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Abstract— The explosive growth of mobile data traffic and the
envisioned delay sensitive applications in 5G networks ranging
from high definition video streaming with strict playout dead-
lines to multi modal tactile/haptic with kinaesthetic feedback
that require some form of edge cloud cache support makes
mobility a challenge. In this paper, we propose a Proactive
Caching with Delay Guarantees (PCDG) approach to enhance
the supporting of seamless mobility within 5G networks that are
Information-Centric Networking (ICN)-aware. The proposed
scheme is designed to cache contents into a set of potential
edge clouds with delay guarantees and to achieve a trade-off
among caching, redirection and missing cost. In particular, this
approach consider the delay constraints in mobile network,
especially the queuing delay in network links and edge clouds,
which are modeled as M/M/1 and M/M/c queuing systems re-
spectively. We formulate and linearize this problem as a Mixed
Integer Linear Programming (MILP) model and compare the
performance with other techniques. The result obtained from
simulation reveal that the proposed PCDG scheme lead to a
significantly lower total cost and higher satisfied probability
albeit higher computational/complexity cost.

Index Terms— Proactive Caching, Information-Centric Net-
work, Mixed Integer Linear Programming, Queuing Theory

I. INTRODUCTION

IT has been forecast that by 2021, data traffic from mobile

devices will constitute more than 63% of the total aggre-

gate traffic on the Internet [1]. This envisioned explosive

growth of mobile traffic makes mobility support a challenge

in traditional network architecture, since mobility manage-

ment at the network layer poses a number of challenges

such as tunnelling, encapsulation and non-optimal path re-

direction [2]. As an evolutionary framework, Information-

Centric Networking (ICN) has been proposed where the

use of information-based naming instead of host-based IP

address, ease the support of seamless mobility [2], [3].

Within this emerging framework, a number of approaches

have been suggested to enhance mobility support namely

the so-called subscriber (e.g. [4]) and publisher (e.g. [5])

frameworks. Hereafter, the subscriber mobility model is a

salient assumption of the proposed pro-active caching model.

When a mobile user1 (subscriber) changes its point of

attachment the supported caching methods can be taxono-

mized as follows [4] and [6]: reactive approaches [7], durable

subscriptions [8] and proactive approaches [9]. Compared

with the so-called reactive approaches and durable subscrip-

tions the proactive approaches make a trade-off between

1Hereafter we will be using the terms ’mobile user’ and ’subscriber’
interchangeably.

available storage capacity for caching and latency. As alluded

in [6] the holy grail in proactive approaches relate to the

question of what to cache and where to cache. Some relevant

previous works [10] and [11] use different learning methods

to tackle these issues, such as transfer learning and on-

line learning; the aim is to estimate content popularity and

place in an optimal manner popular content into cache hosts

to increase cache hit ratio. To select the set of routers to

cache popular content the work in [4] present a Selective

Neighbor Caching (SNC) approach that finds efficient one-

hop neighbors in regarding to the current edge-cloud to cache

content. As an extension to the SNC scheme, [12] redefines

the set of neighbor edge-clouds by taking the mobility of

the user into consideration. The work in [6] establish a

formal optimization framework as with respect to pro active

caching using a probabilistic model regarding future points of

attachments of the users. These works try to keep a balance

between cache cost and delay time with cache capacity

constraints, but they do not take explicitly latency constraints

into consideration that are caused by queuing in the network

and/or the edge-clouds. To illustrate the case, let’s consider

the following extreme scenario: there is a neighbor node

(edge cloud) which has infinite caching space but limited

service ability, this node would be selected by the majority

of mobile users as their cache host by the techniques in [4],

[6], [12]. However, this will cause an increased latency since

these previous works do not consider the node ability in

terms of queueing to respond to these requests.

