Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Title: Maternal prenatal stress is associated with altered uncinate fasciculus microstructure in premature neonates

Authors & affiliations:
Alexandra Lautarescu\textsuperscript{1,2}, Diliana Pecheva\textsuperscript{1}, Chiara Nosarti\textsuperscript{1}, Julie Nihouarn\textsuperscript{1}, Hui Zhang\textsuperscript{4}, Suresh Victor\textsuperscript{1}, Michael Craig\textsuperscript{2,3}, A. David Edwards\textsuperscript{1}, Serena J. Counsell\textsuperscript{1}

1- Department of Perinatal Imaging and Health, Centre for Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London
2- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London
3- National Female Hormone Clinic, SLaM NHS Foundation Trust, London
4- Department of Computer Science and Centre for Medical Image Computing, University College London, UK

Corresponding author
Alexandra Lautarescu
Centre for Developing Brain, King’s College London, 1\textsuperscript{st} Floor, South Wing, St Thomas’ Hospital, SE1 7EH, London, United Kingdom
+44 (0) 20 7188 53623
Alexandra.Lautarescu@kcl.ac.uk

Short/running title: Prenatal stress and DTI in premature neonates

Key Words: stressful life events, uncinate fasciculus, diffusion tensor imaging, prematurity, neonatal brain

Word count: Abstract: 248, Main text: 3893

Number of figures: 3, tables: 4, supplemental information: 2
ABSTRACT

Background: Maternal prenatal stress exposure (PNSE) increases risk for adverse psychiatric and behavioral outcomes in the offspring. The biological basis for this elevated risk is poorly understood but may involve alterations to the neurodevelopmental trajectory of white matter tracts within the limbic system, particularly the uncinate fasciculus. Additionally, preterm birth is associated with both impaired white matter development and adverse developmental outcomes. We hypothesized that higher maternal PNSE was associated with altered uncinate fasciculus microstructure in the offspring.

Methods: 251 preterm infants (132 males, 119 females) (median gestational age (range) =30.29 (23.57-32.86) weeks) underwent brain magnetic resonance imaging (MRI) including diffusion weighted imaging around term equivalent age (median 42.43 (37.86-45.71) weeks). Measures of white matter microstructure were calculated for the uncinate fasciculus and a control tract which we hypothesised was not associated with maternal PNSE, the inferior longitudinal fasciculus. Multiple regressions were used to investigate the relationship between maternal trait anxiety scores and stressful life events and white matter microstructure indices in the neonatal brain.

Results: Adjusting for gestational age at birth, postmenstrual age at scan, maternal age, socioeconomic status and number of days on parenteral nutrition, higher stressful life events scores were associated with higher axial diffusivity ($\beta=.177$, $q=.007$), radial diffusivity ($\beta=.133$, $q=.026$) and mean diffusivity ($\beta=.149$, $q=.012$) in the left uncinate fasciculus, and higher axial diffusivity ($\beta=.142$, $q=.026$) in the right uncinate fasciculus.
Conclusions: These findings suggest that PNSE is associated with altered development of specific fronto-limbic pathways in preterm neonates as early as term equivalent age.
INTRODUCTION

Maternal prenatal stress exposure (PNSE) represents a global public health problem (1-4) and affects 10-35% children worldwide (5). In particular, exposure to stressful life events and prenatal maternal anxiety has been associated with an increased risk for a range of adverse behavioral outcomes in the offspring. These include more crying/fussing (6), anxiety disorders (7), externalizing behavior (8), attention deficit and hyperactivity disorder (9) and conduct disorders (10). Further, these changes can lead to a transgenerational cycle of adaptations of brain function and behavior (11). However, the biological mechanism(s) that translate maternal PNSE into behavioral changes in the offspring remain poorly understood. One potential mechanism involves disruption of the neurodevelopment of specific white matter tracts within the limbic system (12).

