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Abstract. A stopping time T is the first time when a trajectory of a stochastic
process satisfies a specific criterion. In this paper, we use martingale theory to derive
the integral fluctuation relation 〈e−Stot(T )〉 = 1 for the stochastic entropy production
Stot in a stationary physical system at stochastic stopping times T . This fluctuation
relation implies the law 〈Stot(T )〉 ≥ 0, which states that it is not possible to reduce
entropy on average, even by stopping a stochastic process at a stopping time, and
which we call the second law of thermodynamics at stopping times. This law implies
bounds on the average amount of heat and work a system can extract from its
environment when stopped at a random time. Furthermore, the integral fluctuation
relation implies that certain fluctuations of entropy production are universal or are
bounded by universal functions. These universal properties descend from the integral
fluctuation relation by selecting appropriate stopping times: for example, when T is a
first-passage time for entropy production, then we obtain a bound on the statistics of
negative records of entropy production. We illustrate these results on simple models
of nonequilibrium systems described by Langevin equations and reveal two interesting
phenomena. First, we demonstrate that isothermal mesoscopic systems can extract
on average heat from their environment when stopped at a cleverly chosen moment
and the second law at stopping times provides a bound on the average extracted heat.
Second, we demonstrate that the average efficiency at stopping times of an autonomous
stochastic heat engines, such as Feymann’s ratchet, can be larger than the Carnot
efficiency and the second law of thermodynamics at stopping times provides a bound
on the average efficiency at stopping times.
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1. Introduction and statement of the main results

Stochastic thermodynamics is a thermodynamics theory for the slow degrees of
freedom ~X(t) of a mesoscopic system that is weakly coupled to an environment in
equilibrium [1, 2, 3, 4, 5]. Examples of systems to which stochastic thermodynamics
applies are molecular motors [6, 7], biopolymers [8], self-propelled Brownian particles
[9], micro-manipulation experiments on colloidal particles [10, 11, 12], and electronic
circuits [13, 14, 15].

The stochastic entropy production Stot(t) is a key variable in stochastic
thermodynamics. It is defined as the sum of the entropy change of the environment
Senv(t) and a system entropy change ∆Ssys(t) [16]. In stochastic thermodynamics
entropy production is a functional of the trajectories of the slow degrees of freedom
in the system. If time is discrete and ~X(t) is a variable of even parity with respect
to time reversal, then the entropy production Stot(t) associated with a trajectory
of a nonequilibrium stationary process ~X(t) is the logarithm of the ratio between
the stationary probability density of that trajectory p( ~X(1), ~X(2), . . . , ~X(t)) and the
probability density of the same trajectory but in time-reversed order [4, 17, 18, 19],

Stot(t) = log p( ~X(1), ~X(2), . . . , ~X(t))
p( ~X(t), ~X(t− 1), . . . , ~X(1))

, (1)

where log denotes natural logarithm. Here and throughout the paper we use
dimensionless units for which Boltzmann’s constant kB = 1. Equation (1) is a particular
case of the general expression of stochastic entropy production in terms of probability
measures that we will discuss below in Eq. (33). The functional Stot(t) is exactly equal
to zero at all times for systems in equilibrium. For nonequilibrium systems, entropy
production fluctuates with expected value larger than zero, 〈Stot(t)〉 ≥ 0.

An interesting consequence of definition (1) is that the exponential of the negative
entropy production e−Stot(t) is a martingale associated with the process ~X(t) [20, 21, 22].
Historically the concept of martingales has been introduced to understand fundamental
questions in betting strategies and gambling [23]. Martingale theory [24, 25, 26], and
in particular Doob’s optional stopping theorem, provides an elegant resolution to the
question whether it is possible to make profit in a fair game of chance by leaving the
game at a cleverly chosen moment. We can distinguish unfair games of chances, where
the expected values of the gambler’s fortune decreases (or increases) with time, from fair
ones, where such expected values are constant in time on average. In probability theory,
these categories correspond to supermartingales (or submartingales) and martingales,
respectively. In a nutshell, the optional stopping theorem for martingales states that a
gambler cannot make profit on average in a fair game of chance by quitting the game
at an intelligent chosen moment. The optional stopping theorem holds as long as the
total amount of available money is finite. A gambler with access to an infinite budget of
money could indeed devise a betting strategy that makes profit out of a fair game; the
St. Petersburg game provides an example of a such a strategy, see [27] and chapter 6
of [28]. Nowadays martingales have various applications, for example, they model stock
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prices in efficient capital markets [29].
In this paper, we study universal properties of entropy production in nonequilibrium

stationary states using martingale theory and Doob’s optional stopping theorem. In an
analogy with gambling, the negative entropy production −Stot(t) of a stationary process
~X(t) is equivalent to a gambler’s fortune in an unfair game of chance ~X(t) and the
exponentiated negative entropy production e−Stot(t) is a martingale associated with the
gambler’s fortune. In stochastic thermodynamics, Doob’s optional stopping theorem
implies

〈e−Stot(T )〉 = 1, (2)

where the expected value 〈·〉 is over many realizations of the physical process ~X(t),
and where T is a stopping time. A stopping time T is the first time when a trajectory
of ~X satisfies a specific criterium; it is thus a stochastic time. This criterium must
obey causality and cannot depend on the future. The relation (2) holds under the
condition that either T acts in a finite-time window, i.e., T ∈ [0, τ ] with τ a positive
number, or that Stot(t) is bounded for all times t ∈ [0, T ]. We call (2) the integral
fluctuation relation for entropy production at stopping times because it is an integral
relation, 〈e−Stot(T )〉 =

∫
dP e−Stot(T ) = 1, that characterises the fluctuations of entropy

production. Here, P is the probability measure associated with ~X(t).
The fluctuation relation at stopping times (2) can be extended into a fluctuation

relation conditioned on trajectories
{
~X(t)

}
t∈[0,T ′]

of random duration [0, T ′], namely,〈
e−Stot(T )| ~XT ′

0

〉
= e−Stot(T ′), (3)

with T ′ a stopping time for which T ′ ≤ T , and where ~Xs
0 =

{
~X(t′)

}
t′∈[0,s]

denotes a

trajectory in a finite-time window. Notice that for T ′ = 0 we obtain 〈e−Stot(T )| ~X(0)〉 =
e−Stot(0) = 1, since in our definitions Stot(0) = 0. The fluctuation relation (3) implies
thus (2).

There are two important implications of the integral fluctuation relations (2)
and (3). First, it holds that

〈Stot(T )〉 ≥ 0, (4)

or in other words, it is not possible to reduce the average entropy production by stopping
a stochastic process ~X(t) at a cleverly chosen moment T that can be different for each
realisation. The relation (4) is reminiscent of the second law of thermodynamics, and
therefore we call it the second law of thermodynamics at stopping times. A second
implication of the integral fluctuation relations (2) and (3) is that certain fluctuation
properties of entropy production are universal. In what follows, we discuss in more
detail these two consequences of the integral fluctuation relations.