To explicitly consider latency constraints we propose a

Proactive Caching with Delay Guarantees (PCDG) approach

to enhance mobility support in an ICN-enabled mobile

network. The objective is to minimize a cost function that

captures caching, redirection and content miss cost. A key

differentiation is that the proposed scheme considers caching

in any potential edge cloud instead of being limited to

neighboring nodes only. To this end, more network-wide

resources, like caching storage space and available Virtual

Machines (VMs) could be explored to support mobile users

in the case of congestion episodes. If the mobile user hits

the cache, he/she will experience negligible routing but the

system needs to pay a cost for caching the content. While

a subscriber moves to a destination that does not hold the

cache, the requests of the subscriber are redirected to the

closest proactive caching point such that a relative routing

cost may be paid yet it is better than totally missing the

cache. Either caching or redirecting a request, the delay tol-

erant requirement of the request must be satisfied, otherwise



some penalty cost will be paid. In short, PCDG provides

an optimal proactive cache allocation which jointly consider

caching and routing under the condition if there exists a

solution that can satisfy the request delay Quality of Service

(QoS). In addition, PCDG provides detailed analysis of

delay estimation, focusing on queuing delay which can vary

based on the utilization levels, by amalgamating queuing

theory results into integer linear programming models. More

specifically, network links are modeled using the M/M/1

queuing model and service capacity in terms of available

VMs of each potential candidate caching node are modeled

using the M/M/c queuing model.

II. MODELLING AND MATHEMATICAL PROGRAMMING

A mobile core/access network is modelled as an undirected

graph G = (V,L), where V denotes the set of vertices and

L is the set of links. We define a set E ⊆ V that consist of

the potential candidate nodes, i.e., edge clouds (ECs) where

information can be hosted 2. By D ⊆ V , we define the set of

potential destinations that mobile users might move due to

their mobility; this information is assumed to be accurately

known using historical data that an operator can explore. We

note that in the general case it is possible that the following

holds E ∩ D �= ∅.

For network modelling reasons and without loss of gen-

erality, we assume that each mobile user is associated with

a single request flow, and to this end, we define with k ∈ K
the set of flows to traverse the mobile network. Each flow k
has the following four associated properties: Sk, which is the

size of cache items for flow k;Rk, the required transmission

rate of flow k, δk the maximum delay tolerance for flow

k and Pk,d which encapsulate the probability for flow k to

move to access router d, where d ∈ D.

Similarly, for each potential edge cloud e ∈ E :We is

the total storage space in that node e, and with W re
e we

express the remaining cache space in edge cloud e. With

ce we denote the available number of virtual machines in

edge cloud e and με,e is the number of flow requests that

each VM ε in edge cloud e could serve during the scope

period of consideration. Each flow request could be serviced

by a VM, and we assume without loss of generality that

these are isolated, i.e., no degradation of the performance

when multiple VMs run on the same bare metal hardware.

In addition to that we assume that all VMs in a EC e have

the same capabilities in terms of resources to respond to the

various flow requests, i.e. με,e = μe, ∀ε. The key notations

we used in this paper are summarized in Table I.

Based on the aforementioned network setting detailed in

the previous section and in order to provide a mathematical

programming framework we define the following binary

decision variables,

xk,e =

{
1, if content for flow k cached at EC e

0, otherwise

2 The term potential candidate nodes and edge clouds are used inter-
changeably in the rest of the paper

TABLE I

SUMMARY OF MAIN NOTATIONS USED IN THIS PAPER.

Sk size of cache items for flow k
Rk required transmission rate of flow k
δk maximum delay tolerance for flow k
Pk,d probability for flow k move to destination node d
We total storage space in edge cloud e
W re

e remaining cache memory in edge cloud e
W re

t total remaining cache memory in network
ce available number of VMs in edge cloud e
μe service rate of each VM in edge cloud e

Bl,d,e binary matrix indicates whether link l is in the shortest path
between destination node d and edge cloud e

Chost
k cost of hosting the cache items for flow k

Ccache
k cost of redirecting the cache node for flow k

Cmiss
k cost of missing cache for flow k

Qtime
k penalty of not satisfying the time limitation
xk,e decision variable indicates whether content for flow k

is placed at edge cloud e
πk,d,e decision variable indicates whether content for flow k retrieve

from edge cloud e when get access to destination node d
yk,l decision variable indicates whether flow k passes link l

πk,d,e=

⎧⎪⎨
⎪⎩
1, if k required at d and retrieve the cached

content from EC e

0, otherwise

We define the total cost with the following expression,

TC =
∑
k∈K

(
α · Chost

k + β · Ccache
k + γ · Cmiss

k

)
(1)

where α, β and γ are the impact factors that control the

weight of these three different price.

