
Mouse VAPB siRNA sequence (Dharmacon):
UGUUACAGCCUUUCGAUUAUU

Mouse PTPIP51 siRNA sequence (Origene):
GGAUGACAACGCUGGCAAAGGGUCT

Delivery of siRNAs to CV1 cells

VAPB and PTPIP51 were knocked down in CV1 cells using Lipofectamine™ 2000 (Invitrogen) according to manufacturer’s instructions, and using the amount of reagents indicated in Table 2.8. Cells were plated out the day before so they reached 30% confluency on the day of transfection. Transfection reagent and culture medium were removed 24 hours post-transfection and replaced with fresh culture medium. Cells were used for analysis 96 hours post-transfection.

Table 2.8 Delivery of human VAPB and PTPIP51 siRNA to CV1 cells

<table>
<thead>
<tr>
<th>Plate Format</th>
<th>siRNA concentration (nM)</th>
<th>Lipofectamine 2000/well (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 well</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>24 well</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

Delivery of siRNAs to NSC34 cells

Mouse VAPB and PTPIP51 respectively were knocked down in NSC34 cells using Lipofectamine™ 2000 (Invitrogen) according to manufacturer’s instructions, and using the amount of reagents indicated in Table 2.9. Cells were plated 24 hours before so they reached 30% confluency on the day of transfection. Transfection reagent and culture
medium were removed 24 hours post-transfection and replaced with fresh culture medium. Cells were harvested 96 hours post-transfection.

Table 2.9 Delivery of mouse VAPB and PTPIP51 siRNA to NSC34 cells

<table>
<thead>
<tr>
<th>Plate Format</th>
<th>siRNA concentration (nM)</th>
<th>Lipofectamine 2000/well (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 mm</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>12 well</td>
<td>50</td>
<td>4</td>
</tr>
</tbody>
</table>

2.2.5 Treatment of HEK293 cells with the tyrosine phosphatase inhibitor pervanadate

Pervanadate was prepared as a 100X stock by mixing 50 μl 200 mM sodium orthovanadate with 1.6 μl of 30% (w/w) hydrogen peroxide in 948 μl of water. The reaction was left for 5 minutes at 20°C, producing 10 mM sodium orthovanadate and 16.3 mM hydrogen peroxide (Derkinderen et al., 2005; Huyer et al., 1997). The excess hydrogen peroxide was removed by adding 200 μg/ml catalase (Sigma) and incubating for an additional 5 minutes at 20°C. The reaction mix was diluted 1:100 with fresh cell culture medium and the cells were treated for 20 minutes.

2.2.6 Fluorescence-activated cell sorting (FACS) of NSC34 cells

NSC34 cells were grown in 175 cm³ flasks, transfected with plasmid DNA using Lipofectamine 2000 and incubated for 24 hours. Following trypsinisation, the cells were counted, filtered through a 40 μm BD Falcon™ cell strainer and resuspended in PBS at a concentration of 8-10 million/ml in 5 ml BD Falcon™ round-bottom tubes. All the following steps of the sorting procedure were performed at 4°C.
The cells expressing ECFP, ECFP-tagged or AcGFP constructs (positive fraction) and the untransfected cells (the negative fraction) were analyzed and sorted based on their fluorescence, using a BD FACSARia™ cell sorter employing a 100 µm nozzle and applying 1.37×10^4 Pa (20 psi) sheath pressure. For detecting EGFP fluorescence, cells were excited using a blue laser (488 nm), a 505 Long pass filter and a 525/550 band pass filter. Sterile PBS was used as sheath fluid. The sample was maintained at 4°C and was sorted at a rate of less than 5000 events/second and at a flow rate of less than 6. The positive cells were collected in PBS with 5% FCS and underwent a post-sorting purity testing that involved re-analysing a proportion of the cells. Only the samples achieving a purity of over 98% were processed further. A proportion were also plated on coverslips and analysed by fluorescence microscopy to further confirm the purity of transfected cells in the final sorted population. Cells were then harvested and processed for electron microscopy as described (see Section 2.2.3.3).
CHAPTER 3: VAPB AND PTPIP51 MEDIATE ER-MITOCHONDRIA ASSOCIATIONS
3.1 Introduction

As detailed in Section 1.4, up to approximately 20% of the mitochondrial surface is closely apposed to ER membranes. These regions facilitate a variety of signalling processes between the two organelles including Ca2+ and phospholipid exchange (Csordas et al., 2006; Hayashi et al., 2009; Lebiedzinska et al., 2009; Rizzuto et al., 2009; Rizzuto et al., 1998; Rusinol et al., 1994).

Tethers that link ER to mitochondria have been visualized in electron microscopy studies. These range from approximately 10 nm to 25 nm in length, suggesting that a number of different molecules are responsible for physically connecting ER and mitochondria (Csordas et al., 2006). However, the nature of these tethers is still not clear. Several molecules such as Drp1 (Pitts et al., 1999) and PACS2 (Simmen et al., 2005) have been shown to indirectly regulate ER-mitochondria contacts. Interaction between IP3 receptors on the ER and voltage dependent anion channel-1 (VDAC1) on mitochondria via the molecular chaperone Binding immunoglobulin Protein (BiP) has been proposed to link ER to mitochondria (Szabadkai et al., 2006), but IP3 receptor deficient cells show normal ER-mitochondria interactions suggesting other molecules are responsible for the physical linkage (Csordas et al., 2006). In yeast, proteins of the ER-mitochondria encounter structure (ERMES) act as a molecular tether between ER and mitochondria but orthologs of these proteins in higher eukaryotes have not been identified so far (Kornmann et al., 2009). In mammalian cells, mitofusin-2 dimers have been shown to link ER and mitochondria (de Brito and Scorrano, 2008). However, other groups could not replicate this finding, which involved mainly light microscopy studies. Moreover, a recent study involving electron microscopy of mitofusin-2 knockout cells has revealed that loss of mitofusin-2 actually increases ER-mitochondria contacts.
Thus, the identity of the molecular tethers that physically connect ER and mitochondria in mammalian cells is not properly known.

Previous work from our research group demonstrated that outer mitochondrial membrane protein PTPIP51 interacts with integral ER protein VAPB (De Vos et al., 2012). PTPIP51 is anchored in the outer mitochondrial membrane via an N-terminal transmembrane domain with the remaining C-terminus projecting into the cytoplasm (De Vos et al., 2012). VAPB is anchored in the ER via its C-terminal membrane spanning domain with its N-terminus projecting into the cytosol (Kagiwada et al., 1998). As such, VAPB and PTPIP51 are plausible candidates that might represent at least some of the linkers visualized by electron microscopy which act as ER-mitochondria tethers.

In this chapter, the role of VAPB and PTPIP51 in mediating ER-mitochondria interactions was tested. If PTPIP51 and VAPB form some of the physical links between ER and mitochondria, then modulating the expression of these proteins is predicted to alter ER-mitochondria associations. The expression levels of VAPB and PTPIP51 were thus modulated and ER-mitochondria associations then monitored by electron and light microscopy. VAPB and PTPIP51 expression were reduced via siRNAs and elevated via transfection.

For the electron microscopy studies, the NSC34 motor neuron cell line was used. This cell line was chosen as some of the later studies (see Chapter 4) involved analysing the effects of proteins associated with familial ALS on ER-mitochondria associations and the VAPB-PTPIP51 interaction. NSC34 cells were developed by fusing mouse
embryonic motor neurons with mouse neuroblastoma cells (Cashman et al., 1992) and exhibit morphological and physiological features of spinal motor neurons (Matusica et al., 2008). Thus, they represent a suitable model for studying how insults associated with ALS might affect ER-mitochondria associations.

For the confocal light microscopy studies, CV1 cells were utilised. This is an established cell line initially extracted from *Cercopithecus aethiops* kidney fibroblasts (Jensen et al., 1964). CV1 cells have a highly spread morphology and are suitable for analysing the distribution of intracellular organelles (e.g. see (De Vos et al., 2012)).
3.2 Results

3.2.1 VAPB and PTPIP51 mediate ER-mitochondria associations in electron microscopy studies using NSC34 cells

To investigate the role of VAPB and PTPIP51 in mediating ER-mitochondria interactions, expression of VAPB and PTPIP51 were first modulated and ER-mitochondria associations then quantified by electron microscopy in NSC34 cells. This involved capturing images of mitochondria in appropriately manipulated cells and then calculating the % of the mitochondrial surface closely apposed (less than 25 nm) to ER. The quantification was performed using the ImageJ software (http://rsb.info.nih.gov/ij/) (see Section 2.2.3.3).

First, VAPB and PTPIP51 expression was reduced using siRNAs. Consistent with a previous study (De Vos et al., 2012), siRNA knockdown of VAPB did not influence the expression of PTPIP51 and knockdown of PTPIP51 did not influence the expression of VAPB (Figure 3.1). Moreover, the expression levels of mitofusin-2 (another protein suggested to mediate ER-mitochondria interaction (de Brito and Scorrano, 2008)) were not affected by the siRNA knockdown of either VAPB or PTPIP51. In control siRNA treated cells, approximately 12% of the mitochondrial surface was closely associated with ER (Figure 3.2). However, siRNA knockdown of either VAPB or PTPIP51 significantly reduced these values to 8% (VAPB siRNA) and 6% (PTPIP51 siRNA). Loss of PTPIP51 was the more potent in disrupting ER-mitochondria interactions (Figure 3.2).

Next, the expression of VAPB and PTPIP51 was elevated via transfection. Cells were transfected with either ECFP control vector, ECFP-VAPB (Morotz et al., 2012) or
PTPIP51 that was expressed using a bicistronic internal ribosome entry site (IRES) vector with AcGFP. To monitor the effect of VAPB and PTPIP51 co-expression, the cells were transfected with ECFP-VAPB and HA tagged PTPIP51. Since these transient transfections achieved a transfection efficiency of only 30-50%, the ECFP/AcGFP tags were further utilized to isolate transfected cells using a BD® FACS Aria cell sorter. The cell sorting achieved over 98% positive cells (Figure 3.3). This was further confirmed by monitoring ECFP, ECFP-VAPB and PTPIP51 expression in the sorted cells by fluorescence and immunofluorescence microscopy. This staining confirmed the efficiency of the sorting procedure (see for example staining for ECFP-VAPB and PTPIP51 in ECFP-VAPB/PTPIP51-HA co-transfected cells in Figure 3.4).

As expected, the proportion of the mitochondrial surface closely associated with ER in control cells expressing ECFP alone was not significantly different to that in cells treated with control siRNA (Figure 3.5A). However, expression of either VAPB or PTPIP51 markedly increased the percentage of mitochondrial surface in touch with ER to approximately 18% or 26% respectively (Figure 3.5A). Interestingly, overexpression of PTPIP51 was more potent than VAPB at promoting ER-mitochondria interactions and this is consistent with the siRNA studies where loss of PTPIP51 was more effective at disrupting ER-mitochondria interactions (Figure 3.2 and 3.5A).