We first discuss the second law at stopping times Eq. (4). Remarkably, this second
law holds for any stopping time T defined by a (arbitrary) stopping criterium that obeys
causality and does not use information about the future of the physical process; first-
passage times are canonical examples of stopping times. Interestingly, the inequality (4)
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bounds the average amount of heat and work a system can perform on or extract from
its surroundings at a stopping time T . For isothermal systems, Eq. (4) implies

〈Q(T )〉 ≤ Tenv〈∆Ssys(T )〉. (5)

Relation (5) states that the average amount of heat 〈Q(T )〉 a system can on average
extract at a stopping time T from a thermal reservoir at temperature Tenv is smaller or
equal than the average system entropy difference 〈∆Ssys(T )〉 between the initial state
and the final state at the stopping time. Similar considerations allow us to derive bounds
on the average amount of work that a stationary heat engine, e.g. Feynman’s ratchet,
can extract from its surrounding when stopped at a cleverly chosen moment. Consider a
system in contact with two thermal reservoirs at temperatures Th and Tc with Th ≥ Tc.
We define the stopping-time efficiency ηT associated with the stopping time T as

ηT := − 〈W (T )〉
〈Qh(T )〉 , (6)

where 〈W (T )〉 is the average work exerted on the system in the time interval [0, T ], and
〈Qh(T )〉 is the average heat absorbed by the system from the hot reservoir within the
same time interval. If 〈Qh(T )〉 > 0, then the second law at stopping times (4) implies
that

ηT ≤ ηC −
〈∆Fc(T )〉
〈Qh(T )〉 , (7)

where ηC = 1 − (Tc/Th) is the Carnot efficiency, 〈∆Fc(t)〉 = 〈∆v(t)〉 − Tc〈∆Ssys(t)〉
is the generalised free energy change of the system at the stopping time T , and
∆v(t) = v(X(t)) − v(X(0)) is change of the internal energy of the system. Note that
the second term in the right-hand side of (7) can be positive, and thus efficiencies at
stopping times of stationary heat engines can be greater than the Carnot efficiency. This
is because using a stopping time the system is, in general, no longer cyclic.

We now discuss universal properties of the fluctuations of entropy production. By
applying the integral fluctuation relations (2) and (3) to different examples of stopping
times T , we will derive the following generic relations for the fluctuations of entropy
production:

• In the simple case T = t, where t is a deterministic fixed time, relation (4) reads
〈Stot(t)〉 ≥ 0, which is a well-known second-law like relation derived in stochastic
thermodynamics [16, 4], and the relation (2) is the stationary integral fluctuation
relation 〈e−Stot(t)〉 = 1 [16, 4]. The integral fluctuation relation at fixed times implies
that in a nonequilibrium process events of negative entropy production must exist
and their likelihood is bounded by [4]

P (Stot(t) ≤ −s) ≤ e−s, s ≥ 0, (8)

where P (·) denotes the probability of an event.
• Our second choice of stopping times are first-passage times Tfp =

inf {t : Stot(t) /∈ (−s−, s+)} for entropy production with two absorbing boundaries
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at −s− ≤ 0 and s+ ≥ 0. As we show in this paper, the integral fluctuation re-
lation Eq. (2) implies that the splitting probabilities p− = P [Stot(T ) ≤ −s−] and
p+ = P [Stot(T ) ≥ s+] are bounded by

p+ ≥ 1− 1
es− − e−s+

, p− ≤
1

es− − e−s+
. (9)

If the trajectories of entropy production are continuous, then [21]

p+ = es− − 1
es− − e−s+

, p− = 1− e−s+

es− − e−s+
. (10)

• Global infima of entropy production, Sinf = inft≥0 Stot(t), quantify fluctuations of
negative entropy production. The cumulative distribution P [Sinf ≤ −s] is equal to
the splitting probability p− in the limit s+ →∞. Using (9) we obtain [21]

P [Sinf ≤ −s] ≤ e−s, s ≥ 0, (11)

which implies the infimum law 〈Sinf〉 ≥ −1 [21]. It is insightful to compare
the two relations (8) and (11). Since Sinf ≤ Stot(t), the inequality (11)
implies the inequality (8), and (11) is thus a stronger result. Remarkably, the
bound (11) is tight for continuous stochastic processes. Indeed, using (10) we
obtain the probability density function for global infima of the entropy production
in continuous processes [21],

pSinf (−s) = e−s, s ≥ 0. (12)

The mean global infimum is thus 〈Sinf〉 = −1.
• The survival probability psur(t) of the entropy production is the probability that

entropy production has not reached a value s0 in the time interval [0, t]. For
continuous stochastic processes we obtain the generic expression

psur(t) = e−s0 − 1
e−s0 − 〈e−Stot(t)〉sur

, (13)

where 〈. . .〉sur is an average over trajectories that have not reached the absorbing
state in the interval [0, t].
• We consider the statistics of the number of times, N×, that entropy production

crosses the interval [−∆,∆] from −∆ towards ∆ in one realisation of the
process ~X(t). The probability of N× is bounded by

P(N× = 0; ∆) ≥ 1− e−∆,

P(N× > n) ≤ e−∆(2n+1). (14)

In other words, the probability of observing a large number of crossing decays at
least exponentially in N×. For continuous stochastic processes we obtain a generic
expression for the probability of N× [22], given by

P(N×) =
{

1− e−∆ N× = 0,
2 sinh(∆)e−2N×∆ N× ≥ 1. (15)
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Remarkably, all these results on universal fluctuation properties are direct consequences
of the integral fluctuation relation for entropy production at stopping times Eq. (2) and
its conditional version, Eq. (3).

Some of the results in this paper have already appeared before in the literature or
are closely related to existing results. A fluctuation relation analogous to (2) has been
derived for the exponential of the negative housekeeping heat, see Eq. (6) in [30]. Since
for stationary processes the housekeeping heat is equal to the entropy production, the
relation (6) in [30] implies the relation (2) in this paper. The relations (10), (11), (12)
and (15) have been derived before in [21] and [22]. Instead, the relations (3), (5), (7),
(9), (13), and (14) are, to the best of our knowledge, derived here for the first time.
Moreover, we demonstrate that all the results (3), (5), (7), (9), (10), (11), (12), (13)
and (15) descend from the integral fluctuation relation fluctuation relations (2) and (3)
in a few simple steps, and we discuss the physical meaning of the results derived in this
paper on examples of simple nonequilibrium systems.

The paper is organised as follows. Section 2 introduces the notation used in the
paper. In Section 3, we revisit the theory of martingales in the context of gambling.
In Section 4, we briefly recall the theory of stochastic thermodynamics, focusing on the
aspects we will use in this paper. These two sections only contain review material, and
can be skipped by readers who want to directly read the new results of this paper. In
Section 5, we derive the first important results of this paper: the integral fluctuation
relations at stopping times (2) and (3). In Section 6, we derive the second law of
thermodynamics at stopping times (4), and we discuss the physical implications of
this law. In Section 7, we use the integral fluctuation relation at stopping times to
derive universal properties for the fluctuations of entropy production in nonequilibrium
stationary states, including the relations (9)-(15). In Section 8, we discuss the effect of
finite statistics on the integral fluctuation relation at stopping times, which is relevant
for experimental validation. In Section 9, we illustrate the second law at stopping times
and the integral fluctuation relation at stopping times in paradigmatic examples of
nonequilibrium stationary states. We conclude the paper with a discussion in Section 10.
In the Appendices, we provide details on important proofs and derivations.

2. Preliminaries and notation

In this paper, we will consider stochastic processes described by d degrees of freedom
~X(t) = (X1(t), X2(t), . . . , Xd(t)). The time index can be discrete, t ∈ Z, or continuous,
t ∈ R. We denote the full trajectory of ~X(t) by ω =

{
~X(t)

}
t∈(−∞,∞)

and the set of
all trajectories by Ω. We call a subset Φ of Ω a measurable set, or an event, if we can
measure the probability P [Φ] to observe a trajectory ω in Φ. The σ-algebra F is the
set of all subsets of Ω that are measurable.

The triple (Ω,F ,P) is a probability space. We denote random variables on this
probability space in upper case, e.g., X, Y, Z, whereas deterministic variables are written
in lower case letters, e.g., x, y, z. An exception is the temperature Tenv, which is a
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deterministic variable. Random variables are functions defined on Ω, i,e, X : ω → X(ω).
For simplicity we often omit the ω-dependency in our notation of random variables, i.e.,
we write X = X(ω), Y = Y (ω), etc. For stochastic process, ~X(t) = ~X(t, ω) is a
function on Ω that returns the value of ~X at time t in the trajectory ω. The expected
value of a random variable X is denoted by 〈X〉 or E[X] and is defined as the integral
〈X〉 = E[X] =

∫
Ω dP X(ω) in the probability space (Ω,F ,P). We write pX(x) for the

probability density function or probability mass function of X, if it exists. We denote
vectors by ~x = (x1, x2, . . . , xd) and we use the notation t ∧ τ = min {t, τ}.

