
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1038/s41567-019-0551-3

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Infante, E., Stannard, A., Board, S. J., Rico-Lastres, P., Rostkova, E., Beedle, A. E. M., Lezamiz, A., Wang, Y.
J., Gulaidi Breen, S., Panagaki, F., Sundar Rajan, V., Shanahan, C., Roca-Cusachs, P., & Garcia-Manyes, S.
(2019). The mechanical stability of proteins regulates their translocation rate into the cell nucleus. Nature
Physics, 15(9), 973-981. https://doi.org/10.1038/s41567-019-0551-3

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 15. Aug. 2022

https://doi.org/10.1038/s41567-019-0551-3
https://kclpure.kcl.ac.uk/portal/en/publications/the-mechanical-stability-of-proteins-regulates-their-translocation-rate-into-the-cell-nucleus(b8242a8f-27a2-435f-b221-84497f7ad94c).html
https://kclpure.kcl.ac.uk/portal/en/persons/elena-rostkova(c5c6b74d-4a56-495f-8cfd-9b56c59f7b0d).html
/portal/cathy.shanahan.html
/portal/sergi.garcia-manyes.html
https://kclpure.kcl.ac.uk/portal/en/publications/the-mechanical-stability-of-proteins-regulates-their-translocation-rate-into-the-cell-nucleus(b8242a8f-27a2-435f-b221-84497f7ad94c).html
https://kclpure.kcl.ac.uk/portal/en/journals/nature-physics(1cc47ae3-566e-478f-b47f-c47bf9237b96).html
https://kclpure.kcl.ac.uk/portal/en/journals/nature-physics(1cc47ae3-566e-478f-b47f-c47bf9237b96).html
https://doi.org/10.1038/s41567-019-0551-3


mailto:sergi.garcia-manyes@kcl.ac.uk
















 9 

role51. Future work based on characterising the effect of the major Nup families on nuclear 
mechanotranslocation will help shed direct light into this question. 

A central discovery in our experiments is that the import rate constant of the 
different constructs (Figs. 2G & 3D) displays an exponential dependency with the unfolding 
force measured via SMFS when proteins are stretched at 400 nm s-1. Despite the clear 
mechanical trend that we measured, this does not entail that the absolute magnitude of 
the forces experienced in our cell experiments are the same as those measured in the in 
vitro single molecule AFM experiments, performed under non-equilibrium conditions at 
high pulling velocities in a buffer and experimental setting that differ from the physiological 
native environment of the NPC, where the forces experienced are likely to be much lower 
and applied over much longer time periods. Strikingly, the hierarchy in the mechanical 
stability measured in the AFM experiments is maintained in the physiological context of the 
cell. An intriguing observation from our experiments is the dependency of the import 
process, contrasting with the independency of the export process, on mechanical stability 
of translocating constructs. This implies that, regardless of any molecular consideration, 
import is an activated process whereas export is not. These findings are likely to be general, 
since they were confirmed by the nuclear translocation of two independent experimental 
approaches, namely the chemical control (serum stimulation) of MRTFA-based constructs 
and the optical control of the LEXY-based constructs.  

In conclusion, our experiments demonstrate that, in addition to protein size54 and 
surface properties53, mechanical stability emerges as an additional intrinsic property of 
proteins that is capable of regulating their nuclear translocation. From an applied 
perspective, our findings could be tested in vitro using artificial nuclear pore complexes55, 
and potentially used in the design of new molecular approaches aimed at externally 
modifying the mechanical stability of target transcription factors to selectively regulate 
nuclear localization and gene expression on demand. 
 