The effect of overexpressing both VAPB and PTPIP51 was also investigated and here a dramatic increase in ER-mitochondria interactions was observed. In these co-transfected cells, approximately 60% of the mitochondrial surface was closely associated with ER (Figure 3.5A and 3.5B).
3.2.2 VAPB and PTPIP51 mediate ER-mitochondria co-localization in confocal light microscopy studies using CV1 cells

For these investigations, CV1 cells were utilized due to their flattened and spread morphology which facilitates such morphological analyses. Other groups have utilized confocal microscopy to study ER-mitochondria interactions (e.g. (Area-Gomez et al., 2012; de Brito and Scorrano, 2009; Rizzuto et al., 1998)). In this set of experiments, ER was detected by immunostaining for the integral ER protein, protein disulfide isomerase (PDI) and mitochondria were detected by immunostaining for translocase of outer mitochondrial membrane 20 (TOM20). The co-localization of PDI and TOM20 was quantified using intensity correlation analysis (ICA) and data presented as relative intensity correlation quotients (ICQ) (Li et al., 2004). ICA is one of the most rigorous methods for studying co-localization of proteins by confocal microscopy since it compares the scatter plots of two stains against the product of the pixel intensity difference for each of the two stains from their respective means. Thus, unlike other methods which simply compare co-localization of pixels, ICA determines whether the pixel intensities from two signals vary in synchrony.

First, the cells were transfected with control siRNA, PTPIP51 siRNA or VAPB siRNA and ER and mitochondria co-localization monitored by immunostaining. The co-localization of PDI and TOM20 was significantly decreased after either VAPB or PTPIP51 depletion (Figure 3.6) and this was consistent with the electron microscopy results (Figure 3.2). However, unlike the electron microscopy studies, there was no significant difference between loss of VAPB and loss of PTPIP51. This may be explained by the reduced resolution of the light microscope compared to the electron microscope which results in a corresponding decrease in sensitivity.
Secondly, VAPB and/or PTPIP51 were overexpressed in the CV1 cells. Cells were transfected with ECFP control, ECFP-VAPB, hemagglutinin-tagged PTPIP51 (PTPIP51-HA) or ECFP-VAPB+PTPIP51-HA. Transfection of VAPB or PTPIP51 both increased co-localization of ER and mitochondria and in agreement with the electron microscopy studies, this phenotype was particularly striking in VAPB+PTPIP51 co-transfected cells (Figure 3.7). In these co-transfected cells, a dramatic reorganization of the ER was observed so that it co-aligned with mitochondria (Figure 3.7).
Figure 3.1 siRNA knockdown of VAPB or PTPIP51

Immunoblots showing siRNA knockdown of VAPB or PTPIP51 in NSC34 cells. siRNA knockdown of VAPB does not affect expression of PTPIP51, siRNA knockdown of PTPIP51 does not affect expression of VAPB and siRNA knockdown of either VAPB or PTPIP51 do not affect expression of mitofusin 2 (MFN2). Also shown is an immunoblot of tubulin as a loading control. Bar charts show PTPIP51 or VAPB expression levels following quantification of signals from immunoblots normalized to tubulin. Statistical significance was determined by a paired t-test. n=4; error bars are SEM; ***p<0.001.
Figure 3.2 siRNA knockdown of VAPB or PTPIP51 reduces ER-mitochondria associations

Representative electron micrographs of ER-mitochondria contacts in control siRNA (CTRL), VAPB or PTPIP51 siRNA treated cells. Arrowheads show ER-mitochondria contact sites. Scale bar=100 nm. Bar chart shows percentage of mitochondrial surface closely apposed to ER in the different samples. Statistical significance was determined by one-way ANOVA followed by Tukey’s multiple comparison test. n=34-40 cells and 341-623 mitochondria; error bars are SEM; **p<0.01, ***p<0.001.
Figure 3.3 FACS post-sorting analyses demonstrating high purity of ECFP/AcGFP positive samples
NSC34 cells transfected with ECFP control vector (A), ECFP-VAPB (B), PTPIP51 in IRES vector with AcGFP (C) or ECFP-VAPB + PTPIP51-HA (D) were sorted using ECFP or AcGFP. The scatter plots (A-a, B-a, C-a, D-a) illustrate high cell viability and low amounts of cell debris in the sorted population. The area charts (A-b, B-b, C-b, D-b) display an ECFP/AcGFP positive cell population (CFP/GFP+) distinct from the very few negative cells (CFP/GFP-). The tables (A-c, B-c, C-c, D-c) show the percentage of viable cells in the sorted population and the percentage of ECFP/AcGFP positive cells within the live population.
Figure 3.4 Confirmation of cell sorting purification of ECFP-VAPB and PTPIP51-HA expressing cells.

NSC34 cells co-transfected with ECFP-VAPB and PTPIP51-HA were sorted, plated onto coverslips and immunostrained for PTPIP51 using the HA epitope tag. VAPB was visualized via the ECFP tag. Low magnification images show phase contrast (to visualize cells), ECFP-VAPB and PTPIP51-HA signals. Scale bar=100 µm. Immunoblots revealed that VAPB and PTPIP51 were overexpressed by approximately 3-5 fold in the transfected cells (data not shown but see (Morotz et al., 2012)).
Figure 3.5 Overexpression of VAPB and/or PTPIP51 increases ER-mitochondria associations
(A) Representative electron micrographs of ER-mitochondria contacts in NSC34 cells transfected with control ECFP vector (CTRL), ECFP-VAPB (VAPB), PTPIP51 or ECFP-VAPB + PTPIP51 (VAPB+PTPIP51). Arrowheads show ER-mitochondria contact sites. Scale bar=100 nm. Bar chart shows percentage of mitochondrial surface closely apposed to ER in the different samples. Statistical significance was determined by one-way ANOVA followed by Tukey’s multiple comparison test. n=30-35 cells and 358-623 mitochondria; error bars are SEM; *p<0.05, ***p<0.001. (B) Lower magnification electron micrograph of cell transfected with VAPB and PTPIP51 to show numerous mitochondria with closely apposed ER. Scale bar=500 nm.
Figure 3.6 siRNA knockdown of VAPB or PTPIP51 reduces co-localization of ER and mitochondria

Confocal immunostaining of CV-1 cells transfected with control siRNA (CTRL), VAPB siRNA or PTPIP51 siRNA and immunostained for ER (using mouse PDI antibody) and mitochondria (using rabbit TOM-20 antibody) as indicated. Zoom shows high magnification of boxed area with co-localized pixels. Scale bars are 20 µm and 4 µm (zoom). Bar chart shows ICQ values (with control siRNA represented as 100%) in the different transfections. Statistical significance was determined by one-way ANOVA with Tukey’s post-hoc test. n=24-52 cells; error bars are SEM; ***p<0.001.
Figure 3.7 Overexpression of VAPB, PTPIP51 and VAPB with PTPIP51 all increase co-localization of ER and mitochondria

Confocal immunostaining of CV-1 cells transfected with control ECFP vector (CTRL), ECFP-VAPB (VAPB), PTPIP51-HA (PTPIP51) or ECFP-VAPB+PTPIP51-HA (VAPB+PTPIP51) and immunostained for ER (using mouse PDI antibody) and mitochondria (using rabbit TOM-20 antibody) as indicated. In ECFP-VAPB+PTPIP51-HA co-transfected cells, only ECFP-VAPB labeling is shown but duplicate coverslips were immunostained for PTPIP51-HA and this demonstrated that approximately 95% of
cells expressed both transfected proteins (data not shown). This data is consistent with many previous reports which show that most co-transfected cells express both plasmids (e.g. (Ackerley et al., 2000). Zoom shows high magnification of boxed area with co-localized pixels. Scale bars are 20 µm and 4 µm (zoom). Bar chart shows ICQ values (with ECFP control represented as 100%) in the different transfections. Statistical significance was determined by 1-way ANOVA with Tukey’s post-hoc test. n=34-52 cells; error bars are SEM; ***p<0.001.
3.3 Discussion

Despite their fundamental importance to a variety of physiological processes, the mechanisms that mediate and regulate ER-mitochondria interactions are still not properly understood. In particular, the identity of the molecular tethers that physically connect ER and mitochondria are not fully characterised. Mitofusin-2 has been shown to tether ER to mitochondria (de Brito and Scorrano, 2008) but more recent work involving electron microscopy studies of ER-mitochondria associations in mitofusin-2 knockout cells have challenged this finding (Cosson et al., 2012).

Recent work in our research group identified an interaction between the resident ER protein VAPB and the mitochondrial protein PTPIP51. VAPB is anchored in the ER via a C-terminal membrane-spanning domain such that its N-terminus projects into the cytoplasm (Kagiwada et al., 1998) and PTPIP51 is an outer mitochondrial membrane protein whose C-terminus projects into the cytoplasm (De Vos et al., 2012). Therefore, VAPB and PTPIP51 represent plausible candidate tethers at the ER-mitochondria interface.

In this chapter, modulating VAPB and PTPIP51 expression was shown to significantly affect ER-mitochondria associations in both electron and confocal microscopy analyses. Both approaches have been previously utilised to visualise ER-mitochondria interactions (Csordas et al., 2010; Rizzuto et al., 1998). However, electron and confocal microscopy can produce conflicting results (Cosson et al., 2012; de Brito and Scorrano, 2008) and it has been suggested that electron microscopy is more suitable for investigating ER-mitochondria juxtaposition because of its higher resolution (Cosson et al., 2012; Rowland and Voeltz, 2012).
Interestingly, electron and confocal studies have produced complementary results in this chapter. siRNA knockdown of VAPB or PTPIP51 reduced ER-mitochondria associations, whereas overexpression of VAPB and/or PTPIP51 markedly increased ER-mitochondria associations using both microscopy methods. Indeed, VAPB and PTPIP51 co-expression produced a remarkable phenotype detectable by both electron and confocal microscopy in which the ER and mitochondria redistribute to form close associations. Alterations to ER-mitochondria interactions are known to affect Ca\(^{2+}\) exchange between these organelles and it has previously been demonstrated that modulating VAPB and PTPIP51 expression induces such changes in Ca\(^{2+}\) transmission (De Vos et al., 2012). Together, these findings support the conclusion that VAPB and PTPIP51 form at least one of the molecular scaffolds that mediate ER-mitochondria associations.

The ER-mitochondria interface is also involved in regulating cell survival and increased interactions between the two organelles may promote mitochondrial Ca\(^{2+}\) overload and apoptosis (Csordas et al., 2006; Rowland and Voeltz, 2012). Interestingly, one of the initial studies investigating PTPIP51 function reports cytochrome c release and caspase activation in PTPIP51 overexpressing cells (Lv et al., 2006). Thus, the markedly increased ER-mitochondria association induced by PTPIP51 overexpression in this study might provide a mechanism for the proapoptotic effect of overexpressing PTPIP51.