Specifically, Chost
k is the cost to host the content which is

requested by flow k. This cost can be written as follows [4]:

Chost
k =

∑
e∈E

xk,e

1− Ue
(2)

and Ue is the cache utilization level at EC e. Note that in

this paper, Ue is a variable depending on the content caching

assignment (i.e., depend on the decision variable xk,e),

Ue =
We −W re

e +
∑

k∈K Sk · xk,e

We
(3)

Combining formula (2) and (3), Chost
k could be rewritten as:

Chost
k =

∑
e∈E

We

W re
e −∑

k∈K Sk · xk,e
· xk,e (4)

Ccache
k express the redirected cost when the mobile user

(i.e. flow k) connects to destination d but d does not cache

the content:

Ccache
k =

∑
d∈D

∑
e∈E

Pk,d · Csp
d,e · πk,d,e (5)

where Csp
d,e is the cost of the shortest path between access

point d and cache hosting EC e, which is calculated by the

sum of link weights. Notably Csp
d,e = 0 if d = e.

Cmiss
k is the cost for flow k missing cache, i.e. when k

move to access point d, but there is no such πk,d,e to retrieve



the caching content from e.

Cmiss
k =

(
1−

∑
d∈D

∑
e∈E

Pk,d · πk,d,e

)
· Cpnt

k (6)

Cpnt
k is the penalty cost for k if its cache is missed.
The objective of this paper is to determine the optimal

caching strategy that minimizes total cost TC. Expanding

(1) based on (4) (5) and (6), then the total cost minimization

problem can be formulated as:

min
xk,e,πk,d,e

TC (7)

s.t.
∑
e∈E

xk,e ≤ 1, ∀k ∈ K (7a)

∑
k∈K

Sk · xk,e ≤ W re
e , ∀e ∈ E (7b)

∑
k∈K

∑
e∈E

Sk · xk,e ≤ W re
t (7c)

πk,d,e ≤ xk,e, ∀k ∈ K, d ∈ D, e ∈ E (7d)

πk,d,e ≤ M · Pk,d, ∀k ∈ K, d ∈ D, e ∈ E (7e)∑
e∈E

πk,d,e ≤ 1, ∀k ∈ K, d ∈ D (7f)

tk ≤ δk, ∀k ∈ K (7g)

xk,e, πk,d,e ∈ {0, 1}, ∀k ∈ K, d ∈ D, e ∈ E (7h)

where M is a sufficiently large number and tk is the delay

time from mobile user sending requirement to getting related

contents in EC. Constraint (7a) limits the number of caching

ECs for each flow. (7b) and (7c) show the cache capacity

for individual and total EC respectively, where (7d), (7e) and

(7f) enforce the redirected EC should host related contents,

EC could not be retrieved if the probability of moving to

relevant destination is 0 and the redirected path is unique.

Moreover, (7g) impose the delay time for each mobile user

should satisfy their delay tolerance.
In order to solve this optimization problem by existing

mathematical tools, we need to transform the problem (7)

into Mixed Integer Linear Programming (MILP) Model. It

is worth noticing that the denominator of Chost
k contains

decision variable xk,e in (4). Besides, the delay time tk in

constraint (7g) must be rewritten in an analytical form for

the model to be possible to solve.