We will consider situations where an experimental observer does not have
instantaneously access to the complete trajectory ω but rather tracks a trajectory{
~X(s)

}
s∈[0,t]

= ~X t
0 in a finite time interval. In this case, the set of measurable events

gradually expands as time progresses and a larger part of the trajectory ω becomes
visible. Mathematically this situation is described by an increasing sequence of σ-
algebras {Ft}t≥0 where Ft contains all the measurable events Φ associated with finite-
time trajectories ~Xs

0 . The sequence of sub σ-algebras {Ft}t≥0 of F is called the filtration
generated by the stochastic process X(t) and (Ω,F , {Ft}t≥0 P) is a filtered probability
space. If time is continuous, then we assume that {Ft}t≥0 is right-continuous, i.e.,
Ft = ∩s>tFs; this implies that the process ~X(t) consists of continuous trajectories
intercepted by a discrete number of jumps.

We denote by E[M(t)|Fs](ω) the conditional expectation of a random variable
M(t) given a sub-σ-algebra Fs of F [26, 25]. Note that conditional expectations
E[M(t)|Fs](ω) are random variables on the measurable space (Ω,Fs). Since
E[M(t)|Fs](ω) is an expectation value we also use the physics notations E[M(t)|Fs] =
〈M(t)|Fs〉 and E[M(t)|Fs] = 〈M(t)| ~Xs

0〉.

3. Martingales

In a first subsection, we introduce martingales within the example of games of chance,
to illustrate how fluctuations of a stochastic process can be studied with martingale
theory. The calculations in this subsection are similar to those for the stochastic
entropy production presented in Sections 5 and 7, with the difference that game of
chances are simpler to analyse, since they consist of sequences of independent and
identically distributed random variables. In a second subsection, we present a definition
of martingales that applies to stochastic processes in continuous and discrete time, and
we discuss the optional stopping theorem.

3.1. Gambling and martingales

Games of chance have inspired mathematicians as far back as the 17th century and have
laid the foundation for probability theory [31]. A question that has often been studied
is the gambler’s ruin problem: Consider a gambler that enters a casino and tries his/her
luck at the roulette. The gambler plays until he/she has either won a predetermined
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amount of money or until all the initial stake is lost. We are interested in the probability
of success, or equivalently in the ruin probability of the gambler.

The roulette is a game of chance that consists of a ball that rolls at the edge of
a spinning wheel and falls in one of 37 coloured pockets on the wheel: 18 pockets are
coloured in red, 18 pockets are coloured in black, and one is coloured in green. Before
each round of the game, the gambler puts his/her bet on whether the ball will fall in
either a red or a black pocket. If the gambler’s call is correct, then he/she wins an
amount of chips equal to the bet size, otherwise he/she looses the betted chips. The
gambler cannot bet for the green pocket. The presence of the green pocket biases the
game in favour of the casino: if the ball falls in the green pocket, then the casino wins
all the bets. We are interested in the gambler’s ruin problem: what is the probability
that the gambler loses all of his/her initial stakes before reaching a certain amount of
profit?

A gambling sequence at the roulette can be formalised as a stochastic process X(t)
in discrete time, t = 1, 2, 3, . . . We define X(t) = 1 if the ball falls in a red pocket and
X(t) = −1 if the ball falls in a black pocket in the t-th round of the game. If the ball
falls in a green pocket we set X(t) = 0. We denote the bets of the gambler by the
process Y (t): if the gambler calls for red we set Y (t) = 1 and if the gambler calls for
black we set Y (t) = −1. The gambler does not bet on green. Finally, we assume the
bet size of the gambler b is constant.

For an ideal roulette, the random variables X(t) are independently drawn from the
distribution

pX(t)(x) = 18
37δx,1 + 18

37δx,−1 + 1
37δx,0, (16)

where δx,y is the Kronecker’s delta. The gambler’s bet Y (t) = y(X(0), X(1), . . . , X(t−
1)) with y a function that defines the gambler’s betting system. The gambler’s fortune
at time t is the process

F (t) = n+ b
t∑

s=1
(Y (s)X(s) + |X(s)| − 1), (17)

where F (0) = n is the initial stake.
The duration of the game is random. The gambler plays until a time Tplay when

the gambler is either ruined, i.e., F (Tplay) ≤ 0, or the gambler’s fortune has surpassed
for the first time a certain amount m, i.e., F (Tplay) ≥ m. Clearly we require that
m > n = F (0), since otherwise Tplay = 0. The ruin probability

pruin(n) = P [F (Tplay) ≤ 0] (18)
is the probability that the gambler loses the game.

The gambler’s fortune is a supermartingale because it is a bounded stochastic
process satisfying

E [F (t)|X(0), X(1), . . . , X(s)] ≤ F (s), (19)
for all s ≤ t and all t ≥ 0. Relation (19) means that on average the gambler will
inevitably lose money, irrespective of the betting system he/she adopts.
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A gambler whose fortune is expected to decrease may still be tempted to play if
the probability of winning is high enough. The probabilities to win or loose the game
depend on the fluctuations of X(t). In the roulette game, the gambler’s fortune F (t)
can be represented as a biased random walk on the real line [0,m], which starts at the
position n, and moves each time step either a distance −b to the left or a distance b
to the right. The probability to make a step to the left is q = 19/37 ≈ 0.51 and the
probability to make a step to the right is 1 − q = 18/37 ≈ 0.49. Hence, the gambler’s
fortune is slightly biased to move towards the left where F (t) < 0. The ruin probability
pruin(n) = P [F (Tplay) ≤ 0] solves the recursive equation

pruin(n) = q pruin(n− b) + (1− q) pruin(n+ b), n ∈ [0,m], (20)

with boundary conditions pruin(0) = 1 and pruin(m) = 0. Instead of solving the relations
(20) we bound the ruin probability pruin(n) using the theory of martingales [32]. We
define the process

M(t) =
(

q

1− q

)F (t)/b

, (21)

The processes M(t) is a martingale relative to the process X(t) [26, 25]. Indeed, we say
that a bounded process M is a martingale if

E [M(t)|X(0), X(1), . . . , X(s)] = M(s), (22)

for all s < t.
An important property of martingales is that their expected value evaluated

at a stopping time T of the process X equals their expected value at the initial
time [26, 25, 24],

E [M(T )] = E[M(0)]. (23)

Eq. (23) is known as Doob’s optional stopping theorem and will constitute the main tool
in this paper to derive fluctuation properties of stochastic processes. In the present
example, since

E [M(0)] =
(

q

1− q

)n/b
, (24)

and since for q ≥ 0.5

pruin(n) + (1− pruin(n))
(

q

1− q

)m/b+1

≥ E [M(Tplay)] ≥ pruin(n) + (1− pruin(n))
(

q

1− q

)m/b
,

(25)

Doob’s optional stopping theorem (23) implies that(
q

1−q

)m/b+1
−
(

q
1−q

)n/b
(

q
1−q

)m/b+1
− 1

≥ pruin(n) ≥

(
q

1−q

)m/b
−
(

q
1−q

)n/b
(

q
1−q

)m/b
− 1

. (26)

Hence, Doob’s optional stopping theorem bounds the gambler’s ruin probability.
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The formula (26) provides useful information for the gambler. If we start the game
with an initial fortune of 10£, if we play until our fortune reaches 50£ and if we bet
each game 1£, then the chance of loosing our initial stake is in between 94.8 and 95.2
percent. If, on the other hand, we bet each game 10£, then the ruin probability is in
between 82 and 85.6 percent. Hence, the probability of winning increases as a function
of the betting size. Indeed, since the game is biased in favour of the casino, the best
strategy is to reduce the number of betting rounds to the minimal possible and hope
that luck plays in our favour. After all, the outcome of a single game is almost fair,
since the odds of winning a single game are q = 19/37 ≈ 0.51.