White matter development can be assessed in vivo using diffusion tensor imaging (DTI, 13), which characterises water molecular motion in tissue and provides objective metrics including fractional anisotropy (FA, a measure of the directional dependence of water diffusion), mean diffusivity (MD, the magnitude of water diffusion within brain tissue), radial diffusivity (RD, an estimate of the magnitude of diffusion perpendicular to the direction of fibres) and axial diffusivity (AD, the estimated magnitude of diffusion parallel to the direction of fibres). DTI tractography is a non-invasive neuroimaging technique that can be used to delineate the trajectories of white matter fibers and enables tract-specific measures to be obtained, allowing comparison of corresponding fasciculi between individuals.

PNSE has been linked to abnormal neurodevelopment of a number of brain regions including the limbic system and prefrontal cortex, in both animal (14-17) and human studies (18,19). Previous DTI studies in neonates exposed to PNSE have, for example, reported reduced FA
and increased MD, RD and AD in multiple fiber bundles within the limbic system (20-22). The most consistently reported finding involves altered development of white matter fibers connecting the amygdala with the prefrontal cortex, which are contained within the uncinate fasciculus (23,24,19). This is a white matter association tract that has been implicated in several neurodevelopmental and psychiatric disorders (25) specifically anxiety disorders and early-life stress (26-30).

Preterm birth affects approximately 11% of global live births and is associated with adverse neuropsychiatric and developmental outcomes (31-36). A number of studies have focused on investigating the relationship between brain development and these adverse outcomes (37-39), with aberrant white matter microstructural development (38,40-42) being commonly reported. However, it is important to also assess the role that early adverse experiences may have in moderating these associations. Some studies have suggested an increased risk of preterm birth in women experiencing a high number of stressful life events or increased anxiety (43-46). To our knowledge, however, no studies have examined the relationship between PNSE and white matter microstructure in infants born prematurely.

In this study we assessed the relationship between maternal PNSE and white matter microstructure of the uncinate fasciculus in a large sample of premature neonates. We hypothesised that higher scores on maternal stressful life events and trait anxiety would be associated with decreased FA and increased RD, AD and MD in the uncinate fasciculus.
METHODS AND MATERIALS

Participants: 511 premature infants (born before 33 weeks gestational age) took part in the evaluation of preterm imaging study (ePRIME), a randomized control trial which investigated the effect of having a brain MRI or ultrasound scan at term-equivalent age on parental anxiety (47). As part of this study, data were collected on maternal anxiety (State Trait Anxiety Inventory), stressful life events, demographic data and perinatal clinical risk factors. MR images were reviewed by a perinatal neuroradiologist. Women who reported alcohol and drug abuse during pregnancy (n=6) and cases with major focal lesions such as periventricular leukomalacia, hemorrhagic parenchymal infarction and other ischemic or hemorrhagic lesions (n = 40) were excluded from analysis (Table S1). In the case of multiparous pregnancies, only 1 infant from of a twin/triplet pregnancy was included in this study (selected at random). From the remaining sample, DTI data, demographics and both State Trait Anxiety inventory and Stressful life events data was available for n=251 mother-infant dyads. Descriptive statistics are presented in Table 1 (for infant characteristics) and Table 2 (for maternal characteristics).

Ethical approval was obtained from the Hammersmith and Queen Charlotte’s Research Ethics Committee (09/H0707/98).

Trait anxiety: The State Trait Anxiety inventory (STAI, 48) was administered at the time of the scan. There are 2 subscales within this measure; State Anxiety (STAI-ST) measures the current level of anxiety, with questions referring to how participants feel “right now”, while Trait Anxiety (STAI-TR) measures the relatively stable tendency to be prone to anxiety, with questions referring to how participants feel “in general” (48). We restricted our analysis of anxiety to STAI-TR, as it extends to the period before birth. For STAI-TR, missing values
were imputed for participants (n=32) who had missing values on a maximum of 10% of questions (n=28 missing one answer out of 20, n=4 missing two answers out of 20, Supplemental information). Missing data were imputed by calculating the average score for the questions that were answered and imputing this value.