A. Delay Analysis
In this subsection, we determine the analytical form of tk

in the constraint (7g). According to [13], the delay which

affect network performance can be divided into processing

delay, transmission delay, propagation delay and queuing

delay. Here different caching assignment would influence

the queuing delay mainly, which could be divided into: (i)

the link delay with tolerance δlink, and it refers to the time

required for data flows go across link; (ii) the EC delay with

tolerance δedge, which means the time to access in the cache

EC. Hereafter we focus on the queuing delay analysis and

ignore the other kinds of delay. Then (7g) could be rewritten

as:

tk = tlinkk + tedgek ≤ δlinkk + δedgek ≤ δk, ∀k ∈ K (8)

1) Link Delay: The link delay can be described as M/M/1

queuing model [14], where the flow arrives following a

Poisson process and the serving time for this flow comes

from anther Poisson process. According to Burke’s theorem

[15], the output of a M/M/1 queue is still follows Poisson

distribution, so we could analyze each link independently:

tlinkk =
∑
l∈L

∑
e∈E Bl,d,e ·πk,d,e ·(

∑
k∈K Rk ·yk,l)

Cl −
∑

k∈K Rk ·yk,l ≤ δlinkk

∀k ∈ K, d ∈ D (9)

where Bl,d,e shows the relationship between link and path,

which could be generated from network topology by defining

Bl,d,e =

{
1, if link l in shortest path between d and e

0, otherwise

Cl is link l capacity and

yk,l =

{
1, if flow k passes link l

0, otherwise

which follows constraints below:

yk,l ≤
∑
d∈D

∑
e∈E

Bl,d,e · πk,d,e, ∀k ∈ K, l ∈ L (10a)

M · yk,l ≥
∑
d∈D

∑
e∈E

Bl,d,e · πk,d,e, ∀k ∈ K, l ∈ L (10b)

yk,l ∈ {0, 1}, ∀k ∈ K, l ∈ L (10c)

Constraints (10a) and (10b) enforce the link which flow

passed should belong to a retrieved path, and vice versa.

2) Edge Cloud Delay: According to [16], the access to

the VM at caching EC follows an M/M/c queue, where c is

the number of VMs in EC, the processing time for each flow

request at EC e is follow a Poisson distribution with average

μe and the according arriving rate for flow follows another

Poisson process with parameter λe. In other words, λe is the

number of arriving flows in EC e per unit time i.e.

λe =
∑
k∈K

xk,e, ∀e ∈ E (11)

From queuing theory [14], the occupation rate ρe for EC e
can be derived by

ρe =
λe

ce · μe
(12)

Then the waiting time in EC queue comes instantly from

queuing theory.

tedgek =
ρe(ceρe)

ce

λece!(1− ρe)2
· p0e ≤ δedgek , ∀k ∈ K, e ∈ E (13)

and p0e in (13) is the probability of 0 flows in EC e, which

is represented by

p0e =
[ ce−1∑

k=0

(ceρe)
k

k!
+

(ceρe)
ce

ce!(1− ρe)

]−1

, ∀e ∈ E (14)

Finally, once the assignment of cache host xk,e is determined,

the delay for accessing EC could be calculated by combining

formula (11),(12),(13) and (14).



B. Linearizion of the Optimization Model

Though we get the analytical form of delay time tk in

constraint (7g), we still have the non-linear part in objective

function (7). What’s worse, by dividing the queuing delay

into link delay and edge cloud delay, we introduce more

non-linear formula in our model, such as (9) and (13). In this

subsection, we use different liberalization tricks to transform

the previous optimization problem into a MILP model.