3.2. Martingales and the optional stopping theorem

We now discuss martingales and the optional stopping theorem for generic stochastic
processes ~X(t) in discrete or continuous time. A martingale process M(t) with respect
to another process ~X(t) is a real-valued stochastic process that satisfies the following
three properties [26, 25]:

• M(t) is Ft-adapted, which means thatM(t) is a function on trajectories ~X(0, . . . , t);
• M(t) is integrable,

E [|M(t)|] <∞, ∀t ≥ 0; (27)

• the conditional expectation of M(t) given the σ-algebra Fs satisfies the property

E[M(t)|Fs] = M(s), ∀s ≤ t, and ∀t ≥ 0. (28)

The conditional expectation of a random variable M(t) given a sub-σ-algebra
Fs of F is defined as a Fs-measurable random variable E[M(t)|Fs] for which∫
ω∈ΦE[M(t)|Fs] dP =

∫
ω∈Φ M(t) dP for all Φ ∈ Fs [26].

If instead of the equality (28) we have an inequality E[M(t)|Fs] ≥ M(s), then we
call the process a submartingale. If E[M(t)|Fs] ≤ M(s), then we call the process a
supermartingale.

Fluctuations of a martingale M(t) can be studied with stopping times. Stopping
times are the random times when the stochastic process ~X(t) satisfies for the first time
a given criterion. Stopping times do not allow for clairvoyance (the stopping criterion
cannot anticipate the future) and do not allow for cheating (the criterion does not
have access to side information). Aside these constraints, the stopping rule can be an
arbitrary function of the trajectories of the stochastic process ~X(t).

Formally, a stopping time T (ω) ∈ [0,∞] of a stochastic process ~X is defined as a
random variable for which {ω : T (ω) ≤ t} ∈ Ft for all t ≥ 0. Alternatively, we can also
define stopping times as functions on trajectories ω = ~X∞0 with the property that the
function T (ω) does not depend on what happens after the stopping time T .

An important result in martingale theory is Doob’s optional stopping theorem.
There exist different versions of the optional stopping theorem, which differ in the
conditions assumed for the martingale process M(t) and the stopping time T . We
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discuss the version of the theorem presented as Theorem 3.6 in the book of Liptser and
Shiryayev [26].

Let M(t) be a martingale relative to the process ~X and let T be a stopping time
on the process ~X. If M is uniformly integrable, then

E [M(T )] = E [M(0)] . (29)
If time is continuous we also require that M(t) is rightcontinuous. A stochastic process
M(t) is called uniformly integrable if

lim
m→∞

supt≥0

∫
|M(t)|I|M(t)|≥m dP = 0, (30)

where IΦ(ω) is the indicator function defined by

IΦ(ω) =
{

1 if ω ∈ Φ,
0 if ω /∈ Φ, (31)

for all ω ∈ Ω and Φ ∈ F . If M(t) is not uniformly integrable, then (29) may
not hold. For example if M(t) = W (t) with W (t) a Wiener process on [0,∞) and
T = inf {t ≥ 0 : M(t) = m}, then E [W (T )] = m 6= E [W (0)] = 0, where we have used
the convention that 0 · ∞ = 0 [33].

An extended version of the optional stopping theorem holds for two stopping times
T1 and T2 with the property P[T2 ≤ T1] = 1,

E [M(T1)|FT2 ] (ω) = M(T2(ω), ω), (32)
where the σ-algebra FT2 consists of all sets Φ ∈ F such that Φ∩ {ω : T2(ω) ≤ t} ∈ Ft.

4. Stochastic thermodynamics for stationary processes

In this section, we briefly introduce the formalism of stochastic thermodynamics in
nonequilibrium stationary states; for reviews see Refs. [1, 2, 3, 4]. We use a probability-
theoretic approach [34, 35, 21], which has the advantage of dealing with Markov chains,
Markov jump processes, and Langevin process in one unified framework. It is moreover
the natural language to deal with martingales.

The stochastic entropy production Stot(t) is defined in terms of a probability
measure P of a stationary stochastic process and its time-reversed measure P ◦Θ. The
time-reversal map Θ, with respect to the origin t = 0, is a measurable involution on
trajectories ω with the property that Xi(t,Θ(ω)) = Xi(−t, ω) for variables of even parity
with respect to time reversal and Xi(t,Θ(ω)) = −Xi(−t, ω) for variables of odd parity
with respect to time reversal. We say that the measure P is stationary if P = P ◦ Tt
for all t ∈ R, with Tt the time-translation map, i.e., ~X(t′, Tt(ω)) = ~X(t′ + t, ω) for all
t′ ∈ R. In order to define an entropy production we require that the process ~X(t, ω)
is reversible. This means that for all finite t ≥ 0 and for all Φ ∈ Ft it holds that
P [Φ] = 0 if and only if (P ◦ Θ) [Φ] = 0. In other words, if an event happens with zero
probability in the forward dynamics, then this event also occurs with zero probability in
the time-reversed dynamics. In probability theory, one says that P and P◦Θ are locally
mutually absolute continuous.
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Given the above assumptions, we define the entropy production in a stationary
process ~X by [17, 34, 35, 21]

Stot(t, ω) := − log
dP|Ft

d(P ◦Θ)|Ft

(ω), t ≥ 0, ω ∈ Ω, (33)

where we have used the Radon-Nikodym derivative of the restricted measures P|Ft
and

(P ◦Θ)|Ft
on F . The restriction of a measure P on a sub-σ-algebra Ft of F is defined by

P|Ft
[Φ] = P[Φ] for all Φ ∈ Ft. If t is continuous, then Stot(t, ω) is rightcontinuous, since

we have assumed the rightcontinuity of the filtration {Ft}t≥0. Local mutual absolute
continuity of the two measures P and P ◦Θ implies that the Radon-Nikodym derivative
in (33) exists and is almost everywhere uniquely defined. The definition (33) states
that entropy production is the probability density of the measure P with respect to the
time-reversed measure P ◦ Θ; it is a functional of trajectories ω of the stochastic process
X and characterises their time-irreversibility.

The definition (33) of the stochastic entropy production is general. It applies to
Markov chains, Markov jump processes, diffusion processes, etc. For Markov chains,
the relation (33) is equivalent to the expression (1) for entropy production in terms of
probability density functions of trajectories. Consider for example the case of ~X(t) ∈ Rd

and t ∈ Z and let us assume for simplicity that all degrees of freedom are of even parity
with respect to time reversal. Using dP|Ft

= p( ~X(1), ~X(2), . . . , ~X(t)) dλ|Ft
, with λ|Ft

the Lebesgue measure on Rtd, the entropy production is indeed of the form given by
relation (1). However, formula (33) is more general than (1) because it also applies to
cases where the path probability density with respect to a Lebesgue measure does not
exist, as is the case with stochastic processes in continuous time.

For systems that are weakly coupled to one or more environments in equilibrium,
the entropy production (33) is equal to [4]

Stot(t) = ∆Ssys(t) + Senv(t), (34)

where Senv(t) is the entropy change of the environment, and where

∆Ssys(t) = − log pss( ~X(t))
pss( ~X(0))

(35)

is the system entropy change associated with the stationary probability density function
pss( ~X(t)) of ~X(t).