**Stressful life events:** All mothers completed a questionnaire measuring the number of stressful life events they experienced in the year prior to the study visit (e.g. “Arguments with your partner increased”). The questionnaire was adapted from the Avon Longitudinal Study of Parents and Children (ALSPAC, 49) and was administered to include only yes-no answers. To obtain a continuous score, stressful life events were ranked according to severity based on the Social Readjustment Rating Scale (50). The final score was then calculated for each mother to represent a sum of the severity scores for the stressful life events they experienced (Table S2). Face validity for this adapted questionnaire was established through examination by a consultant psychiatrist with experience in anxiety and mood disorders (MCC). There was no missing data on the stressful life events questionnaire.

**MR Imaging:** 3D MPRAGE (Magnetization Prepared Rapid Acquisition Gradient Echo, TR 17 ms; TE 4.6 ms; flip angle 13°; slice thickness 0.8 mm; in plane resolution 0.82 × 0.82 mm), T2-weighted turbo spin echo (TR 8,670 ms; TE 160 ms; flip angle 90°; slice thickness 2 mm; in plane resolution 0.86 × 0.86 mm) and single shot echo planar DTI (TR 7,536 ms; TE 49 ms; flip angle 90°; slice thickness 2 mm; in plane resolution 2 x 2 mm, 32 non-collinear gradient directions, b value of 750 s/mm², one non-diffusion weighted image, b=0 ) were acquired on a Philips 3 Tesla (Philips Medical Systems, Best, The Netherlands) MR system sited on the neonatal intensive care unit using an eight-channel phased array head coil.
All examinations were supervised by a paediatrician experienced in MR imaging. Parents were offered having their infant sedated with oral chloral hydrate (25 – 50 mg/kg) prior to scanning (n=219 infants were sedated). Pulse oximetry, temperature and electrocardiography were monitored throughout the scan and ear protection was used, comprising earplugs moulded from a silicone-based putty (President Putty, Coltene Whaledent, Mahwah, NJ, USA) placed in the external auditory meatus and neonatal earmuffs (MiniMuffs, Natus Medical Inc., San Carlos, CA, USA).

**DTI analysis**
Diffusion-weighted images were visually inspected in 3 orthogonal planes for the presence of motion artefact and corrupt diffusion weighted volumes were excluded before tensor fitting. Seventy-seven datasets had at least one volume removed (median 0, range 0-8). Image processing and data analysis were performed using FMRIB’s Diffusion Toolbox (v3.0) and DTI-TK (v2.3.1 http://dti-tk.sourceforge.net) (51). For each infant the diffusion weighted images were registered to their native b0 image and corrected for differences in spatial distortion using eddy correct. Non-brain tissue was removed with FSL’s Brain Extraction Tool (BET v2.1 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET (52,53).

Diffusion tensors were calculated on a per voxel basis, using a simple least squares fit of the tensor model to the diffusion data. From this the tensor eigenvalues describing the diffusion strength in the primary, secondary and tertiary diffusion directions were obtained. AD, RD, MD and FA maps were calculated for each subject.

DTI measures were derived for each subject using tract-specific analysis (TSA, 54) as described in (55). Briefly, a study-specific template was created by registering all subjects
together to create an iteratively-refined average tensor image (54). Following registration, tracts of interest were delineated within the template using deterministic tractography based on the FACT approach (56) (part of DTI-TK) and manually-drawn regions of interest (57). We delineated the left and right uncinate fasciculus as well as a ‘non-limbic’ control tract, the inferior longitudinal fasciculus. The inferior longitudinal fasciculus connects the occipital cortex to the temporal lobe (58), and it was selected as a control tract as it shares a termination point with the uncinate fasciculus but has not been implicated in social and emotional behaviour (58). This tract has been used as a control tract in previous studies focusing on children who were exposed to maternal stress (12). From the tractography results, the TSA medial representation model was used to create tract-wise white matter skeletons of the uncinate fasciculus and inferior longitudinal fasciculus (Fig 1).