Materials and methods 
Plasmid constructs and (poly)protein engineering. All genes and reagents were obtained 
by Thermo Fisher Scientific unless stated otherwise. The full-length MRTFA-GFP vector11 
was kindly provided by Maria Vartiainen, and the pEBFP2-N1 and pEYFP-N1 vectors were 
kindly provided by Maddy Parsons. pEBFP2-C1, pmCherry-NLS, and pmCherry-RanQ69L 
were obtained from Addgene. Ig27 mutants were either created by site-directed 
mutagenesis by PCR or were ordered and subcloned into the pEGFP-MRTFA vector. The 
Spy0128 pilin domain, Spy0128 E258A mutant, R16 domain of spectrin, Ig27WT, and Ig27V11P 
were cloned using KpnI restriction enzymes. Spy0128 E117A mutant, Ig27V15P, Ig27V13P, and 
Ig27Y9P were cloned using SalI and KpnI restriction enzymes. Ig1 was subcloned from 
pQE80L, using PCR amplification with the addition of SalI and KpnI restriction sites, into 
MRTFA-GFP. MRTFA-Ig27X-GFP (X = WT, V11P, V13P, V15P, or Y9P) were subcloned into 
pEBFP2-N1 and pEYFP-N1 between HindIII and KpnI restriction sites by PCR amplification to 
incorporate an additional glycine residue in the coding sequence in order to remain in 
reading frame with the fluorescent tag. Ig32 was ordered with SalI and KpnI restriction sites 
for cloning into pEBFP2-N1 and pEYFP-N1 vectors and also incorporated an additional serine 
residue. For LEXY optogenetic experiments, the NLS-mCherry-LEXY (pDN122) plasmid was 
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Figure 2. The kinetics of MRTFA nuclear import is regulated by its mechanical properties. 
(a) Structural schematic of titin, showing the distribution of selected Ig domains along the 
N-C termini direction. (b) Schematics of a single molecule force spectroscopy experiment, 
whereby a polyprotein made of selected titin Ig domains is tethered between an AFM 
cantilever tip and a gold substrate. Inserting Ig domains within MRTFA constructs enables 
one to probe the effect of mechanical stability on nuclear translocation. (c) Stretching 
individual (Ig1-Ig27C47A-C63A)4, (Ig27)8 and (Ig32)8 polyproteins at a constant velocity of 400 
nm s-1 gives rise to unfolding trajectories exhibiting saw-tooth patterns, where each force 
peak corresponds to the unfolding of an individual Ig domain within the polyprotein chain 
(Fig. S5).  (d) Probability density histograms of unfolding forces for Ig1 (yellow), Ig27 (grey), 
and Ig32 (magenta) domains with the associated Gaussian probability density distributions 
(black) overlaid (unfolding force mean ± s.d.: Ig1, 144±27 pN, n = 137; Ig27, 208±28 pN, n = 
186; Ig32, 267±33 pN, n = 936). (e) Averaged (mean ± s.e.m.) time courses of nucleus/cell 
MRTFA in U2OS cells expressing MRTFA-Ig1-BFP, MRTFA-Ig27-BFP, or MRTFA-Ig32-BFP, 
after serum stimulation. The rate and extent of MRTFA nuclear translocation of the 
mechanically-labile Ig1 is higher than that of Ig27 and of the mechanically-stable Ig32. Data 
are from four independent experiments (Ig1, n = 34; Ig27, n = 37, Ig32, n = 44), only a 
representative error bar is shown per condition. (f) Total (squares), import (right-pointing 
triangles), and export (left-pointing triangles, offset vertically by -0.7 for clarity) rate 
constants associated with the nuclear translocation of Ig-domain-tagged MRTFA constructs 
plot against the mechanical stability (unfolding force) of the tagging Ig domain. The import 
rate constant displays exponential dependence (R2 = 0.999) with mechanical stability. By 
contrast, the export rate constant is largely independent of mechanical stability. Rate 
constants correspond to the fitting parameters from the averaged time courses in (h), 
associated error bars correspond to the s.e.m. of fitting parameters of the individual time 
courses. The unfolding forces correspond to the mean ± s.d. of unfolding forces as in (d). 
Dashed lines are a weighted linear fit (import) and average (export). 
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