5. Integral fluctuation relations at stopping times

In this section we initiate the study of the fluctuations of the entropy production in
stationary processes. We follow an approach similar to the one presented in Section 3
for the fluctuations of a gambler’s fortune, namely, we first identify a martingale process
related to the entropy production, which is the exponentiated negative entropy e−Stot(t),
and we then apply Doob’s optional stopping theorem (29) to this martingale process.
Since e−Stot(t) is unbounded, we require uniform integrability of e−Stot(t) in order to apply
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Doob’s optional stopping theorem (29). Therefore, we obtain two versions of the integral
fluctuation relation at stopping times: a first version holds within finite-time windows
and a second version holds when Stot(t) is bounded for all times t ≤ T . These two
versions represent two different ways to ensure that the total available entropy in the
system and environment is finite. Note that when we applied Doob’s optional stopping
theorem in the gambling problem, we also required that the gambler’s fortune is finite.
Finally, we obtain conditional integral fluctuation relations by applying the conditional
version (32) of Doob’s optional stopping theorem to e−Stot(t).

5.1. The martingale structure of exponential entropy production

The exponentiated negative entropy production e−Stot(t) associated with a stationary
stochastic process ~X(t) is a martingale process relative to ~X(t). Indeed, Stot(t) is a
F (t)-adapted process, E

[
e−Stot(t)

]
= 1, and in Appendix A we show that [20, 21]

E
[
e−Stot(t)|Fs

]
= e−Stot(s), s ≤ t. (36)

As a consequence, entropy production is a submartingale:

E [Stot(t)|Fs] ≥ Stot(s), s ≤ t. (37)

Notice that we can draw an analogy between thermodynamics and gambling by
identifying the negative entropy production with a gambler’s fortune and by identifying
the exponential e−Stot(t) with the martingale (21).

5.2. Fluctuation relation at stopping times within a finite-time window

We apply Doob’s optional stopping theorem (29) to the martingale e−Stot(t). We consider
first the case when an experimental observer measures a stationary stochastic processes
~X(t) within a finite-time window t ∈ [0, τ ]. In this case, the experimental observer
measures in fact the process e−Stot(t∧τ), where we have used the notation

t ∧ τ = min {t, τ} . (38)

The process e−Stot(t∧τ) is uniformly integrable, as we show in the Appendix A, and
therefore 〈

e−Stot(T∧τ)
〉

= 1, (39)

holds for all stopping times T of ~X(t).

5.3. Fluctuation relation at stopping times within an infinite-time window

We discuss an integral fluctuation relation for stopping times within an infinite-time
window, i.e., T ∈ [0,∞]. In the Appendix B we prove that if the conditions

(i) e−Stot converges P-almost surely to 0 in the limit t→∞
(ii) Stot(t) is bounded for all t ≤ T
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are met, then 〈
e−Stot(T )

〉
= 1. (40)

The condition (i) is a reasonable assumption for nonequilibrium stationary states, since
〈Stot(t)〉 grows extensive in time as 〈Stot(t)〉 = σt with σ a positive number. The
condition (ii) can be imposed on T by considering a stopping time T ∧ Tfp where
Tfp = inf {t : Stot(t) /∈ (−s−, s+)} is a first-passage time with two thresholds s−, s+ � 1,
which can be considered large compared to the typical values of entropy production at
the stopping time T .

5.4. Conditional integral fluctuation relation at stopping times

We can also apply the conditional optional stopping-time theorem (32) to e−Stot(t). We
then obtain the conditional integral fluctuation relation (3) for stopping times T2 ≤ T1,
viz., 〈

e−Stot(T1)|FT2

〉
= e−Stot(T2). (41)

The relation (41) is valid either for finite stopping times T1 ∈ [0, τ ] or for stopping
times T1 and T2 for which Stot(t) is bounded for all t ∈ [0, T1]. The integral fluctuation
relations at stopping times (39), (40) and (41) imply that certain stochastic properties
of entropy production are universal. This will be discussed in the next section.

6. Second law of thermodynamics at stopping times

Jensen’s inequality 〈e−Stot(T∧τ)〉 ≥ e−〈Stot(T∧τ)〉 together with the integral fluctuation
relation (39) imply that

〈Stot(T ∧ τ)〉 ≥ 0. (42)

The relation (42) states that on average entropy production always increases, even when
we stop the process at a random time T chosen according to a given protocol. This law is
akin to the relation (19) describing that a gambler cannot make profit out of a fair game
of chance, even when he/she quits the game in an intelligent manner. Analogously, (40)
implies the law 〈Stot(T )〉 ≥ 0 for unbounded stopping times T . We have thus derived
the second law (4) of thermodynamics at stopping times.

When applying this second law to examples of physical processes one obtains
interesting bounds on heat and work in nonequilibrium stationary states. Below we
first discuss bounds on the average dissipated heat in isothermal processes and then
bounds on the average work in stationary stochastic heat engines.

6.1. Bounds on heat absorption in isothermal processes

For systems that are in contact with one thermal reservoir at temperature Tenv and
for which the entropy of hidden internal degrees of freedom is negligible, the entropy
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production is given by (34-35), and the environment entropy takes the form [4, 36]

Senv(t) = −Q(t)
Tenv

, (43)

where Q is the heat transferred from the environment to the system. Relation (43)
relates the stochastic entropy production (34) to the stochastic heat that enters into
the first law of thermodynamics. Therefore, for isothermal systems the second law (42)
reads

〈Q(T ∧ τ)〉 ≤ Tenv〈∆Ssys(T ∧ τ)〉 = Tenv
〈

log pss(X(0))
pss(X(T ∧ τ))

〉
. (44)

Analogously, we obtain the relation (5) for unbounded stopping times T .
The relation (44) implies that it is not possible to extract on average heat from a

thermal reservoir when the system state is invariant. Indeed, when X(T ∧ τ) = X(0),
then 〈Q(T ∧ τ)〉 ≤ 0. However, if the system entropy at the stopping time T is different
than the entropy in the stationary state, then it is possible to extract on average at
most an amount Tenv

〈
log pss(X(0))

pss(X(T∧τ))

〉
of heat from the thermal reservoir.

For systems in equilibrium pss(x) ∼ e−v(x)/Tenv , such that the bound (44) reads
〈Q(T ∧ τ)〉 ≤ 〈∆v(T ∧ τ)〉. Moreover, according to the first law of thermodynamics
〈Q(T ∧ τ)〉 = 〈∆v(T ∧ τ)〉, such that for systems in equilibrium the bound (44) is tight.

Notice that the bound on the right hand side of (44) is maximal for stopping times
of the form

T † = inf {t ≥ 0 : pss(X(t)) = minx∈Xpss(x)} . (45)

If X(t) is a recurrent process, i.e. P(T † <∞) = 1, and if τ →∞, then

〈Q(T †)〉 ≤ Tenv
∑
x∈X

pss(x) log pss(x)
minx′∈Xpss(x′)

. (46)

6.2. Efficiency of heat engines at stopping times: the case of Feynman’s ratchet

We consider stochastic heat engines in contact with two thermal baths at temperatures
Tc and Th with Th ≥ Tc. A paradigmatic example is Feynman’s ratchet [37, 38, 39, 40,
41], which is composed of a ratchet wheel with a pawl that is mechanically linked by an
axle to a vane. The ratchet wheel and the pawl are immersed in a hot thermal reservoir,
and the vane is immersed in a cold thermal reservoir. An external mass is connected to
the axle of the Feynman ratchet and follows the movement of the ratchet wheel. If the
wheel turns in the clockwise direction then the axle performs work on the mass, whereas
if the wheel turns in the counterclockwise direction then the mass performs work on the
axle .