The findings that VAPB and PTPIP51 regulate ER-mitochondria associations have implications for a number of physiological processes. Key functions such as
phospholipid synthesis and trafficking, Ca\(^{2+}\) transmission, mitochondrial transport and biogenesis have been proposed to be regulated by ER-mitochondria associations (Rowland and Voeltz, 2012).

Thus, phospholipid synthesis is regulated by the ER-mitochondria encounter structure (ERMES) in yeast (Kornmann et al., 2009), although a tethering complex controlling lipid metabolism in higher eukaryotes has not been identified. Nonetheless, the mitochondrial protein Miro1 is the animal homologue of the ERMES subunit Gem1 (Kornmann et al., 2011) and controls mitochondrial morphology and movement along microtubules through a Ca\(^{2+}\) sensor (Fransson et al., 2006; Macaskill et al., 2009; Wang and Schwarz, 2009). Interestingly, Miro1 also interacts with the proposed ER-mitochondria tethering protein mitofusin-2, providing another link between the ER-mitochondria interface and mitochondrial dynamics (Misko et al., 2010). Furthermore, dynamin-related protein 1, a protein controlling mitochondrial division, is also localized at ER-mitochondria contact sites (Friedman et al., 2011) and can fragment the mitochondrial network, block interorganellar Ca\(^{2+}\) currents and protect against apoptosis (Szabadkai et al., 2004).

Ca\(^{2+}\) transmission between ER and mitochondria is mediated by IP3 receptors (ER membrane) and VDAC1 (mitochondrial membrane) ion channels, which can modulate apoptotic responses (Rizzuto et al., 1998; Szabadkai et al., 2006). Both pro- and anti-apoptotic Bel-2 family members can regulate the ER Ca\(^{2+}\) levels by altering IP3 receptor phosphorylation or by directly interacting with the IP3 receptors (Oakes et al., 2005; White et al., 2005). Promielocytic leukemia protein has also been recently shown to regulate IP3 receptor activity and the mobilization of Ca\(^{2+}\) to the mitochondria.
(Giorgi et al., 2010). Thus, lipid synthesis, mitochondrial homeostasis, Ca^{2+}
transmission and apoptosis are all intimately connected at the ER-mitochondria
interface. This implies the molecular scaffolds tethering ER to mitochondria are
essential for maintaining these functions. The results described in this chapter which
support a role for VAPB and PTPIP51 in regulating ER-mitochondria association thus
have major relevance to a number of physiological processes.

Finally, it will be important to assess the significance of altered ER-mitochondria
contacts for human disease. Indeed, damage to ER-mitochondria associations and
consequent alterations to lipid metabolism and Ca^{2+} transmission are now linked to
neurodegenerative disorders such as Alzheimers’s disease and Parkinson’s disease
(Area-Gomez et al., 2012; Cali et al., 2012; Zampese et al., 2011). This aspect is
explored in more detail in the next chapter, where ER-mitochondria associations are
investigated in the presence of ALS associated insults.
CHAPTER 4: BOTH WILD-TYPE AND ALS MUTANT TDP-43 REDUCE ER-MITOCHONDRIA ASSOCIATIONS
4.1 Introduction

As discussed in Chapter 1 (Section 1.4), changes to ER-mitochondria associations are predicted to have important effects on the neuronal homeostasis. The prolonged and excessive tightening of ER-mitochondria contacts will likely lead to increased Ca2+ signalling between the two organelles, mitochondria Ca2+ overload and induction of apoptosis (Csordas et al., 2006; Rowland and Voeltz, 2012). Conversely, the loosening of contacts may affect Ca2+-dependent regulation of ATP synthesis by mitochondria. This is likely to have a profound effect at synapses since mitochondria are enriched in this compartment and perform essential functions in maintaining ionic potential (Csordas et al., 2006; Rowland and Voeltz, 2012).

This raises the intriguing possibility that human pathogenic processes target proteins at the MAM interface and ER-mitochondria associations. Indeed, a number of studies have focused attention on defective ER-mitochondria contacts and communication in neurodegenerative diseases (see for reviews (Rowland and Voeltz, 2012; Schon and Area-Gomez, 2010)).

Alzheimer’s disease-associated presenilins have been shown to increase ER-mitochondria contacts and induce alterations to both Ca2+ and lipid metabolism (Area-Gomez et al., 2012; Zampese et al., 2011). Likewise, Parkinson’s disease associated \(\alpha \)-synuclein has been shown to enhance ER-mitochondria interactions and increase mitochondrial Ca2+ levels (Cali et al., 2012). Moreover, pathogenic proteins associated with Huntington’s disease aberrantly interact with the IP3 receptors (Tang et al., 2003) and loss of IP3 receptor function is associated with some forms of spinocerebellar ataxia (van de Leemput et al., 2007). Finally, mutations in the gene encoding the ER-
mitochondria tethering protein mitofusin-2 cause some forms of Charcot-Marie-Tooth disease (Barisic et al., 2008).

Similar to other neurodegenerative diseases, a number of ALS associated proteins are located at the ER-mitochondria interface and can affect ER-mitochondria communication. Notably, VAPB is located in MAM and mutant VAPB causes familial ALS, disrupts ER structure and ER to mitochondria Ca2+ exchange (De Vos et al., 2012; Fasana et al., 2010; Kim et al., 2010a; Langou et al., 2010; Nishimura et al., 2004; Teuling et al., 2007; Tudor et al., 2010). A consequence of altered Ca2+ transmission at the MAM is impaired mitochondrial transport described in ALS mutant VAPB expressing neurons (Morotz et al., 2012). Mutant SOD1 and FUS also perturb ER structure and can induce ER stress and UPR (Farg et al., 2012; Saxena et al., 2009). In addition, ALS associated mutant SOD1 interacts with and damages VDAC1 (Israelson et al., 2010), an outer mitochondrial membrane Ca2+ channel closely associated to IP3 receptors in the ER membrane (Rapizzi et al., 2002; Szabadkai et al., 2006). However, although ALS associated insults can disrupt ER-mitochondria communication, changes in physical associations between the two organelles have not yet been explored.

In this chapter, the effect of wild-type and ALS mutant TDP-43 on ER-mitochondria associations was investigated. Accumulations of TDP-43 are a common pathological feature in a variety of neurodegenerative diseases including ALS (Arai et al., 2006; Neumann et al., 2006) and \textit{TARDBP} mutations are causative for familial forms of ALS (Sreedharan et al., 2008). Although normally located mostly in the nucleus, pathogenic TDP-43 translocates to the cytoplasm where it may induce local damage. Interestingly, the ER stress response coordinated at ER-mitochondria contact sites was recently found
to be disrupted in TDP-43 transgenic rats (Tong et al., 2012).

To further explore the role of TDP-43 at the ER-mitochondria interface, ER-mitochondria associations were monitored by electron and light microscopy in NSC34 motor neuron cells transfected with either wild-type or an ALS mutant TDP-43 (TDP-43 M337V). In addition, the effect of expressing either wild-type or ALS mutant TDP-43 on the VAPB-PTPIP51 interaction was quantified using both proximity ligation assays and immunoprecipitation assays. Finally, preliminary results are presented to determine the effects of expressing wild-type and ALS mutants of FUS and SOD1 on the VAPB-PTPIP51 interaction in immunoprecipitation experiments.

As described in Chapter 3, NSC34 motor neuron cells were used for the electron microscopy studies and CV1 cells were used for the confocal light microscopy studies. For the immunoprecipitation studies, NSC34 cells were utilised.
4.2 Results

4.2.1 Expression of wild-type and ALS mutant TDP-43 disrupt ER-mitochondria associations in electron microscopy studies using NSC34 cells

To investigate the effect of TDP-43 on ER-mitochondria interactions, wild-type and familial ALS mutant TDP-43 were first transfected into NSC34 cells and ER-mitochondria associations then quantified by electron microscopy. This involved capturing images of mitochondria in appropriately manipulated cells and then calculating the percentage of the mitochondrial surface closely apposed (less than 25 nm) to ER. The quantification was performed using the ImageJ software (http://rsb.info.nih.gov/ij/) (see Section 2.2.3.3).

First, cells were transfected with EGFP control vector, EGFP-TDP-43 or ALS mutant EGFP-TDP-43 M337V. Since these transient transfections achieved transfection efficiencies of only 30% to 50%, the EGFP tags were further utilized to isolate transfected cells using a BD® FACS Aria cell sorter. The cell sorting achieved over 98% EGFP positive cells, which were further processed for the electron microscopy analyses (Figure 4.1). In control cells expressing EGFP alone, approximately 12% of the mitochondrial surface was closely associated with ER (Figure 4.2) and this was similar to that in cells expressing ECFP or treated with control siRNA (see Figures 3.1 and 3.5). However, the expression of both wild-type and TDP-43 M337V led to significant, approximate 50% reductions in ER-mitochondria associations (Figure 4.2).
4.2.2 TDP-43 disrupts ER-mitochondria co-localization in confocal microscopy studies using CV1 cells

For these investigations, CV1 cells were utilized due to their highly spread and flattened phenotype which facilitates immunofluorescent morphological analyses. As described in Chapter 3, ER was detected by immunostaining for the integral ER protein PDI and mitochondria were detected by immunostaining for TOM20. The co-localization of PDI and TOM20 was quantified using ICA and data presented as relative intensity correlation quotients (ICQ) (Li et al., 2004). ICA is a rigorous method for studying co-localization of proteins by confocal microscopy which compares the scatter plots of two stains against the product of the pixel intensity difference for each of the two stains from their respective means.

The cells were transfected with EGFP control vector, EGFP-TDP-43 or EGFP-TDP-43 M337V and ER and mitochondria co-localization monitored by immunostaining. The transfection of EGFP-TDP-43 or EGFP-TDP-43 M337V both decreased co-localization of PDI and TOM20 (Figure 4.3) and this was consistent with the EM results (Figure 4.2).

4.2.3 TDP-43 does not affect expression of VAPB, PTPIP51 or mitofusin-2

The finding that wild-type TDP-43 and TDP-43 M337V both disrupt ER-mitochondria interactions is consistent with the phenotypes seen in transgenic mice where expression of both wild-type and mutant TDP-43 all induce disease (Shan et al., 2010; Stallings et al., 2010; Wils et al., 2010; Xu et al., 2010). TDP-43 has been linked to mRNA metabolism and gene expression (Buratti and Baralle, 2012; Polymenidou et al., 2011; Tollervey et al., 2011). Therefore, it was enquired whether transfection of wild-type or
TDP-43 M337V influenced the expression of VAPB, PTPIP51 or mitofusin-2, a further protein that has been linked to ER-mitochondria associations. To do so, NSC34 cells transfected with control EGFP, EGFP-TDP-43 or EGFP-TDP-43 M337V were purified using a cell sorter via the EGFP fluorescent tag as described above. These purified cell populations were then analysed by immunoblotting for VAPB, PTPIP51 and mitofusin-2. However, no differences in the expression of any of these proteins were detected in the different samples (Figure 4.4). Thus, the reduction in ER-mitochondria interactions seen in cells expressing wild-type TDP-43 or TDP-43 M337V is not due to changes in expression of VAPB, PTPIP51 or mitofusin-2.