![Fig 1. DTI tractography of the uncinate fasciculus (UF, blue) and inferior longitudinal fasciculus tract (ILF, green) in axial (A) and sagittal (B) planes.](image-url)
Each white matter skeleton comprises a medial surface (Fig 2) and tract boundary (59). Diffusion data from each subject was projected onto the skeleton by searching for the tensor with the highest FA value along the unit normal from each point on the skeleton to the tract boundary, as described in (55). Whole tract average AD, RD, MD and FA values were calculated for each subject (Table S3).

Fig 2. “Glass brain” illustrations showing the skeletonized versions of the uncinate fasciculus (blue) and inferior longitudinal fasciculus (green) medial surface overlaid on the template radial diffusivity image, presented in coronal and sagittal planes (left to right). See Supplemental Material for 3D data visualisation.

**STATISTICAL ANALYSIS**

Statistical analyses were performed using SPSS 24 (SPSS Inc, Chicago, IL), graphs were created with R package “ggplot2” (R Foundation for Statistical Computing, Vienna, Austria)(60,61) and figures were created with Paraview (62). Multiple linear regressions were used to examine associations between maternal anxiety (STAI-TR) and stressful life events with diffusion properties in the left and right uncinate fasciculus (FA, ADC, AD, RD) in
preterm neonates. Assumptions for multiple regression were met (i.e. residuals were normally distributed, no multicollinearity, homoscedastic data) and there was no missing data in any of the variables included in the model. For each regression, one diffusion measure was considered as an outcome variable, with STAI-TR and stressful life events used as predictors in the same model. Correction for multiple comparisons was done using the Benjamini and Hochberg False Discovery Rate (FDR) correction.

The relationship between potential covariates and variables of interest was assessed through bivariate Pearson’s correlations (Table 3). We assessed the following relevant perinatal clinical covariates: gestational age at birth (GA), postmenstrual age at scan (PMA), birth weight, occipito-frontal circumference at birth (OFC), socioeconomic status (SES) assessed with the Carstairs Index (63), maternal age, maternal education, total number of pregnancy complications, number of days on total parenteral nutrition (TPN), and number of days on mechanical ventilation (DaysVent). The covariates that remained in the model were GA, PMA, TPN (based on associations with uncinate fasciculus microstructure, Table 3), SES, sex and maternal age (based on previous literature). Birth weight was not included as a covariate, as it was very highly correlated with GA (r=.76, p<.001) and it would have introduced multicollinearity in the regression analysis. The number of days on ventilation was not included as a covariate, as it was highly correlated with TPN (r=.61, p<.001) and both measures provide information on the health status of infants. There was no significant difference between male and female infants on any of the variables included in the model.
RESULTS

Demographics

251 infants (132 males, 119 females) born prematurely were scanned at term-equivalent age. Demographic data are presented in Table 1 (for infant characteristics) and Table 2 (for maternal characteristics). Additional information is presented in Table S4.

The number of stressful life events experienced by mothers ranged between 0 and 7 (median=1, interquartile range=1). This included mothers who had experienced no events (n=36), one event (n=90), 2 events (n=66), 3 events (n=33), 4 events (n=16), 5 events (n=5), 6 events (n=4) and 7 events (n=1). The stressful life event scores were calculated for each participant based on the severity of experienced events (mean=68, range 0-270). Using Spearman’s correlation, scores on the stressful life events measure did not correlate with trait anxiety (r=.05, p=.373).