We now perform an analysis of the Feynman ratchet at stopping times. For example,
we ask the question what are the efficiency and the power of the ratchet when the system
is stopped right before or after the ”main event”, i.e., the passage of the pawl over the
peak of the ratchet wheel. The first law of thermodynamics implies that

〈Qh(T )〉+ 〈Qc(T )〉+ 〈W (T )〉 = 〈∆v(T )〉, (47)
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where Qh is the heat absorbed by the ratchet from the hot reservoir, Qc is heat absorbed
by the ratchet from the cold reservoir, v is the mechanical energy stored in the pawl,
and W is the work performed on the external mass. For the Feynman’s ratchet, the
second law of thermodynamics at stopping times T reads

〈Qh(T )〉
Th

+ 〈Qc(T )〉
Tc

≤ 〈∆Ssys(T )〉, (48)

where Ssys is the entropy of the ratchet. If 〈Qh(T )〉 > 0, the first and second law of
thermodynamics at stopping times imply the inequality (7), i.e.,

ηT ≤ ηC −
〈∆Fc(T )〉
〈Qh(T )〉 ,

where we have introduced the efficiency at stopping times

ηT := − 〈W (T )〉
〈Qh(T )〉 ,

the Carnot efficiency

ηC = 1− Tc

Th
, (49)

and the system free energy
〈∆Fc(t)〉 = 〈∆v(t)〉 − Tc〈∆Ssys(t)〉. (50)

For T = t, 〈∆Fc(T )〉 = 0 and we obtain the classical Carnot bound ηt ≤ ηC. Moreover,
if X(T ) = X(0), which implies that the process stops when it returns to its original
state, then 〈∆Fc(T )〉 = 0 and we obtain again the classical Carnot bound ηt ≤ ηC.
Hence, it is not possible to exceed on average the Carnot efficiency when the final state
equals the initial state and thus when the heat engine is a cyclic process in phase space.

However, for general stopping times T , 〈∆Fc(T )〉 is different than zero.
Interestingly, for stopping times T for which 〈∆Fc(T )〉/〈Qh(T )〉 is negative, the second
law of thermodynamics at stopping times implies that ηT is bounded by a constant
that is larger than the Carnot efficiency. Note that the stopping-time efficiency ηT
is defined as the ratio of averages, and not as the average of the ratios. In general
〈W (T )〉/〈Qh(T )〉 6= 〈W (T )/Qh(T )〉, and the latter corresponds to the average of an
unbounded random variable whose value at fixed times T = t has been previously
studied in [42, 43, 44, 45, 12].

Another interesting property of thermodynamic observables at stopping times is
that they can take a different sign with respect to their stationary averages. For
example, it is possible that at the stopping time T the fluxes of the Feynman ratchet
have the same sign as those in a refrigerator, namely, 〈W (T )〉 > 0, 〈Qc(T )〉 > 0 and
〈Qh(T )〉 < 0. To evaluate the performance of this process, we introduce the coefficient
εT := −〈Qc(T )〉/〈W (T )〉 > 0, for which the second law of thermodynamics at stopping
times reads εT ≤

[(
Th
Tc
− 1

)
+ 〈∆Fh(T )〉
〈Qc(T )〉

]−1
, with 〈∆Fh(T )〉 := 〈∆v(T )〉 − Th〈∆Ssys(T )〉.

For fixed times T = t and for stopping times T with X(T ) = X(0), we recover the
classical bound εT ≤ Tc/(Th − Tc) [46, 47, 48].

In Section 9, we illustrate the bounds (5) and (7) on simple physical models.
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7. Universal properties of stochastic entropy production

We use the fluctuation relations (39), (40) and (41) to derive universal relations about
the stochastic properties of entropy production in stationary processes.

All our results hold for nonequilibrium stationary states for which limt→∞ e
−Stot(t) =

0 (P-almost surely).
If entropy production is bounded for t < T , then we will use the optional stopping

theorem (40) for stopping times within infinite-time windows , and if entropy production
is unbounded for t < T , then we will use the optional stopping theorem (39) for stopping
times within finite-time windows.

7.1. Fluctuation properties at fixed time T = t

We first consider the case where the stopping time T is a fixed non-fluctuating time t,
i.e., T = t. In this case the fluctuation relation (39) is the integral fluctuation theorem
derived in [16],

〈e−Stot(t)〉 = 1, (51)

and the second law inequality (42) yields the second law of stochastic thermodynamics [4]

〈Stot(t)〉 ≥ 0. (52)

The relation (51) provides a bound on negative fluctuations of entropy production, and
for isothermal systems bounds on the fluctuations of work [3]. Since e−Stot(t) is a positive
random variable, we can use Markov’s inequality, see e.g. chapter 1 of [49], to bound
events of large e−Stot(t), namely,

P
(
e−Stot(t) ≥ λ

)
≤ 〈e

−Stot(t)〉
λ

, λ ≥ 0. (53)

Using the integral fluctuation relation (51) together with (53) we obtain

P (Stot(t) ≤ −s) ≤ e−s, s ≥ 0, (54)

which is a well-known bound on the probability of negative entropy production, see
Equation (54) in [4].

The relations (39) and (42) are more general than the relations (51) and (52), since
the former concern an average over an ensemble of trajectories of variable length xT0
whereas the latter concern an average over an ensemble of trajectories of fixed length xt0.
Therefore, we expect that evaluating (39) at fluctuating stopping times T it is possible
to derive stronger constraints on the probability of negative entropy production than
(54). This is the program we will pursue in the following sections.

7.2. Splitting probabilities of entropy production

We consider the first-passage time

Tfp = inf {t ≥ 0 : Stot(t) /∈ (−s−, s+)} (55)
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for entropy production with two absorbing thresholds at −s− < 0 and s+ > 0. If the set
{t : Stot(t) /∈ (−s−, s+)} is empty, then Tfp = ∞. Since entropy production is bounded
for all values t < Tfp we can use the optional stopping theorem (40).

We split the ensemble of trajectories Ω into two sets Ω− = {Stot(Tfp) ≤ −s−} and
Ω+ = {Stot(Tfp) ≥ s+}. Since Stot(Tfp) ∈ (∞,−s−] ∪ [s+,∞) and limt→∞ e

−Stot(t) = 0
(P-almost surely), the splitting probabilities p− = P [Ω−] and p+ = P [Ω+] have a total
probability of one,

p+ + p− = 1. (56)

We apply the integral fluctuation relation (40) to the stopping time Tfp:

1 = p−〈e−Stot(Tfp)〉− + p+〈e−Stot(Tfp)〉+ (57)

where

〈e−Stot(Tfp)〉+ =
∫
ω∈Ω+

dP e−Stot(Tfp(ω),ω)∫
ω∈Ω+

dP
, (58)

〈e−Stot(Tfp)〉− =
∫
ω∈Ω− dP e−Stot(Tfp(ω),ω)∫

ω∈Ω− dP
. (59)

The relations (56) and (57) imply that

p+ = 〈e−Stot(T )〉− − 1
〈e−Stot(T )〉− − 〈e−Stot(T )〉+

, (60)

p− = 1− 〈e−Stot(T )〉+
〈e−Stot(T )〉− − 〈e−Stot(T )〉+

. (61)

Moreover, since Stot(Tfp) ∈ (∞,−s−] ∪ [s+,∞) we have that 〈e−Stot(T )〉− ≥ es− and
〈e−Stot(T )〉+ ≤ e−s+ . Using these two inequalities in (60) and (61) we obtain the universal
inequalities (9) for the splitting probabilities, viz.,

p+ ≥ 1− 1
es− − e−s+

, p− ≤
1

es− − e−s+
,

which hold for first-passage times with s−, s+ > 0.
In the case where ~X(t) is a continuous stochastic process Stot(Tfp) ∈ {−s−, s+}

holds with probability one. Using in (60) and (61) that 〈e−Stot(T )〉− = es− and
〈e−Stot(T )〉+ = e−s+ , we obtain

p+ = es− − 1
es− − e−s+

, p− = 1− e−s+

es− − e−s+
,

which are the relations (10). Hence, the splitting probabilities of entropy production
are universal for continuous processes.