1) Linearizion of Objective Function: For the purpose

of linearizing the decision variable xk,e in denominator of

Chost
k (4) in objective function (7), we define a new variable:

χe =
1

W re
e −∑

k∈K Sk · xk,e
, ∀e ∈ E (15)

This definition is equal to the constraints below:

W re
e · χe −

∑
k∈K

Sk · χe · xk,e = 1, ∀e ∈ E (16a)

χe > 0, ∀e ∈ E (16b)

so (4) becomes:

Chost
k =

∑
e∈E

We ·xk,e

W re
e −∑

k∈K Skxk,e
=

∑
e∈E

We ·χe ·xk,e (17)

Noticed that there is a product of two decision variables in

(17), so we rewrite the model in terms of φk,e where:

φk,e = χe · xk,e =

{
χe, if xk,e is 1

0, otherwise
(18)

and the constraints for φk,e:

φk,e ≤ χe, ∀k ∈ K, e ∈ E (19a)

φk,e ≤ M · xk,e, ∀k ∈ K, e ∈ E (19b)

φk,e ≥ M · (xk,e − 1) + χe, ∀k ∈ K, e ∈ E (19c)

Now objective function (7) becomes:

TCnew =
∑
k∈K

[
α
∑
e∈E

We ·φk,e+β
∑
d∈D

∑
e∈E

Pk,d ·Csp
d,e ·πk,d,e

+ γCpnt
k · (1−∑

d∈D

∑
e∈E

Pk,d ·πk,d,e

)]
(20)

2) Linearisation of Link Queuing Delay: The link queuing

delay formulation (9) is non-linear due to the denominator.

In order to linearize it, we introduce a new decision variable

zl as the maximum delay tolerance for each link l, (9) can

be transformed to:

tlinkk =
∑
l∈L

∑
e∈E

Bl,d,eπk,d,e

∑
k∈K Rkyk,l

Cl −
∑

k∈K Rkyk,l
≤

∑
l∈L

∑
e∈E

Bl,d,e(πk,d,e ·zl) ≤ δlinkk , ∀k∈K, d∈D
(21)

and the constraints for zl:∑
k∈K Rkyk,l

Cl −
∑

k∈K Rkyk,l
≤ zl, ∀l ∈ L (22a)

zl ≥ 0, ∀l ∈ L (22b)

By introducing a new constraint to keep the link queue stable:

Cl −
∑
k∈K

Rkyk,l > 0, ∀l ∈ L (23)

Then we multiply Cl −
∑

k∈K Rkyk,l on the each side of

(22a), so it becomes:∑
k∈K

Rkyk,l ≤ Clzl −
∑
k∈K

Rk(yk,lzl), ∀l ∈ L (24)

Notice that the products of two decision variables,i.e. πk,d,ezl
in (21) and yk,lzl in (24), make these two formula non-linear.

Similarly as the trick for linearising (17), we introduce two

new decision variables ψk,l,d,e and ωk,l to replace the product

πk,d,ezl and yk,lzl respectively, with constraints:

ψk,l,d,e≤zl, ∀k∈K, l∈L, d∈D, e∈E (25a)

ψk,l,d,e≤M ·πk,d,e, ∀k∈K, l∈L, d∈D, e∈E (25b)

ψk,l,d,e≥M ·(πk,d,e−1)+zl, ∀k∈K, l∈L, d∈D, e∈E
(25c)

ωk,l≤zl, ∀k∈K, l∈L (25d)

ωk,l≤M ·yk,l, ∀k∈K, l∈L (25e)

ωk,l≥M ·(yk,l − 1)+zl, ∀k∈K, l∈L (25f)

ψk,l,d,e, ωk,l≥0, ∀k∈K, l∈L, d∈D, e∈E (25g)

At last, (21) and (24) could be rewritten as∑
l∈L

∑
e∈E

Bl,d,eψk,l,d,e ≤ δlinkk , ∀k ∈ K, d ∈ D (26)

∑
k∈K

Rkyk,l ≤ Clzl −
∑
k∈K

Rkωk,l, ∀l ∈ L (27)

3) Linearisation of Edge Cloud Queuing Delay: To lin-

earize formulation(13), we combine (11)∼(14) and construct

function f(λe) as the difference between tedgek and δedgek :

f(λe) =
(λe)

ce

ce!(μe)ce
[(1− λe

ceμe
)

ce−1∑
n=0

(λe)
n

n!(μe)n
+

(λe)
ce

ce!(μe)ce
]−1

· (ceμe − λe)
−1 − δedgek

In order to keep the waiting queue in EC e is stable, we

introduce a new constraint here:

ce · μe ≥
∑
k∈K

xk,e, ∀e ∈ E (28)

According to [17], f(λe) = 0 can be numerically solved

and finds the specific solution. Since f(λe) is a ce order

polynomial, it may have ce solutions in f(λe) = 0. We

choose the upper bound following the Algorithm 1.