4.2.4 TDP-43 induced disruption of ER-mitochondria associations is accompanied by changes in VAPB-PTPIP51 interaction

Since VAPB and PTPIP51 mediate ER-mitochondria associations and these associations are disrupted by TDP-43 expression, the influence of TDP-43 on the VAPB-PTPIP51 interaction was investigated. To do so, VAPB-PTPIP51 binding was first monitored using a proximity ligation assay (Soderberg et al., 2006) (see Section 2.2.3.2). CV1 cells were transfected with EGFP control vector, wild-type EGFP-TDP43, ALS mutant EGFP-TDP-43 M337V or EGFP-TDP-43 A382T and then probed with VAPB and PTPIP51 primary antibodies. The proximity of VAPB to PTPIP51 in these cells was then detected following labeling with secondary antibodies coupled to complementary oligonucleotides (one for each of the two primary antibodies). If the distance between the two antibody-coupled oligonucleotides is less than 40 nm, they hybridize and generate fluorescent signals.
To first test the specificity of the assay, one or both primary antibodies were omitted from the reaction in control untransfected cells and this resulted in no or very few proximity ligation signals (Figure 4.5). In agreement with previous studies using this assay to monitor the VAPB-PTPIP51 interaction (De Vos et al., 2012), robust positive signals were obtained when both the primary antibodies were used (Figure 4.5). Transfection of EGFP control vector did not significantly influence the numbers of proximity ligation signals compared to non-transfected cells (Figure 4.6). However, the numbers of proximity ligation signals were significantly reduced in cells transfected with either wild-type or two different ALS mutants of TDP-43 (Figure 4.6).

The effect of TDP-43 on the VAPB-PTPIP51 interaction was also monitored using immunoprecipitation assays in cells transfected with EGFP control vector, wild-type EGFP-TDP-43 or four different ALS mutants of EGFP-TDP-43 (TDP-43 M337V, TDP-43 Q331K, TDP-43 A382T and TDP-43 G348C). PTPIP51 was immunoprecipitated from PTPIP51-HA co-transfected cells using the anti-HA antibody and the amounts of bound endogenous VAPB detected by immunoblotting. Expression of wild-type TDP-43 and four different ALS associated mutants of TDP-43 all reduced the amount of VAPB that was associated with PTPIP51 in these assays (Figure 4.7). Thus, expression of ALS associated TDP-43 disrupts ER-mitochondria interactions and this is associated with a decrease in the binding of VAPB to PTPIP51 as detected in two different assays (proximity ligation and immunoprecipitation assays).
4.2.5 ALS associated FUS but not SOD1 disrupts VAPB binding to PTPIP51 in immunoprecipitation assays

The above studies demonstrated that ALS-associated TDP-43 disrupts ER-mitochondria interactions and that this is associated with a decrease in binding of VAPB to PTPIP51. To begin to investigate whether other insults associated with familial ALS might also disrupt binding of VAPB to PTPIP51, the effects of expressing wild-type and ALS mutants of FUS and SOD1 on the VAPB-PTPIP51 interaction was investigated in immunoprecipitation experiments. Cells were co-transfected with PTPIP51-HA and either EGFP control, wild-type EGFP-FUS, ALS mutants of EGFP-FUS, wild-type EGFP-SOD1 or ALS mutants of EGFP-SOD1. ALS mutants of FUS were FUS R521C, FUS R521G, FUS R521H, FUS R518K. ALS mutants of SOD1 were SOD1 G93A and SOD1 A4V. PTPIP51 was then immunoprecipitated using the HA tag and the amounts of co-immunoprecipitating endogenous VAPB detected by immunoblotting.

Expression of wild-type and all four ALS mutants of FUS all reduced the amounts of VAPB associated with PTPIP51 in these assays (Figure 4.8). However, neither wild-type nor ALS mutant SOD1 affected the amounts of VAPB that co-immunoprecipitated with PTPIP51 (Figure 4.9). Thus, ALS FUS, but not SOD1 disrupts the VAPB-PTPIP51 interaction in a manner similar to that of TDP-43.
Figure 4.1 FACS post-sorting analyses demonstrating purification of EGFP positive samples

NSC34 cells transfected with EGFP control vector (A), EGFP-TDP-43 (B) or EGFP-TDP-43 M337V (C) were sorted based on their EGFP tags. The scatter plots (A-a, B-a, C-a) illustrate high cell viability and low amounts of cell debris in the sorted population. The area charts (A-b, B-b, C-b) display an EGFP positive cell population (GFP+) distinct from the very few negative cells (GFP-). The tables (A-c, B-c, C-c) show the percentage of viable cells in the sorted population and the percentage of EGFP positive cells within the live population.
Figure 4.2 Expression of wild type and ALS mutant TDP-43 reduce ER-mitochondria associations

Representative electron micrographs of ER-mitochondria contacts in NSC34 cells transfected with control EGFP vector (CTRL), EGFP-TDP-43 or EGFP-TDP-43M337V as indicated. Scale bar is 100 nm. Arrowheads show ER-mitochondria contact sites. Bar chart shows % of mitochondrial surface closely apposed to ER in the different samples. Data were analysed by one-way ANOVA followed by Tukey’s multiple comparison test. n=34-40 cells and 483-747 mitochondria; error bars are SEM; ***p<0.001.
Figure 4.3 Expression of wild type or ALS mutant TDP-43 reduce ER-mitochondria co-localization

Confocal immunostaining of CV-1 cells transfected with control EGFP vector (CTRL), EGFP-TDP-43 or EGFP-TDP-43-M337V and immunostained for ER (using mouse PDI antibody) and mitochondria (using rabbit TOM-20 antibody) as indicated. Zoom shows high magnification of boxed area with co-localized pixels. Scale bars=20 µm, 4 µm (zoom). Bar chart shows ICQ values (with EGFP control represented as 100%) in the different transfections. Data were analysed by one-way ANOVA with Tukey’s post-hoc test. n=36-49 cells; error bars are SEM; **p<0.01, ***p<0.001.
Figure 4.4 Overexpression of wild-type or ALS associated mutant TDP-43 do not alter expression of VAPB, PTPIP51 or mitofusin-2 (MFN2)

Immunoblots of NSC34 cells either untransfected (Un-T) or transfected with EGFP as a control (CTRL), EGFP-TDP-43 or EGFP-TDP-43 M337V. Transfected cells were purified via the EGFP tag using a cell sorter and the samples probed on immunoblots as indicated. Tubulin is shown as a loading control.
Figure 4.5 Specificity of the Duolink proximity ligation assay for VAPB and PTPIP51

Non-transfected CV1 cells were labeled with no primary antibodies (No Abs), with VAPB antibody alone (VAPB Ab), with PTPIP51 antibody alone (PTPIP51 Ab) or with both VAPB and PTPIP51 antibodies (PTPIP51+VAPB). In agreement with previous studies (De Vos et al., 2012), omission of one or both of the primary antibodies produced no or very few proximity ligation signals. However, probing with both VAPB and PTPIP51 antibodies produced strong positive ligation signals. Scale bar is 40 µm.

Bar charts show numbers of proximity signals/cell in the different transfections. Data were analysed by one-way ANOVA and Tukey’s post hoc test. n=30 cells; error bars are SEM, ***p<0.001.
Figure 4.6 Expression of wild-type or ALS associated mutants of TDP-43 all reduce the interaction of VAPB with PTPIP51 in proximity ligation assays

CV1 cells were transfected with either EGFP control vector (CTRL), EGFP-TDP-43, EGFP-TDP-43 M337V or EGFP-TDP-43 A382T and proximity ligation assays performed using rat anti-VAPB and rabbit anti-PTPIP51 primary antibodies. Representative cells transfected with EGFP, EGFP-TDP-43, EGFP-TDP43 M337V and
EGFP-TDP43 A382T are shown. Scale bar is 40 µm. Bar charts show relative % of proximity signals/cell in the different transfections. Data were analysed by one-way ANOVA and Tukey’s post hoc test. n=30 cells; error bars are SEM, ***p<0.001.
Figure 4.7 Expression of wild-type or ALS associated mutants of TDP-43 (TDP-43 Q331K, TDP-43 M337V, TDP-43 G348C and TDP-43 A382T) reduce the binding of VAPB to PTPIP51 in immunoprecipitation assays.

Cells were either mock transfected (Mock) or co-transfected with PTPIP51-HA and either EGFP control vector (CTRL) or wild type or ALS mutants of TDP-43. PTPIP51 was immunoprecipitated using the HA-tag and the amounts of endogenous bound VAPB detected by immunoblotting. No signals were obtained for either VAPB or PTPIP51 in immunoprecipitations from mock transfected cells which demonstrates the specificity of the immunoprecipitations. Both inputs and immunoprecipitations (IP) are shown. Bar charts show relative levels of VAPB bound to PTPIP51 in the immunoprecipitations following quantification of signals from immunoblots. VAPB signals were normalized to immunoprecipitated PTPIP51-HA signals. Data were analysed by one-way ANOVA and Tukey’s post hoc test. n=5; error bars are SEM, *p<0.05, **p<0.01.
Figure 4.8 Expression of wild-type or ALS associated mutants of FUS (FUS R521C, FUS R521G, FUS R521H and FUS R518K) reduce the binding of VAPB to PTPIP51 in immunoprecipitation assays.

Cells were either mock transfected (Mock) or co-transfected with PTPIP51-HA and either EGFP control vector (CTRL) or wild type or ALS mutants of FUS. PTPIP51 was immunoprecipitated using the HA-tag and the amounts of endogenous bound VAPB detected by immunoblotting. No signals were obtained for either VAPB or PTPIP51 in immunoprecipitations from mock transfected cells which demonstrates the specificity of the immunoprecipitations. Both inputs and immunoprecipitations (IP) are shown. Bar charts show relative levels of VAPB bound to PTPIP51 in the immunoprecipitations following quantification of signals from immunoblots. VAPB signals were normalized to immunoprecipitated PTPIP51-HA signals. Data were analysed by one-way ANOVA and Tukey’s post hoc test. n=5; error bars are SEM, *p<0.05, **p<0.01.
Figure 4.9 Expression of wild-type or ALS associated mutants of SOD1 (SOD1 G93A, SOD1 A4V) do not influence the binding of VAPB to PTPIP51 in immunoprecipitation assays.