Stressful life events

Associations between maternal stressful life events and uncinate fasciculus properties

After controlling for GA, PMA, SES, TPN, sex and maternal age, and after correcting for multiple comparisons, maternal stressful life events were associated with infant left uncinate fasciculus AD (standardised β=.177 q=.007, whole-model $R^2=.37$), RD (standardised β=.133, q=.026, whole-model $R^2=.46$) and MD (standardised β=.149, q=.012, whole-model $R^2=.44$), as well as right uncinate fasciculus AD (standardised β=.142 q=.026, whole-model $R^2=.39$). Figure 3 shows scatter plots of these relationships, while Table 4 (and Table S5) provides more detailed information on the regression models. The only other variable that was associated with uncinate fasciculus microstructure after correction for multiple comparisons
was postmenstrual age ($q<.001$). Partial regression scatterplots for non-significant relationships are reported in Figure S1.

Fig 3. Partial regression scatterplots showing the relationships between stressful life events and MD, AD and RD in (A) left uncinate fasciculus, (B) right uncinate fasciculus, (C) left inferior longitudinal fasciculus and (D) right inferior longitudinal fasciculus, while holding the other predictors constant (i.e. GA, PMA, SES, TPN, maternal age, sex). Points on the
scatterplot represent residuals and the regression line includes standard error bars. Relationships that were statistically significant are shown in red. $\beta =$standardized beta, $p =$significance level before correction for multiple comparisons

**Associations between maternal stressful life events and inferior longitudinal fasciculus properties**

To determine if these results are specific to the uncinate fasciculus tract, the above analyses were repeated for the control tract, the inferior longitudinal fasciculus. Neither maternal stressful life events nor trait anxiety predicted diffusion properties in the left or right inferior longitudinal fasciculus (Fig 3, Figure S1, Table S6)

**Maternal trait anxiety**

**Associations between maternal trait anxiety and white matter microstructure**

There was no significant relationship between maternal trait anxiety and uncinate fasciculus microstructural properties (Table 4) or inferior longitudinal fasciculus properties. (Table S6).

**Sensitivity analyses**

There was no association between infant sex and any of the dependent variables.

To check the reliability of the adapted Stressful life events scale, we repeated the analyses detailed above excluding the items that did not have a direct equivalent in the Holmes and Rahe scale from the total score (“Your house was burgled”, “Your partner lost his job”, “Your partner was in trouble with the law”, “You took an examination” and “Your partner had problems at work”). The pattern of results remained the same as when these items were included.
To check the robustness of the results, we repeated our analyses accounting for (a) imputed data for STAI-TR, (b) outliers, (c) postnatal age, (d) ethnicity, (e) multiple births, (f) days on ventilation, (g) emergency c-section, (h) intrauterine growth restriction and (i) pregnancy induced hypertension, (j) larger sample, (k) age range. The relationship between stressful life events and uncinate fasciculus microstructure retained significance (Supplemental material).

**DISCUSSION**

Preterm birth is associated with a range of adverse psychiatric and neurodevelopmental outcomes. To our knowledge, this is the first study examining the relationship between maternal PNSE and brain microstructure in preterm neonates. Our findings suggest that PNSE is associated with alterations in the uncinate fasciculus tract as early as term equivalent age. More specifically, we found that increased PNSE were associated with higher diffusivity (higher MD, AD and RD) in the uncinate fasciculus when controlling for gestational age at birth, postmenstrual age at scan, sex, socioeconomic status, maternal age and number of days on parenteral nutrition.

The limbic system contains three distinct, but partially overlapping, functional networks. These include, “the dorsomedial default-mode”, “hippocampal-diencephalic-retrosplenial” and “temporo-amygdala-orbitodrontal” networks (64). The uncinate fasciculus is the main tract within the latter network and runs from the anterior part of the temporal lobe, parahippocampal gyrus, uncus and amygdala to the orbital and polar frontal cortex (64). Abnormal microstructural organization of this tract in children and adults has been associated with a range of outcomes including antisocial behaviour (65,66), autism spectrum conditions
(67,68), anxiety (26), mood disorders (69,70), obsessive-compulsive disorder (71) and vulnerability to stress (72) and has been observed in children exposed to early adverse experiences such as previously institutionalized children (73-74).