This yields that (13) is equivalent to:∑
k∈K

xk,e ≤ λmax
e , ∀e ∈ E (29)

where λmax
e is the output of Algorithm 1. Noting that, one

of the inputs of Algorithm1 is the delay tolerance for edge

cloud access δedgek , while we have the total latency upper

bound δk, which is the addition of edge cloud delay δedgek

and link delay δlinkk in (8). Now the problem becomes how

to determine a suitable proportion of δlinkk and δedgek given



Algorithm 1 Choosing λmax
e from possible solutions

Input:
The number of VMs in edge cloud e, ce;

The service rate for each VM in edge cloud e, μe;

The delay tolerance for edge cloud access, δedgek

Output:
λmax
e ;

1: Construct set Λ={λi|f(λi)=0, 0<λi<ceμe}
2: Initialize λmax

e = λ1

3: for each λi, λi+1 ∈ Λ do
4: Calculate F = f(λi+λi+1

2 )
5: if F < 0 then
6: λmax

e = λi+1

7: else
8: break
9: end if

10: end for

a fixed δk. To address this problem, we greedily assign as

many flows as possible to the shortest path between d and e
such that tlinkk is maximized and we let δlinkk = tlinkk , then

we assign the rest proportion to δedgek .

By introducing new variables and constraints in previous

subsections, we could linearize the optimization problem and

formulate as a Mixed Integer Linear Programming (MILP)

Model. Thereby, the PCDG model is

min
xk,e,yk,l,zl,χe,φk,e

πk,d,e,ωk,l,ψk,l,d,e

TCnew (30)

s.t. (7a)∼ (7f), (10a)∼ (10c), (16a)∼ (16b), (19a)∼ (19c),

(23), (25a)∼ (25g), (26)∼ (29)

zl≥0, φk,e>0, ∀l∈L, k∈K, e∈E (30a)

xk,e, πk,d,e∈{0, 1}, ∀k∈K, d∈D, e∈E (30b)

C. Scale Free Heuristics

With the increment of the number of flows, it is quite time-

consuming to solve PCDG model. Therefore, we propose

a greedy algorithm called GRC. It is worth noting that,

the PCDG can always find an optimal solution with delay

guarantees, while GRC here may suffer from QoS penalty

when not satisfying delay tolerance. Hereafter we introduce

a piecewise function Qtime
k as such penalty to measure the

delayed impact on QoS:

Qtime
k =

{
0, tk ≤ δk

η · (tk − δk), otherwise
(31)

where η is the penalty factor for missing the delay constraint.

The GRC try to assign the caching content to the nearest

EC depending on the maximum user equipment’s moving

probability Pk,d. If such EC does not have enough storage

space, then GRC try to cache in the second nearest EC from

the same access router d, instead of dropping the information.

For the GRC scheme, the idea is to choose the caching host

by considering the path cost and node capacity. More details

are illustrated in Algorithm 2 below.

Algorithm 2 Greedy Caching (GRC)

Input:
Flow set K, Parameters in Table II

Output:
the total cost TC

1: Construct set Lk = {k|ηk > ηk+1, ∀k ∈ K}
2: for each flow k ∈ Lk and node d ∈ D do
3: Find the maximum Pk,d and related d,Pk,d←0
4: Construct list Le from d by dijkstra algorithm