Cells were either mock transfected (Mock) or co-transfected with PTPIP51-HA and either EGFP control vector (CTRL) or wild type or ALS mutants of SOD1. PTPIP51 was immunoprecipitated using the HA-tag and the amounts of endogenous bound VAPB detected by immunoblotting. No signals were obtained for either VAPB or PTPIP51 in immunoprecipitations from mock transfected cells which demonstrates the specificity of the immunoprecipitations. Both inputs and immunoprecipitations (IP) are shown. Bar charts show relative levels of VAPB bound to PTPIP51 in the immunoprecipitations following quantification of signals from immunoblots. VAPB signals were normalized to immunoprecipitated PTPIP51-HA signals. Data were analysed by one-way ANOVA. n=3; error bars are SEM.
4.3 Discussion

Abnormal accumulations of TDP-43 are a hallmark pathology in a number of neurodegenerative diseases including ALS and FTD (Arai et al., 2006; Neumann et al., 2006). However, the molecular mechanisms by which defective TDP-43 metabolism might induce disease are not clear. Overexpression of both wild-type and familial ALS associated mutants of TDP-43 all induce disease in transgenic rodents (Shan et al., 2010; Stallings et al., 2010; Swarup et al., 2011; Wils et al., 2010; Xu et al., 2010; Xu et al., 2011b; Zhou et al., 2010). Moreover, elevated TDP-43 expression has been observed in sporadic ALS patients (Kasai et al., 2009; Suzuki et al., 2010). Together, these findings suggest that overexpression of wild-type TDP-43 is pathogenic in ALS.

The cellular targets of pathogenic TDP-43 are not fully understood but disruption to both mitochondria (Braun et al., 2011; Shan et al., 2010; Xu et al., 2010; Xu et al., 2011b) and ER stress signaling pathways (Suzuki et al., 2011; Suzuki and Matsuoka, 2012; Tong et al., 2012) have been described. These findings focus attention on the ER-mitochondria axis. Moreover, several recent studies have implicated defective ER-mitochondria contacts in some related neurodegenerative diseases including Alzheimer’s and Parkinson’s diseases (Area-Gomez et al., 2012; Cali et al., 2012; Zampese et al., 2011).

In this chapter, both wild-type and ALS associated mutant TDP-43 were shown to reduce ER-mitochondria associations in both electron and confocal microscopy analyses. Moreover, the TDP-43-induced change in ER-mitochondria contacts was accompanied by decreases in VAPB-PTPIP51 interactions demonstrated in two
different assays. It thus seems likely that the effect of TDP-43 on ER-mitochondria associations involves a TDP-43-induced decrease in binding of VAPB to PTPIP51.

In order to begin to determine whether other ALS-associated insults also influence ER-mitochondria associations and the VAPB-PTPIP51 interaction, the effects of wild-type and ALS mutant FUS and SOD1 on VAPB-PTPIP51 binding was studied. This involved immunoprecipitation experiments similar to those performed for TDP-43. These experiments revealed that overexpression of both wild-type and ALS associated FUS decreased the VAPB-PTPIP51 interaction. Interestingly, expression of wild-type FUS (like wild-type TDP-43) is pathogenic in transgenic mice (Mitchell et al., 2012). By contrast, overexpression of wild-type or ALS mutant SOD1 did not influence the VAPB-PTPIP51 interaction. It appears that the effect of mutant SOD1 on the ER-mitochondria axis and especially on the VAPB-PTPIP51 connection may be different to that of TDP-43 and FUS. However, SOD1 has been shown to damage VDAC1, a protein believed to contribute to ER-mitochondria associations (Israelson et al., 2010; Szabadkai et al., 2006). Therefore, it is possible that all these ALS insults perturb ER-mitochondria associations, but the precise target for mutant SOD1 damage within MAM axis is different to TDP-43 and FUS. Clearly, future studies to quantify ER-mitochondria associations in the presence of wild-type and ALS mutant FUS and SOD1 using electron microscopy methods similar to those described in this thesis will help resolve these issues.

The regulation of ER-mitochondria associations is fundamental to a number of physiological processes and both abnormal tightening or loosening of ER-mitochondria contacts are predicted to have detrimental effects to cells. In particular, excessive
tightening of contacts may sensitize mitochondria to Ca\(^{2+}\) overload leading to opening of the mitochondrial permeability transition pore and apoptosis (Hajnoczky et al., 2006; Szabadkai et al., 2006).

By contrast, loosening of ER-mitochondria contacts will affect Ca\(^{2+}\)-dependent regulation of the tricarboxylic acid cycle and ATP synthesis by mitochondria (Csordas et al., 2006; Rowland and Voeltz, 2012). Synaptic dysfunction is a key and early feature of ALS and the energy requirements of synapses are especially high; ATP is required to drive the pumps that maintain ionic potential at the synapse (Laughlin et al., 1998). Disruption to mitochondrial ATP synthesis is thus predicted to have particularly detrimental effects at the synapse.

Another piece of evidence suggests that controlling the distance between ER and mitochondria can determine the rate of Ca\(^{2+}\) refilling in neighboring ER regions (Arnaudeau et al., 2001). Therefore, this raises the possibility that reduced ER-mitochondria contacts might decrease intraluminal ER Ca\(^{2+}\), which in turn could affect proper protein folding, inducing ER stress and triggering the UPR (Lodish and Kong, 1990; Zhang and Kaufman, 2008). In addition, close interorganellar contacts are essential in the early phases of ER stress and uncoupling mitochondria from ER renders cells more vulnerable to stress (Bravo et al., 2011). Indeed, chronic ER stress and UPR are common findings in ALS patients and represent some of the earliest pathogenic changes detected in this disease ((Kanekura et al., 2009) and see Section 1.3.7). Chronic unresolved UPR can trigger cell death programmes through the activation of C/EBP homologous protein or c-Jun N-terminal kinase and both these pathways have recently been found to be activated by TDP-43 (Suzuki and Matsuoka, 2012, 2013).
Finally, detaching mitochondria from the ER membranes can prevent local Ca\(^{2+}\) uptake in regions with high Ca\(^{2+}\) concentrations, thus diminishing mitochondrial Ca\(^{2+}\) buffering and elevating intracellular Ca\(^{2+}\) levels. Indeed, delayed mitochondrial Ca\(^{2+}\) uptake and higher intracellular peaks have been described following ablation of proposed ER-mitochondria tethering proteins VAPB, PTPIP51 or mitofusin-2 (de Brito and Scorrano, 2008; De Vos et al., 2012). Elevated cytosolic Ca\(^{2+}\) could prove particularly disruptive in motor neurons, which have weak Ca\(^{2+}\) buffering systems in physiological conditions and rely heavier on their mitochondrial Ca\(^{2+}\) buffering capacity (see for review (von Lewinski and Keller, 2005)). Thus, diminished mitochondrial Ca\(^{2+}\) uptake combined with the increased glutamate activity previously described in ALS may further accelerate motor neuron demise.

In summary, the results in this chapter reveal a novel pathogenic role for TDP-43 in decreasing ER-mitochondria associations via the VAPB-PTPIP51 interaction. This may perturb Ca\(^{2+}\) homeostasis and ATP production, therefore contributing to motor neuron degeneration. However, the mechanisms by which TDP-43 disrupts the VAPB-PTPIP51 interaction are unclear; TDP-43 did not alter the expression of either VAPB or PTPIP51. A further possible route by which TDP-43 could influence the VAPB-PTPIP51 binding might be via post-translational changes such as phosphorylation of either VAPB or PTPIP51. This topic was investigated further in the next chapter of this thesis.
CHAPTER 5: VAPB AND PTPIP51

PHOSPHORYLATION AS A REGULATORY MECHANISM FOR CONTROLLING THEIR INTERACTION
5.1 Introduction

The results in Chapter 3 support a role for VAPB and PTPIP51 in mediating ER-mitochondria associations. It is likely that ER-mitochondria interactions are dynamic and alter in response to physiological changes. The tightening of ER-mitochondria associations will increase Ca\(^{2+}\) and possibly phospholipid exchange between the two organelles. This may be required in situations of high energy demand since Ca\(^{2+}\) regulates the tricarboxylic acid cycle and ATP synthesis by mitochondria (Csordas et al., 2006; Rowland and Voeltz, 2012). However, prolonged and excessively close ER-mitochondria associations are likely to promote mitochondrial Ca\(^{2+}\) overload, leading to opening of the permeability transition pore and apoptosis (Csordas et al., 2006; Rowland and Voeltz, 2012). As such, it is possible that cellular mechanisms controlling the levels of ER-mitochondria association involve modulation of the VAPB-PTPIP51 interaction.

Reversible phosphorylation is the most common posttranslational modification to proteins and is a potent mechanism for influencing protein function and also protein-protein interactions. Indeed, a recent study investigating the interaction profile of PTPIP51 suggests that phosphorylation on tyrosine residues can influence its interaction with several binding partners such as 14-3-3\(\beta\), Raf-1 and protein tyrosine phosphatase-1B (PTP1B) (Brobeil et al., 2012).

In order to properly examine the possibility that phosphorylation regulates the VAPB-PTPIP51 interaction, potential phosphorylation sites in both of these proteins first need to be identified. This will then facilitate the identification of kinases and
phosphatases that regulate VAPB and PTP1P51 phosphorylation and the experimental manipulation of VAPB/PTPIP51 phosphorylation state.

In this chapter, the phosphorylation of PTPIP51 and VAPB was investigated. Firstly, mass spectrometric sequencing of PTPIP51 and VAPB was undertaken and several serine and threonine phosphorylation sites were identified in both proteins. Secondly, mutagenic approaches were used in which identified sites were altered to preclude phosphorylation or to mimic permanent phosphorylation. The effects of these mutations on VAPB-PTPIP51 binding was then studied in immunoprecipitation assays.
5.2 Results

5.2.1 Purification of PTPIP51 by immunoprecipitation and separation on SDS-PAGE

To identify phosphorylation sites within PTPIP51, the first approach taken was to sequence the protein via mass spectrometry. Mass spectrometry is a powerful method to detect posttranslational modifications; the sensitivity and accuracy of this method allows analyses of amounts as little as 10 nanograms for individual proteins (Larsen et al., 2006). However, phosphorylation is usually present at sub-stoichiometric levels and the likelihood of finding such modification increases with a larger amount of starting material. Thus, HA-tagged PTPIP51 was exogenously expressed in cultured CHO cells by transfection in order to increase the amounts of protein available for the mass spectrometry analysis. High transfection efficiencies are usually achieved in CHO cells, which are often used to obtain high yields of transfected proteins including large scale production of pharmaceutical proteins (Omasa et al., 2010). The HA tag on the transfected PTPIP51 also enabled the purification of PTPIP51 by immunoprecipitation methods using an antibody directed against the HA epitope.

Thus, HA-tagged PTPIP51 was transfected into CHO cells and purified by immunoprecipitation with anti-HA and separation on SDS-PAGE. As a control to demonstrate the specificity of the immunoprecipitation, control vector transfected CHO cells were subjected to immunoprecipitation with the same anti-HA antibody and immunoprecipitations from both samples were performed with no HA antibody. As shown in Figure 5.1A, a protein species corresponding to the correct size of PTPIP51 was specifically detected in the PTPIP51 transfected CHO cell samples. Probing
immunoblots of the same samples confirmed that this species was PTPIP51 (Figure 5.1 B) and mass spectrometry further confirmed this result (Figure 5.2).