The bounds (9) apply not only to first-passage times but hold more generally for
stopping times T of ~X(t) for which Stot(T ) ∈ (∞,−s−]∪ [s+,∞) holds with probability
one and for which Stot(t) is bounded for all t ∈ [0, T ]. Analogously, the equalities (10)
apply not only to first-passage times but hold more generally for stopping times T of
~X(t) for which Stot(T ) ∈ {−s−, s+} holds with probability one and for which Stot(t) is
bounded for all t ∈ [0, T ].
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7.3. Infima of entropy production

We can use the results of the previous subsection to derive universal bounds and
equalities for the statistics of infima of entropy production. The global infimum of
entropy production is defined by

Sinf = inft≥0Stot(t) (62)
and denotes the most negative value of entropy production.

Consider the first-passage time Tfp, denoting the first time when entropy production
either goes below −s− or goes above s+, with s−, s+ ≥ 0 and its associated splitting
probability p− The cumulative distribution of Sinf is given by

P [Sinf ≤ −s−] = lim
s+→∞

p−. (63)

Using the inequalities (9) we obtain the bound (11) for the cumulative distribution of
infima of entropy production, i..e.,

P [Sinf ≤ −s−] ≤ e−s− .

The inequality (11) bears a strong similarity with the inequality (54). However, since
by definition Sinf ≤ Stot(t) for any value of t, we also have that P [Stot ≤ −s−] ≤
P [Sinf ≤ −s−] and therefore the inequality (11) is stronger.

For continuous processes ~X, the inequality (11) becomes an equality. Indeed, if
the stochastic process ~X is continuous, then with probability one Stot(Tfp) ∈ {−s−, s+},
and therefore p− is given by (10). Using the relation (63), we obtain

P [Sinf ≤ −s−] = e−s− . (64)
As a consequence, for continuous stochastic processes the global infimum Sinf of entropy
production is characterised by an exponential probability density (12) with mean value
mean value 〈Sinf〉 = −1.

7.4. Survival probability of entropy production

We analyse the survival probability
psur(t) = P

[
T̃ > t

]
, (65)

of the first-passage time with one absorbing boundary,
T̃ = inf {t : Stot(t) = s0} , (66)

for continuous stochastic processes ~X(t). If the set {t : Stot(t) = s0} is empty, then
T̃ =∞.

We use the fluctuation relation (39) since for first-passage times with one absorbing
boundary Stot(t) is unbounded for t ∈ [0, T ]. Applying (39) to T̃ we obtain

1 = psur(t)〈e−Stot(t)〉sur + (1− psur(t))e−s0 (67)
and thus also relation (13), i.e.,

psur(t) = e−s0 − 1
e−s0 − 〈e−Stot(t)〉sur

, (68)
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where

〈e−Stot(t)〉sur = 〈e−Stot(t)IT̃>t〉/〈IT̃>t〉. (69)

For positive values of s0 we expect that limt→∞ psur(t) = 0. This implies that
limt→∞〈e−Stot(t)〉sur = ∞. For negative values of s0 we expect that limt→∞ psur(t) =
1− es0 = P [Sinf ≥ s0] which holds if limt→∞

〈
e−Stot(t)IT̃>t/〈IT̃>t〉

〉
= 0.

7.5. Number of crossings

We consider the number of times N× entropy production crosses an interval [−∆,∆]
from the negative side to the positive side, i.e., in the direction −∆ → ∆. We can
bound the distribution of N× using a sequence of stopping times.

The probability that N× > 0 is equal to the probability that the infimum is smaller
or equal than −∆, and therefore using (11) we obtain

P(N× > 0; ∆) = P [Sinf ≤ −s−] ≤ e−∆. (70)

Applying the conditional fluctuation relation (41) on two sequences of stopping times,
we derive in the Appendix C the inequality

P [N× ≥ n+ 1|N× ≥ n] ≤ e−2∆ with n > 0, (71)

and therefore

P(N× > n) ≤ e−∆(2n+1), (72)

which is the inequality (14). The probability of observing a large number of crossing
decays thus at least exponentially in N×. For continuous processes ~X(t) the probability
mass function P(N×) is a universal statistic given by

P(N×) =
{

1− e−∆ N× = 0,
2 sinh(∆)e−2N×∆ N× ≥ 1, (73)

which is the same relation as derived in [22] for overdamped Langevin processes.

8. The influence of finite statistics on the integral fluctuation relation at
stopping times

In empirical situations we may want to use the integral fluctuation relation at stopping
times to test whether a given process is the stochastic entropy production [50, 51, 52].
In these cases we have to deal with finite statistics. It is useful to know how many
experiments are required to verify the integral fluctuation relation at stopping times
with a certain accuracy. Therefore, in this section we discuss the influence of finite
statistics on tests of the integral fluctuation relation at stopping times.

We consider the case where T is a two-boundary first-passage time for
the entropy production of a continuous stationary process, i.e., T = Tfp =
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inf {t ≥ 0 : Stot(t) /∈ (−s−, s+)}. We imagine to estimate in an experiment the average
〈e−Stot(Tfp)〉 using an empirical average over ms realisations,

A = 1
ms

ms∑
j=1

e−Stot(Tj) = e−s+ + N−
ms

(
es− − e−s+

)
, (74)

where the Tj are the different outcomes of the first passage time Tfp and where N− is the
number of trajectories that have terminated at the negative boundary, i.e., for which
Stot(Tj) = −s−. The expected value of the sample mean is thus

〈A〉 = 1, (75)

and the variance of the sample mean is

σ2
A = 〈A2〉 − 〈A〉2 = (1− e−s+)(es− − 1)

ms
. (76)

Hence, for small enough values of s− a few samples ms will be enough to test the
stopping-time fluctuation relation. For large enough s−, we obtain 〈A2〉−〈A〉2 ∼ es−/ms.
The number of required samples ms scales exponentially in the value of the negative
threshold s−. The full distribution of the empirical estimate A of 〈e−Stot(Tfp)〉 is given
by

pA(a) = 1
(es− − e−s+)ms

ms∑
n=0

δa,n es−+(ms−n)e−s+

(
ms

n

)
(1− e−s+)n(es− − 1)ms−n, (77)

where we have again used δ for the Kronecker delta.
Since we know the full distribution of the empirical average A, the integral

fluctuation relation 〈e−Stot(Tfp)〉 = 1 can be tested in experiments: given a certain
observed value of A 6= 1 we can use the distribution (77) to compute its p-value, i.e., the
probability to observe a deviation from 1 larger or equal than the empirically observed
|A− 1|.

9. Examples

We illustrate the bounds (5) and (7) on two simple examples of systems described by
Langevin equations. We demonstrate a randomly stopped process can extract work
from a stationary isothermal process and we show that heat engines can surpass the
Carnot efficiency at stopping times. Moreover, the mean of the extracted heat and the
performed work are bounded by the second law of thermodynamics at stopping times.

9.1. Heat extraction in an isothermal system

We illustrate the second law (5), for the average heat at stopping times, on the case of a
colloidal particle on a ring that is driven by an external force f and moves in a potential
v(y), where y ∈ [0, 2π`] denotes the position on the ring and where ` is the radius of the
ring. We ask how much heat 〈Q(T ∗)〉 a colloidal particle can extract on average from
its environment at the time T ∗ when the particle reaches for the first time the highest
peak of the landscape.
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(a) Plot of the potential (81).
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Figure 1. Heat extraction of a colloidal particle in a nonequilibrium stationary state.
Panel (a): Illustration of a colloidal particle that is driven by a nonconservative f

until the time T ∗ when it reaches the highest point of the ’hill’ denoted by the star,
at which the process is stopped. The plotted energy function v(x) is given by (81)
with parameters Tenv = 1 and ` = 1. Panel (b): Illustration of the bound (5) for the
absorbed heat 〈Q(T ∗)〉 at stopping times T ∗ in the model (78) with the energy function
plotted in panel (a). The parameters used are µ = 1, Tenv = 1, ` = 1. Markers denote
empirical averages that estimate 〈Q(T ∗)〉 (blue circles) and 〈Q(1)〉 (green squares)
using 10000 simulated trajectories. The solid orange line denotes the bound on the
right-hand side of (84) which follows from the second law of thermodynamics (4) at
stopping times, and the red dashed line is simply equal to zero.