5: for each e in the list Le do
6: if Sk ≤ W re

e and Sk ≤ W re
t then

7: xk,e←1, πk,d,e←1, d∈{d|Pk,d>0, ∀d∈D}
8: W re

t ←W re
t −Sk,W re

e ←W re
e −Sk

9: break
10: end if
11: end for
12: end for
13: for each flow k ∈ Lk do
14: Calculate Chost

k , Ccache
k , Cmiss

k , Qtime
k using (4), (5),

(6) and (31) respectively

15: end for
16: TC ← ∑

k∈K{αChost
k + βCcache

k + γCmiss
k +Qtime

k }

III. NUMERICAL INVESTIGATIONS

In this section we demonstrate the performance of pro-

posed PCDG with other methods. All results presented here-

after are averaged over one thousand Monte Carlo iterations.

The simulation parameters that assumed in the investigations

are presented in Table II.

TABLE II

SIMULATION PARAMETERS USED IN THIS PAPER [18][19].

weight of cache host (α) [0,1]
weight of path cost (β) [0,1]
weight of miss cost (γ) [0,1]
penalty factor for delay (η) [0,1]
size of cache items (Sk) [10,500]Mbit

hit miss cost (Cmiss
k ) [100,1000]

link weight [1,100]
edge cloud remaining cache space (W re

e ) [8,16]Gbit
network total remaining cache space (W re

t ) 100 Gbit
flow (request) rate (Rk) [0.064,10]Mbps
number of VMs (ce) 8
service rate for each VM (μe) (0,4]
link capacity (Cl) 2Gbps
delay tolerance (δk) [0.03,60] s
changing point of attachment probability (Pk,d) [0,1]

Figure 1 compares the total cost of these techniques. As

can be seen from the figure, the no-cache strategy has,

as expected, the lowest performance from all schemes. In

order to avoid losing information, the all-cache algorithm

tries to cache contents in all possible ECs, which reduces

the price of redirection Ccache
k since the mobile user could

get the subscriptions from the nearest EC immediately after

handover, however, it incurs significant memory cost Chost
k

because every EC hosts a copy of user’s subscription. GRC

performs better than all-cache, and similarly as PCDG before



20 flows, then the performance cost increases from 18.71%
to 37.70% (PCDG vs GRC). This is expected by the fact that

GRC only considers the redirected cost Ccache
k and caching

memory limitation. But it has the risk to be punished by

Qtime
k because of not satisfying time limitation, when GRC

assigns a content to a node which has enough cache space but

already maintains a long request waiting queue. Clearly, with

the increase of the number of flows, the PCDG outperforms

than GRC(albeit with higher computational complexity cost).
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Fig. 1. Total cost with different number of flows.

Figure 2 illustrates the satisfied probability with different

number of flows. With satisfied probability we denote the ra-

tio of the number of flows that fulfill their latency constraint

to the total number of flows. Without loss of generality,

we keep the diversity for user requests, i.e. a partial of the

requests is time-sensitive. In that respect, the proportion of

time-nonsensitive task is set to be 50% (i.e. the satisfied

probability of no-cache is kept at 50%) in this experiment.

The all-cache and PCDG could assign all user requests flows

for popular content to edge clouds that they satisfy their delay

constraint; and this is the reason why the satisfied probability

in all cases one in figure 2 for the two schemes. Whereas, the

GRC suffers from outage which is increasing as the number

of flows in the network is increasing. It is worth noticing

that though the satisfied probability of all-cache is one, the

total cost of all-cache is larger than GRC in figure 1 since

all-cache contains a significant hosting cost.
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Fig. 2. Satisfied probability with different number of flows.

IV. CONCLUSIONS

Providing advanced caching strategies that incorporate

delay constraints is of paramount importance to support

emerging and future applications that require strict latency

deadlines. In order to explicitly consider delay constraints, a

Proactive Caching with Delay Guarantees (PCDG) strategy

for mobile networks is proposed. To this end, a mathematical

programming formulation is presented that amalgamates

via suitable linearization queuing theory models to capture

delays on both edge-clouds and in the network links. In

addition a greedy algorithm is presented and with a wide

set of numerical investigations the performance is evaluated.
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