5.2.2 Identification of phosphorylation sites in PTPIP51 by mass spectrometry
Following extraction of the PTPIP51-HA protein band from the SDS PAGE gels and trypsin digestion, the peptides mixture was subjected to LC/MS/MS as described in section 2.2.2.6. Tandem mass spectrometry analyses identified the band as PTPIP51 with a sequence coverage of 58% (Figure 5.2A). Four phosphopeptides were identified (Figure 5.2B) and after amino acid sequencing of each phosphopeptide by MS/MS, phosphorylation was assigned to serine 44 (S44) (Figure 5.3), serine 46 (S46) (Figure 5.4), serine 50 (S50) (Figure 5.5) and serine 212 (S212) (Figure 5.6).

S44, S46 and S50 are located between the transmembrane domain and the coiled coil domain of PTPIP51. S212 is found between the coiled coil domain and the C-terminus of PTPIP51 (Figure 5.7). In the same region of the protein, two other phosphorylation sites (S221, S225) have been previously identified in a phosphoproteomics screen (Chen et al., 2009). Due to their close proximity to S212, all 6 phosphoserine residues were mutated.

5.2.3 PTPIP51 is phosphorylated on tyrosine residue(s)
Although the above mass spectrometry studies identified phosphorylation of PTPIP51 on serine residues, no phosphorylation on tyrosines was detected. To assess whether PTPIP51 is also phosphorylated on tyrosine, a different strategy was chosen. This involved using the tyrosine phosphatase inhibitor pervanadate (Huyer et al., 1997) and an antibody that specifically detects proteins phosphorylated on tyrosine residues
(antibody 4G10). Pervanadate was used to inhibit tyrosine phosphatases as to induce tyrosine phosphorylation of proteins in CHO cells transfected with PTPIP51-HA. Phosphorylation on tyrosines was then detected with the 4G10 antibody. Thus, cells expressing transfected HA-tagged PTPIP51 were treated with pervanadate (as described in Section 2.2.4.1), lysed and PTPIP51 was immunoprecipitated with the anti-HA antibody. The immunoprecipitated material was analysed by immunoblotting with antibody 4G10 and anti-HA antibody. As shown in Figure 5.8, no signals from either antibody were detected in the absence of immunoprecipitating HA antibody demonstrating the specificity of the immunoprecipitations. Immunoprecipitated PTPIP51-HA from untreated cells did not react or reacted only weakly with antibody 4G10 (seen following extended exposures of the immunoblots; Figure 5.8). However, in cells treated with pervanadate, a robust 4G10 signal was detected demonstrating that inhibition of tyrosine phosphatases drives increased phosphorylation of PTPIP51.

The weak 4G10 reactivity under basal conditions (Figure 5.8) might explain the failure of the previous mass spectrometry experiments to identify phosphorylation of tyrosines in PTPIP51. Therefore the mass spectrometry analysis was repeated after treating the cells with pervanadate. Thus, PTPIP51-HA was exogenously expressed in cultured CHO cells, the cells treated with pervanadate and PTPIP51-HA protein immunoprecipitated using the anti-HA antibody. Following separation of proteins on SDS-PAGE (as in Figure 5.1), the samples were subjected to LC/MS/MS analyses. These identified the protein as PTPIP51 with a sequence coverage of 57% but no tyrosine phosphopeptides were detected.
5.2.4 Purification of VAPB by immunoprecipitation and separation on SDS-PAGE

The same approach as for PTPTIP51 was used to identify phosphorylation sites in myc tagged VAPB. VAPB was transfected into CHO cells, purified by immunoprecipitation and SDS-PAGE and then sequenced by LC/MS/MS.

As a control to demonstrate the specificity of the immunoprecipitation, control vector transfected CHO cells were subjected to immunoprecipitation with the same anti-myc antibody and immunoprecipitations from both samples were performed with no antibody. As shown in Figure 5.9A, a protein species corresponding to the correct size of VAPB was specifically detected in the transfected CHO cell samples. Immunoblotting of the same samples revealed this species was VAPB (Figure 5.9B) and mass spectrometry further confirmed this result (Figure 5.10).

5.2.5 Identification of phosphorylation sites in VAPB by mass spectrometry

Following extraction of the myc-VAPB protein band from the SDS PAGE gels and trypsin digestion, the peptide mixture was subjected to LC/MS/MS as described in section 2.2.2.5. Tandem mass spectrometry analyses identified the band as VAPB with sequence coverage of 54% (Figure 5.10A). Two phosphopeptides were identified (Figure 5.10B) and after amino acid sequencing of each phosphopeptide by MS/MS, phosphorylation was assigned to threonine 150 (T150) (Figure 5.11) and serine 158 (S158) (Figure 5.12).

T150 and S158 are located between the MSP domain and the coiled coil domain of VAPB (Figure 5.13). Although the mass spectrometry analyses identified phosphorylation of VAPB on serine and threonine residues, no phosphorylation on
tyrosines was detected. In the same region, previous mass spectrometry studies have identified other phosphorylation sites on serine residues (S146, S156, S159 and S160) (Christensen et al., 2010; Olsen et al., 2010; Weber et al., 2012; Wu et al., 2010). Thus all six identified sites were mutated for the immunoprecipitation analyses.

5.2.6 Mutation of the PTPIP51 and VAPB phosphorylation sites does not affect the PTPIP51-VAPB interaction

To investigate the role of PTPIP51 phosphorylation, mutants were generated and their ability to interact with VAPB was monitored in immunoprecipitation assays from transfected HEK293 cells. The previously identified phosphorylated residues in PTPIP51 were mutated to alanine to preclude phosphorylation or to aspartate to mimic permanent phosphorylation. There are many examples where replacing serines with a negatively charged residue such as an aspartate accurately mimics the effect of phosphorylation of the site (e.g. (Ackerley et al., 2003; Eidenmüller et al., 2000; Raingeaud et al., 1996)).

The effect of phosphorylation mutants of PTPIP51 on binding to VAPB was monitored first. To achieve this, two sets of triple mutants were created: PTPIP51S44A/S46A/S50A, PTPIP51S44D/S46D/S50D, PTPIP51S212A/S221A/S225A and PTPIP51S212D/S221D/S225D. In addition, all six serine residues were mutated to alanine or aspartate respectively. PTPIP51 wild-type (PTPIP51), PTPIP51S44A/S46A/S50A, PTPIP51S44D/S46D/S50D, PTPIP51S212A/S221A/S225A, PTPIP51S212D/S221D/S225D, PTPIP51S212A/S221A/S225A and PTPIP51S212D/S221D/S225D were separately transfected into HEK293 cells and specifically immunoprecipitated using the HA tag. PTPIP51wt, PTPIP51S44A/S46A/S50A, PTPIP51S44D/S46D/S50D, PTPIP51S212A/S221A/S225A, PTPIP51S212D/S221D/S225D,
PTPIP51 S44A/S46A/S50A/S212A/S221A/S225A and PTP51 S44D/S46D/S50D/S212D/S221D/S225D all interacted equally well with endogenous VAPB in these assays and no signals for either PTP51 or VAPB were obtained from control transfected cells demonstrating the specificity of the immunoprecipitations (Figure 5.14). Thus, the interaction between transfected PTP51-HA and endogenous VAPB is not influenced by altering the identified phosphorylation sites in PTP51 to either preclude or mimic permanent phosphorylation.

In order to investigate the role of VAPB phosphorylation, mutants were generated and their ability to interact with endogenous PTP51 was monitored in immunoprecipitation assays from transfected HEK293 cells. In the same way as for PTP51, the previously identified phosphorylated residues in VAPB were mutated to alanine to preclude phosphorylation or to aspartate to mimic permanent phosphorylation. Two sets of mutants were created that include the identified phosphorylated residues and the additional serine residues identified in VAPB by others: VAPB T150A/S158A, VAPB T150D/S158D, VAPB S146A/T150A/S156A/S158A/S159A/S160A and VAPB S146D/T150D/S156D/S158D/S159D/S160D. VAPB wild-type (VAPB), VAPB T150A/S158A, VAPB T150D/S158D, VAPB S146A/T150A/S156A/S158A/S159A/S160A and VAPB S146D/T150D/S156D/S158D/S159D/S160D were separately transfected into HEK293 cells and specifically immunoprecipitated using the myc tag. VAPB wt, VAPB T150A/S158A, VAPB T150D/S158D, VAPB S146A/T150A/S156A/S158A/S159A/S160A and VAPB S146D/T150D/S156D/S158D/S159D/S160D all interacted equally well with endogenous PTP51 in these assays and no signals for either PTP51 or VAPB were obtained from control transfected cells demonstrating the specificity of the immunoprecipitations (Figure 5.15). Thus, the interaction between transfected myc-VAPB and endogenous
PTPIP51 is not influenced by altering the identified phosphorylation sites in VAPB to either preclude or mimic permanent phosphorylation. Interestingly however, mutating all 6 identified phosphorylation sites to aspartate markedly slowed the migration of VAPB on SDS-PAGE (Figure 5.15).
Figure 5.1 Purification of PTPIP51-HA by immunoprecipitation

CHO cells were transfected with either control vector (CTRL) or PTPIP51-HA and transfected PTPIP51-HA was immunoprecipitated using anti-HA antibody. (A) shows Coomassie Blue stained gel. (B) shows immunoblot probed with anti-HA antibody to detect PTPIP51-HA. -Ab and +Ab refer to absence or presence of the anti-HA antibody in the immunoprecipitations. The positions of PTPIP51-HA and immunoglobulin heavy chain (Ig HC) of the anti-HA antibody are shown. Molecular mass markers are shown on the right.
A

MSRLGALGGARAGLGLLLGTAAGLGFLCLLYSQRWKRTQRHGRSQSLPNSLD YTQTSDPGRHVMLLRAVPGGAGDASVLPSSLPREGQEKVLRLDFVLTSLVALR REVEELRSRLRGLAGEIVGEOVRCHMEENQRVARRRRFPFVRRERSDSTGSVVYF TASSGATFTDAESEGTYTTANAESDNEDSSDKESEDGEDEVCETVKMGRKDSD LDLEEEAASGAALEGGSLEDVPLLQQADELHRGDEQGKREGFQLLLNN NKLVEYSRQDFLWRLARAYSDMCLETTEEVSEKSYALDGKEEEAAALEKGDE SADCHLWYAVALCQLAEHESIQRRIQGFSFKEHVDAIALQPNWMAHFLLGR WCYQVSHLSWEKKTATALLESPLSATVEDALQSFLKEELQPGFSKAGRVYIS KCYRELGKNSEARWWMKLALELPDVTKEIAQKDLEDLEEVILRD

B

<table>
<thead>
<tr>
<th>Peptide sequence</th>
<th>Residue</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGRSQSLPNSDLTYQTSDPGR</td>
<td>41-61</td>
<td>799.41</td>
</tr>
<tr>
<td>KDSDLDEEEAASGAALEGGSLEDVPLLQQADELH</td>
<td>210-250</td>
<td>1430.1</td>
</tr>
<tr>
<td>SQSLPNSDLTYQTSDPGR</td>
<td>44-61</td>
<td>1023.5</td>
</tr>
<tr>
<td>SQSLPNSLDYQTSDPGR</td>
<td>44-61</td>
<td>1023.5</td>
</tr>
</tbody>
</table>