Recent studies provide evidence that the developing white matter is vulnerable to maternal prenatal adversity. Reduced FA in white matter areas including the uncinate fasciculus has been observed in infants of highly anxious mothers (75,21). Dean and colleagues (20) reported higher diffusivity (increased MD, RD and AD) in the right frontal white matter of term infants born to mothers experiencing high prenatal symptoms of depression and anxiety.

The reasons for our findings of a relationship between the microstructure of the uncinate fasciculus and PNSE, but not trait anxiety, remain unclear. A number of factors may account for this finding. A recent study into the validity of the STAI in the perinatal period suggests that the mean STAI-TR score in our sample was well below the cut-off range associated with clinically diagnosable DSM-IV anxiety disorder (76). Furthermore, stressful life events and trait anxiety may have different biological correlates (77), such as distinctive inflammatory responses with the transmission of specific cytokines across the placenta, with differential effect on neurodevelopment (78). Further, while maternal anxiety can be a common proxy for stress, experiencing stressful life events during pregnancy does not always coincide with elevated scores on anxiety scales (1). Previous studies reporting associations between maternal antenatal anxiety and infant brain development have focused on state, rather than trait anxiety (20) or a combined score of state and trait (21), while those focusing on trait anxiety alone reported no significant associations with brain development (18).
Although the precise mechanisms linking PNSE with neurodevelopmental outcomes in the offspring have yet to be determined, research suggests that it may lead to changes in hormones and neurotransmitters in utero (79). This is supported by findings suggesting that maternal cortisol can pass through the placenta (80) and that infants born to mothers who experienced a mood disorder during pregnancy show increased cortisol and norepinephrine, as well as decreased dopamine and serotonin (81). These hormones and neurotransmitters have an essential role in neurogenesis, neuronal differentiation, apoptosis and synaptogenesis (82) and thus, disruption to their normal functioning during critical early-development time periods can lead to changes in brain development, which, in turn, can lead to adverse neurodevelopmental and behavioural outcomes (83). Animal research has provided support for this, as studies of in utero stress exposure in guinea pigs reported an association between PNSE and reactive astrocyte expression in the hippocampus and subcortical white matter (84), as well as a delay in GABAergic cell number and maturation in the medial frontal cortex and hippocampus, which was further associated with inhibited and anxiety-like behaviours. Further, elevated PNSE has been shown to increase levels of proinflammatory markers across pregnancy (85), which has been linked to decreased FA in the uncinate fasciculus of newborn offspring and decreased cognition at 12 months of age (86). In addition, PNSE is associated with physiological changes including alterations in fetal heart rate (87). Indeed, a recent study assessing structural and functional connectivity in infants exposed to maternal depression suggested that alterations in fetal heart rate may influence the development of the amygdala-prefrontal circuit (88).

PNSE may also affect the offspring through epigenetic mechanisms such as DNA methylation and histone modification (89). It is thus likely that the relationship between
PNSE and infant white matter microstructure observed in our study is a consequence of the interplay between in-utero exposure with genetic and epigenetic mechanisms.

Differences in microstructural properties of white matter tracts are typically explained in relation to differences in myelination. However, myelination in the uncinate fasciculus and inferior longitudinal fasciculus commences in the 3rd postnatal month (90-93) and thus, the differences observed in this study are unlikely to occur as a result of differences in myelination. The elevated diffusivity in the uncinate fasciculus observed here is likely to involve a combination of elevated brain water content, decreases in axon density, increased membrane permeability, and impaired oligodendrocyte proliferation and maturation (94,95). Reductions in fractional anisotropy are generally related to increases in radial diffusivity or reductions in axial diffusivity (96). The reason we did not observe changes in measured FA in relation to maternal prenatal stress exposure in this study is presumably because we observed an increase in both radial and axial diffusivity associated with maternal prenatal stress exposure.