Figure 5.2 Phosphorylation sites identified in PTPIP51

(A) Sequence of human PTPIP51 with the MS/MS sequence coverage obtained after trypsin digestion shown as underlined. Four phosphorylation sites were identified (S44, S46, S50 and S212) which are highlighted. (B) PTPIP51 phosphopeptides obtained by MS/MS sequencing with their mass/charge (m/z) ratios. Phosphorylated residues are shown in bold and highlighted.
Figure 5.3 Identification of PTPIP51 S44 as a phosphorylation site by LC/MS/MS

Tandem MS/MS spectrum of the PTPIP51 phosphopeptide HGRSQSLPNSLDYTQTSDPGR (residues 41-61) fragment ion series after collision induced dissociation. The m/z of the fragment ions is plotted against intensity and the detected ions of the b- and y-ion collision series are indicated. The pattern of fragment ions produced localizes the phosphorylation site to S44 (highlighted in the peptide sequence) with b-ions identified from b(4). The mass difference between b(3) and b(4) and the release of phosphoric acid from b(4) (b(4)-H₃PO₄) are consistent with a phosphorylation on S44.
Figure 5.4 Identification of PTPIP51 S46 as a phosphorylation site by LC/MS/MS

Tandem MS/MS spectrum of the PTPIP51 phosphopeptide SQ\textsubscript{S}LPNSLDYTQTS\textsubscript{D}PGR (residues 44-61) fragment ion series after collision induced dissociation. The m/z of the fragment ions is plotted against intensity and the detected ions of the b- and y-ion collision series are indicated. Diagnostic neutral loss of phosphoric acid (-H\textsubscript{3}PO\textsubscript{4}) from the parent ion is present at m/z 974.552+. The sequence tag from y(1-8) and y(11-15) provides strong evidence for the peptide sequence assignment and neutral loss from b(3), b(4), b(10) and b(15), but not b(2), localizes the phosphorylation site to S46 (highlighted in the peptide sequence). Consecutively matched y- and b-ions without neutral loss indicate no phosphorylation of other potential sites (S44, S50, T54, T56 or S57).
Figure 5.5 Identification of PTPIP51 S50 as a phosphorylation site by LC/MS/MS

Tandem MS/MS spectrum of the PTPIP51 phosphopeptide SQSLPNSLDYTQTSDPGR (residues 44-61) fragment ion series after collision induced dissociation. The m/z of the fragment ions is plotted against intensity and the detected ions of the b- and y-ion collision series are indicated. Neutral loss from b(9), but not b(3) (S46) for the b-ion series and from y(12) but not y(5) (S57), y(6) (T56) or y(8) (T54) for the y-ion series localize the phosphorylation to S50 (highlighted in the peptide sequence).
Figure 5.6 Identification of PTPIP51 S212 as a phosphorylation site by LC/MS/MS

Tandem MS/MS spectrum of the PTPIP51 phosphopeptide KDSDLDEEAASGASSALEAGGSSGLEDVLPLLQQADELHR (residues 210-250) fragment ion series after collision induced dissociation. The m/z of the fragment ions is plotted against intensity and the detected ions of the b- and y-ion collision series are indicated. The ion at m/z 1398.25\(^3\) corresponding to a neutral loss from the parent suggests phosphorylation of serine or threonine. Assignment of b(3-5) and b(9-11) and the loss of phosphate from b(3), but not b(2) localize the modification to S212 (highlighted in the peptide sequence).
PTPIP51 encompasses an N-terminal transmembrane domain and a coiled coil domain.

Figure 5.7 Schematic representation of PTPIP51 structure showing positions of phosphorylation sites identified by mass spectrometry
PTPIP51 is phosphorylated on tyrosine(s) in pervanadate-treated CHO cells. CHO cells were transfected with PTPIP51-HA and treated with either vehicle or the tyrosine phosphatase inhibitor pervanadate as indicated (- pervanadate; + pervanadate). PTPIP51-HA was immunoprecipitated using the anti-HA antibody and the samples were probed on immunoblots with anti-HA or phosphotyrosine antibody 4G10 as indicated. -Ab and +Ab refer to absence or presence of the anti-HA antibody in the immunoprecipitations. Signals for the PTPIP51-HA are only seen in the presence of immunoprecipitating HA antibody and treatment with pervanadate induced a strong PTPIP51 signal with antibody 4G10.
Figure 5.9 Purification of myc-VAPB by immunoprecipitation

CHO cells were transfected with either control vector (CTRL) or myc-VAPB and transfected myc-VAPB was immunoprecipitated using anti-myc antibody. (A) shows Coomassie Blue stained gel. (B) shows immunoblot probed with anti-myc antibody 9B11 to detect myc-VAPB. -Ab and +Ab refer to absence or presence of the anti-myc antibody in the immunoprecipitations. The positions of myc-VAPB and immunoglobulin light chain (Ig LC) of the anti-myc antibody are shown. Molecular mass markers are shown on the right.
A

MAKVEQVLSPQHELKFRGFPFDVTNKLQGPNPTDRNVCNKFVKTAPRRYCVRPNSGIDAGINVSVMQPYDPNEKSKHKFMVQSMFAPTDTSDEAVWKEAKPDELMDKLRCVFLPAENKHPHVEINKIISTASKTELPIVSKSLSSLD
DTEVKKMEFCLQGEVRQLEENKFKEEDGLRMKTVQSNPISALAPTGKEEGLSTRLLALVVLFFIVGVIGKIAL

B

<table>
<thead>
<tr>
<th>Peptide sequence</th>
<th>Residues</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLSSSLDDTEVK</td>
<td>156-167</td>
<td>680.79</td>
</tr>
<tr>
<td>IISTASKTELPIVSK</td>
<td>140-155</td>
<td>878.45</td>
</tr>
</tbody>
</table>

Figure 5.10 Phosphorylation sites identified in VAPB

(A) Sequence of VAPB with the MS/MS sequence coverage obtained after trypsin digestion shown as underlined. Two phosphorylation sites were identified (T150, S158) which are highlighted. (B) VAPB phosphopeptides obtained by MS/MS sequencing with their mass/charge (m/z) ratios. Phosphorylated residues are shown in bold and highlighted.
Figure 5.11 Identification of VAPB T150 as a phosphorylation site by LC/MS/MS

Tandem MS/MS spectrum of the VAPB phosphopeptide IISTTASKTEPIVSK (residues 140-155) fragment ion series after collision induced dissociation. The m/z of the fragment ions is plotted against intensity and the detected ions of the b- and y-ion collision series are indicated. The sequence tag of y-ions from y(6) to y(10) are identified with a neutral loss of phosphoric acid but not at y(5), therefore localizing the phosphorylation to T150 (highlighted in the peptide sequence). Further evidence for this localization is determined by neutral loss from the b(11) ion (-H$_3$PO$_4$) and not at other serine or threonine residues in the sequence.
Figure 5.12 Identification of VAPB S158 as a phosphorylation site by LC/MS/MS

Tandem MS/MS spectrum of the VAPB phosphopeptide SLSSSLDDTEVK (residues 156-167) fragment ion series after collision induced dissociation. The m/z of the fragment ions is plotted against intensity and the detected ions of the b- and y-ion collision series are indicated. A constant neutral loss from the parent ion is not identified but ions at b(4-6) show a neutral loss of phosphoric acid (-H$_3$PO$_4$). The y(10) ion with neutral loss also confirms localization of the phosphorylation to the serine residue S158 (highlighted in the peptide sequence).
Figure 5.13 Schematic representation of VAPB structure showing positions of phosphorylation sites identified by mass spectrometry

VAPB encompasses three main domains: a major sperm protein (MSP) domain, a coiled coil domain and a transmembrane domain required for ER membrane localization. The MSP domain is positioned towards the N-terminus and the transmembrane domain is positioned towards the C-terminus of the protein. Threonine 150 (T150) and serine 158 (S158) are located between the MSP domain and the coiled coil domain. In previous studies, other phosphorylation sites have also been identified in this region of the protein, including S146, S156, S159 and S160.
Figure 5.14 Mutation of PTPIP51 residues to alanine to preclude phosphorylation and aspartate to mimic permanent phosphorylation do not affect PTPIP51 binding to VAPB. HEK293 cells were transfected with either control vector (CTRL), PTPIP51-HA wild-type (PTPIP51), PTPIP51 S44A/S46A/S50A, PTPIP51 S44D/S46D/S50D, PTPIP51 S212A/S221A/S225A, PTPIP51 S212D/S221D/S225D, PTPIP51 S44A/S46A/S50A/S212A/S221A/S225A, or PTPIP51 S44D/S46D/S50D/S212D/S221D/S225D and PTPIP51 immunoprecipitated using anti-HA to the HA epitope tag. Samples were probed on immunoblots for PTPIP51 using anti-HA and endogenous VAPB using antibody sk83. Samples of the input lysates and immunoprecipitates (IP) are shown. No VAPB signal was obtained from control vector transfected cells, which demonstrates the specificity of the immunoprecipitations. VAPB signals were normalized to immunoprecipitated PTPIP51-HA signals. Data were analysed by one-way ANOVA (n=3) and this revealed no differences between binding of wild-type or the phosphorylation mutants of PTPIP51 to VAPB.
Figure 5.15 Mutation of VAPB residues to alanine to preclude phosphorylation and aspartate to mimic permanent phosphorylation does not affect VAPB binding to PTPIP51.

HEK293 cells were transfected with either control vector (CTRL), VAPB wild-type (VAPB), VAPB\(^{T150A/S158A}\), VAPB\(^{T150D/S158D}\), VAPB\(^{S146A/T150A/S156A/S158A/S159A/S160A}\) or VAPB\(^{S146D/T150D/S156D/S158D/S159D/S160D}\) and VAPB immunoprecipitated using anti-myc to the myc epitope tag. Samples were probed on immunoblots for VAPB using anti-myc and endogenous PTPIP51 using antibody FAM82A2. Samples of the input lysates and immunoprecipitates (IP) are shown. No PTPIP51 signal was obtained from control vector transfected cells, which demonstrates the specificity of the immunoprecipitations. PTPIP51 signals were normalized to immunoprecipitated myc-VAPB signals. Data were analysed by one-way ANOVA (n=3) and this revealed no differences between the binding of wild-type or the phosphorylation mutants of VAPB to PTPIP51.
5.3 Discussion

In this chapter, the role of phosphorylation in modulating the VAPB-PTPIP51 interaction was investigated. For this purpose, VAPB and PTPIP51 were transfected into CHO cells and purified by immunoprecipitation and SDS-PAGE using the myc- or HA-tags. The proteins were then analyzed by mass spectrometry and this approach identified phosphorylated serine and threonine residues in both VAPB and PTPIP51. In addition, treating the cells with the tyrosine phosphatase inhibitor pervanadate revealed that tyrosine phosphorylation occurs in PTPIP51. However, the phosphorylated tyrosine residues were not identified via mass spectrometry. One reason for this may be that phosphorylation on tyrosines is a less common event than phosphorylation on serine or threonine residues. Indeed, phosphorylation of tyrosines accounts for only 1.8% of the total phosphoproteome (Olsen et al., 2006). Also, the low sequence coverage (57%) obtained in this experiment might have hampered the detection of phosphopeptides.