Preterm infants in our study were scanned at term equivalent age, and thus were more likely exposed to suboptimal nutrition, ventilation and other early-life stressors than term born neonates. Further, premature birth is known to be associated with altered white matter development (97-99). However, in this study, we accounted for immaturity at birth and illness severity, and thus, these results suggest that prenatal stress may affect the development of white matter in the uncinate fasciculus, above and beyond these additional exposures considered adverse to brain development which are associated with premature birth.
To our knowledge, this represents the largest sample in studies of prenatal stress exposure and infant brain development, as well as the first study to investigate this relationship in a preterm sample. In a recent study by Benavente-Fernandez et al (100), the association between brain injury and cognitive outcomes in a sample of children born preterm (24-32 weeks GA) was mediated by maternal socioeconomic status. Similarly, it is possible that exposure to maternal prenatal stress may exacerbate the risk for negative outcomes in preterm-born children. Future research including term-born controls is needed to further clarify the nature of this relationship, in order to develop potential interventions that may dampen or reverse the effects of early adversity.

A limitation of our study is that our measure of stressful life events was adapted from a validated questionnaire. However, our results are in line with existing literature on stressful life events and early brain development. Moreover, our measure of life events covers 1 year prior to the scanning session, which includes several months prior to conception. However, Scheinost et al. (1) suggested that preconception stress may shape prenatal stress levels and that the cumulative impact of preconception and prenatal stress levels should be considered in research. Although our measures are retrospective, several studies have suggested considerable stability in self-reported anxiety during the perinatal period (101,76) and accurate recall of pregnancy and birth related events (102,103). A further limitation of this study is the lack of information regarding maternal mental health (especially depression) and use of psychotropic medication, as these have previously been associated with adverse outcomes (1). There is a need for future studies to conduct more comprehensive assessments of maternal psychopathology in the perinatal period. In addition, our study was hypothesis-based focusing on prenatal stress exposure and white matter microstructure in the uncinate fasciculus in offspring. Maternal mental health problems, most notably prenatal depressive
symptoms, have been associated with altered microstructure in the cingulum in offspring (104). To look at the wider limbic and association pathways, future prospective studies combining a comprehensive assessment of maternal mental health and with more exploratory whole brain connectomic approaches (for example network-based statistics, 105) have the potential to elucidate specific relationships between a range of prenatal stressors and white matter microstructure across the limbic system and association pathways, while minimising multiple comparison problems that can arise when comparing a large range of pathways.

Although impairments in uncinate fasciculus microstructure have been associated with behavioural and/or psychiatric outcomes in childhood/adolescence in term-born populations (25), it is important to understand whether these findings are observed in preterm-born children. Future studies assessing the relationship between uncinate fasciculus development and subsequent behavioural disorders in this population are required.

In conclusion, we provide what we believe is the first evidence that prenatal stress exposure is associated with altered development of the uncinate fasciculus in premature neonates. These findings add to a growing set of studies implicating maternal prenatal stress in early brain development and suggest that changes in white matter microstructure may be present as early as term equivalent age.

Acknowledgements

This work was supported by the National Institute for Health Research (NIHR) under its Programme Grants for Applied Research Programme (Grant Reference Number RP-PG-0707-10154) and the Department of Health via the NIHR Comprehensive Biomedical Research Centre award to Guy's and St Thomas' NHS Foundation Trust in partnership with
King's College London and King's College Hospital NHS Foundation Trust. It was supported by the Wellcome/EPSRC Centre for Medical Engineering at Kings College London (WT203148/Z/16/Z) and the Medical Research Council (UK) (MR/K006355/1 and MR/L011530/1), the Biotechnology and Biological Sciences Research Council (BB/J014567/1 and an MRC PhD studentship to AL(MR/N013700/1). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

**Disclosures**

We declare that we have no conflict of interest.
References


influence of the number, type, and timing of stressful life events. Developmental Psychopathology. 23, 507–520.


with conduct disorder: a diffusion tensor imaging study. *Psychological Medicine, 43*(2), 401-411.