To investigate how phosphorylation might influence the VAPB-PTPIP51 interaction, the identified serine and threonine residues in VAPB and PTPIP51 were mutated to either alanine to preclude phosphorylation, or to aspartate to mimic permanent phosphorylation. However, mutation of these sites did not affect binding of VAPB to PTPIP51 in immunoprecipitation assays. Interestingly, mutation of all 6 phosphorylation sites in VAPB produced a marked shift in migration on SDS-PAGE. This might suggest that phosphorylation of some or all of these sites induces conformational changes to VAPB.

The above results suggest that, at least on the sites manipulated here, phosphorylation of PTPIP51 or VAPB does not affect the VAPB-PTPIP51 interaction. However, recent
studies have identified other phosphorylation sites which were not investigated in this thesis (see www.phosphosite.org). These sites include residues T54, S149, S151, T152, S154, S155, S156, Y176 in PTPIP51 and residues S204, S206, S209, T214, S221 and T222 in VAPB. Therefore, the regulation of the VAPB-PTPIP51 interaction via phosphorylation cannot be excluded based solely on the data presented here. Interestingly, a recent study investigating the effects of PTPIP51 tyrosine phosphorylation on its interaction profile has found that phosphorylation of tyrosine 176 increases the binding of PTPIP51 to PTP1B, 14-3-3β and Raf-1 (Brobeil et al., 2012). These results suggest that PTPIP51 phosphorylation on tyrosine residues might be an important target for modulating the interaction with binding partners. Further studies are needed to investigate the existence of additional tyrosine phosphorylation sites and whether they can regulate the interaction with VAPB.

A further mechanism which might influence VAPB-PTPIP51 interactions involves the proteolytic cleavage of VAPB. Indeed, the MSP domain situated at the N-terminus of VAPB can be cleaved and secreted to modulate axon guidance and mitochondrial morphology (Gkogkas et al., 2011; Han et al., 2012; Tsuda et al., 2008). Since the N-terminal domain of VAPB protrudes into the cytosol and is responsible for the interaction with PTPIP51, VAPB cleavage may also sever this connection and detach ER membranes from mitochondria.

Therefore, it will be important to further investigate the mechanisms regulating VAPB proteolysis, its involvement in modulating VAPB-PTPIP51 interactions and ultimately the association of ER to mitochondria. Finally, considering that ER-mitochondria contact sites are disrupted in a number of neurodegenerative diseases (Area-Gomez et
al., 2012; Cali et al., 2012; Zampese et al., 2011) and see also results Chapter 4), deciphering the mechanisms that regulate VAPB-PTPIP51 control of ER-mitochondria associations has direct relevance to human neurodegenerative disease mechanisms.
CHAPTER 6: SUMMARY AND FUTURE DIRECTIONS
6.1 Summary

The studies in this thesis sought to gain insight into the role of VAPB and PTPIP51 in mediating ER-mitochondria associations. This was achieved by modulating VAPB and/or PTPIP51 expression and monitoring ER-mitochondria contacts by electron microscopy and confocal microscopy. Knockdown of VAPB or PTPIP51 using siRNA caused a decrease in ER-mitochondria associations, while overexpression of VAPB and/or PTPIP51 via transfection induced a significant increase in ER-mitochondria associations. The increase was particularly striking after co-expressing VAPB and PTPIP51 which caused ER and mitochondria to redistribute and form close associations over approximately 60% of the mitochondrial surface. These results, together with the finding that VAPB and PTPIP51 mediate Ca2+ transmission at the ER-mitochondria interface (De Vos et al., 2012) strongly support a role for VAPB and PTPIP51 in tethering ER to mitochondria.

TDP-43 is a major component of pathological inclusions in most ALS and FTD cases (Arai et al., 2006; Neumann et al., 2006) and has also been linked to other neurodegenerative diseases (Chen-Plotkin et al., 2010). Moreover, mutations in TARDBP are responsible for a subset of familial ALS cases (Sreedharan et al., 2008). In this thesis, a variety of experimental approaches were used to explore the effect of wild-type and ALS mutant TDP-43 on ER-mitochondria associations. This was initially achieved by overexpressing TDP-43 in cell lines and monitoring the ER-mitochondria contacts using electron and confocal microscopy. Interestingly, both wild-type and mutant TDP-43 reduced the amount of ER-mitochondria associations. Since diminished contact between the two organelles could be a consequence of reduced molecular tether expression, the levels of VAPB, PTPIP51 and mitofusin-2 were assessed in the presence
of wild-type and mutant TDP-43. However, TDP-43 did not change the expression of these proteins on immunoblots.

TDP-43 toxicity could also target the interaction between VAPB and PTPIP51 to reduce ER-mitochondria contacts. Therefore, the VAPB-PTPIP51 interaction was investigated after overexpressing wild-type or four different ALS associated mutants of TDP-43 (M337V, Q331K, A382T and G348C). Both wild-type and all TDP-43 mutants used decreased the VAPB-PTPIP51 interaction as assessed by proximity ligation and immunoprecipitation assays. To test whether other ALS-related insults target the VAPB-PTPIP51 interaction, immunoprecipitation experiments were also performed in the presence of wild-type or mutant FUS and SOD1. Similar to TDP-43, both wild-type and mutant FUS produced a decrease in the VAPB-PTPIP51 interaction. However, wild-type and mutant SOD1 did not have an effect on VAPB binding to PTPIP51. Thus, both TDP-43 and FUS disrupt the VAPB-PTPIP51 interaction and this could be the mechanism underlying the TDP-43-induced reduction in ER-mitochondria associations.

It is likely that ER-mitochondria interactions are dynamic and change in response to physiological stimuli. To explore possible mechanisms regulating the VAPB-PTPIP51 interactions, studies in this thesis sought to determine whether phosphorylation of VAPB and/or PTPIP51 influences their binding. This involved identifying phosphorylation sites via mass spectrometry. A number of serine and threonine phosphorylation sites in both VAPB and PTPIP51 were identified. Interestingly, treating the cells with the tyrosine phosphatase inhibitor pervanadate indicated that PTPIP51 was also phosphorylated on tyrosines, although no specific phosphotyrosine residues were identified. The VAPB-PTPIP51 interaction was investigated after
mutating these phosphorylated serine and threonine residues to preclude phosphorylation or to mimic permanent phosphorylation. However, none of the phosphorylation mutants altered VAPB binding to PTPIP51.

6.2 Future directions

The results presented in this thesis highlight VAPB and PTPIP51 as proteins that control ER-mitochondria associations and reveal a novel pathogenic mechanism for TDP-43 in disrupting ER-mitochondria contacts via the VAPB-PTPIP51 interaction. Some suggestions for future research directions are listed below.

1. The effects of ALS-associated FUS and SOD1 on the VAPB-PTPIP51 interaction were investigated using biochemical approaches. The studies revealed that FUS but not SOD1 decreased binding of VAPB to PTPIP51. It would thus be useful to determine whether FUS and SOD1 affected ER-mitochondria association using the confocal and electron microscopy assays described in this thesis. Monitoring the ER-mitochondria associations in transgenic mouse models of TDP-43, FUS and SOD1 mediated ALS by electron microscopy would further support the data presented in this thesis.

2. A mutation in VAPB involving a proline to serine substitution at position 56 (VAPB P56S) causes familial ALS type-8 and this alters its binding to PTPIP51 (De Vos et al., 2012). It would thus be interesting to compare ER-mitochondria associations in VAPB and VAPB P56S expressing cells using the assays described in this thesis.

3. Alzheimer’s disease associated presenilins and Parkinson’s disease associated α-synuclein have been shown to increase ER-mitochondria associations (Area-Gomez
et al., 2012; Cali et al., 2012; Zampese et al., 2011). However, these results were generated using mainly confocal light microscopy studies. Using such light microscopy analyses to monitor ER-mitochondria interactions involving approximate 25 nm tethers has been criticized recently and shown to generate artefactual results (Cosson et al., 2012). Indeed, a major review on MAM and ER-mitochondria interactions has suggested that electron microscopy analyses should be the preferred method for analyzing ER-mitochondria contacts (Rowland and Voeltz, 2012). The effects of presenilins and α-synuclein on ER-mitochondria contacts thus need to be re-evaluated using the sensitive electron microscopy assays described in this thesis.

4. Expression of TDP-43 was shown to decrease ER-mitochondria interactions. Since these contacts regulate Ca2+ handling and Ca2+ exchange between ER and mitochondria, the effects of TDP-43 on cellular Ca2+ homeostasis need to be investigated. This would involve Fura-2 measurement of Ca2+ levels in appropriately transfected cells and also monitoring Ca2+ exchange between ER and mitochondria using approaches similar to those described in other studies (De Vos et al., 2012; Morotz et al., 2012).

5. ER-mitochondria associations are believed to be involved in regulating ER stress and the UPR (Malhotra and Kaufman, 2011). It is also possible that ER-mitochondria associations impact upon the mitochondrial stress response (Malhotra and Kaufman, 2011; Pellegrino et al., 2013). Moreover, VAPB is involved in mediating ER stress and the UPR (Amarilio et al., 2005; Chen et al., 2010; Gkogkas et al., 2008; Kanekura et al., 2006; Langou et al., 2010; Suzuki et al., 2009). Thus, the effects of insults targeting VAPB-PTPIP51 interactions and ER-mitochondria associations (e.g. TDP-43) on ER and mitochondrial stress and the UPR should be investigated.
6. Finally, the findings reported here and in other studies (Area-Gomez et al., 2012; Cali et al., 2012; Zampese et al., 2011) which show that insults associated with neurodegenerative diseases disrupt ER-mitochondria associations, highlight the ER-mitochondria axis as a possible target for therapeutic intervention. Identifying small molecules that modulate the interaction may represent a new type of treatment for these diseases. The demonstration that VAPB and PTPIP51 represent some of the tethers that connect ER with mitochondria will facilitate the discovery of such molecules.
REFERENCES

with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci USA 91, 8292-8296.

Dal Canto, M.C., and Gurney, M.E. (1995). Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing...

common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol 67, 739-748.

sclerosis generates a novel form of organized smooth endoplasmic reticulum. FASEB J 24, 1419-1430.

Volkening, K., Leystra-Lantz, C., Yang, W., Jaffee, H., and Strong, M.J. (2009). Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide
dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res 1305, 168-182.

transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107, 3858-3863.

217