We assume that the dynamics of the colloidal particle is governed by an overdamped
Langevin equation of the form

dX
dt = −µ∂v(X(t))

∂x
+ µf +

√
2dζ(t) (78)

where X(t) ∈ R , µ is the mobility coefficient, d is the diffusion coefficient, and ζ(t) is a
Gaussian white noise with 〈ζ(t)ζ(t′)〉 = δ(t′ − t). We assume that the environment
surrounding the particle is in equilibrium at a temperature Tenv, so that Einstein
relation d = Tenvµ holds. The potential v(x) is a periodic function with period 2π`,
i.e., v(x) = v(x + 2π`). The actual position of the particle is given by the variable
Y (t) = X(t) − N(t)2π` ∈ [0, 2π`), where N(t) ∈ Z is the winding number, i.e., the
net number of times the particle has traversed the ring. The heat Q can be expressed
as [53, 2]

Q(t) = v(X(t))− v(X(0)) + f
∫ t

0
dX(t′), (79)

and the stationary distribution is [7]

pss(y) ∼ e−
v(y)−fy

Tenv

∫ y+2π`

y
dy′ e

v(y′)−fy′
Tenv . (80)

We simulate the model (78) for a periodic potential of the form [54],
v(x) = Tenv ln (cos(x/`) + 2) , (81)
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which is illustrated in figure 1(a) for ` = 1 and Tenv = 1. In this case, the time T ∗ when
the particle reaches for the first time the highest peak of the landscape is

T ∗ = inf {t ≥ 0 : X(t) = 0} , (82)

and the stationary distribution of X(t) is given by [54]

pss(x) = 3 (g2 (2 + cos(x/`))− g sin (x/`) + 2)
2π`

(
3g2 + 2

√
3
)

(cos (x/`) + 2)
. (83)

Hence, the bound (78) reads

〈Q(T ∗)〉 ≥ Tenv

∫
dx pss(x) log pss(x)− Tenv log 3 g2 + 2

2π`
(
3g2 + 2

√
3
) . (84)

In figure 1(b) we illustrate the bound (84) for 〈Q(T ∗)〉 as a function of the
nonequilibrium driving f . We find that heat absorption at stopping times is significant
at small values of f and in the linear-response limit of small f the bound (84) is tight;
the tightness of the bound (78) holds in general for recurrent Markov processes in the
linear response limit. For comparison we also plot the mean heat dissipation 〈Q(t)〉 at
a fixed time t = 1. While 〈Q(T ∗)〉 is positive at small values of f , the dissipation 〈Q(t)〉
at fixed times is always negative. Note that at intermediate times 〈Q(1)〉 > 〈Q(T ∗)〉,
but if we increase f furthermore then eventually 〈Q(1)〉 < 〈Q(T ∗)〉 (not shown in the
figure).

9.2. Illustration of an empirical test of the integral fluctuation relation at stopping
times

We use the the model described in Subsection 9.1 to illustrate how the integral fluctua-
tion relation at stopping times (2) with T = Tfp = inf {t ≥ 0 : Stot(t) /∈ (−s−, s+)} can
be tested in an experimental setup. To this aim, we will verify whether the quantity
A defined in (74), which is the empirical average of e−Stot(T ), converges for ms → ∞
to one. We use the results on the statistics of the empirical average of A described in
Section 8 to validate the statistical significance of the experimental results.

In Figure 2 we plot the empirical average (74) as a function of the number of
samples ms for ten simulation runs. We also plot the theoretical curves 1 + σA and
1 − σA, with σA the standard deviation of A, see (76). We observe in Figure 2 that
all test runs lie within the 1 ± σA confidence intervals, and we can thus conclude that
numerical experiments are in agreement with the integral fluctuation relation at stopping
times and thus also with the fact that e−Stot(t) is martingale.

9.3. Super Carnot efficiency for heat engines at stopping times

We illustrate the bound (7) for the efficiency of stationary stochastic heat engines at
stopping times with a Brownian gyrator [55], which is arguably one of the simplest
models of a Feynman ratchet. This system is described by two degrees of freedom x1, x2

that are driven by an external force field f(x1, x2) and interact via a potential v(x1, x2).
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Figure 2. Empirical test of the integral fluctuation relation at stopping times for
T = Tfp = inf {t ≥ 0 : Stot(t) /∈ (−s−, s+)}. We plot the empirical average A, see (74),
for ten simulation runs as a function of the number of samples ms. The simulation runs
are for the model defined in Section 9.1 with parameters µ = Tenv = ` = 1 and f = 0.1,
as in Figure 1. The threshold parameters that define the stopping time are s+ = 2
and s− = 1. Dashed lines denote the 1 ± σA confidence intervals using formula (76).
The red line denotes A = 1.

Two thermal reservoirs at temperatures Th and Tc, with Th > Tc, interact independently
with the coordinates x1 and x2 of the system, respectively. We are specifically interested
in the efficiency ηT = −〈W (T )〉/〈Qh(T )〉, which is the ratio between the work −W (T )
the gyrator performs on its suroundings in a time interval [0, T ], and the heat Qh(T )
absorbed by the gyrator in the same time interval, with T the stopping time at which a
specific criterion is first satisfied. The efficiency ηT is a measure of the average amount
of work the gyrator performs on its environment.

We consider a Brownian gyrator described by the two coupled stochastic differential
equations [55, 56, 57, 58, 59]

dX1

dt = − µ∂v(X1(t), X2(t))
∂x1

+ µ f1(X1(t), X2(t)) +
√

2d1ζ1(t), (85)

dX2

dt = − µ∂v(X1(t), X2(t))
∂x2

+ µ f2(X1(t), X2(t)) +
√

2d2ζ2(t). (86)

Here µ is the mobility coefficient, d1 = µTh and d2 = µTc are the diffusion coefficients
of the two degrees of freedom, v is a potential, and f1 and f2 are two external
nonconservative forces, whose functional form we specify below. We use the model
from Ref. [57], for which the potential is

v(x1, x2) = 1
2
(
u1x

2
1 + u2x

2
2 + cx1x2

)
, (87)

with u1, u2, c > 0 and c <
√
u1u2 and for which the two components of the external

nonconservative force are

f1(x1, x2) = kx2, f2(x1, x2) = −kx1. (88)

The two thermal reservoirs induce two stochastic forces with amplitudes d1 and d2,
which appear in Eqs.(85-86) as two independent Gaussian white noises ζ1 and ζ2 with
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Figure 3. Snapshots of a Brownian gyrator (green circles), described by Eqs. (85)
and (86), sampled from the nonequilibrium stationary distribution. The black arrows
illustrate the non-conservative forces given by Eqs. (88). The system is trapped with
a potential given by Eq. (87) and put simultaneously in contact with a hot (red box)
and a cold (blue box) reservoir that act on the x1 and x2 coordinates, respectively.
Values for the parameters are: µ = 1, u1 = 1, u2 = 1.2, Tc = 1, Th = 7, c = 0.9,
k = 0.23. The markers (green circles) are obtained from the (x1(t), x2(t)) coordinates
of 104 numerical simulations of Eqs. (85) and (86) evaluated at t = 5.

zero mean and autocorrelation (i, j = 1, 2)

〈ζ1(t)〉 = 〈ζ2(t)〉 = 0, 〈ζi(t)ζj(t′)〉 = δi,jδ(t− t′). (89)

Because of the external driving forces f1 and f2 and the presence of two thermal
reservoirs at different temperatures, the gyrator develops a nonequilibrium stationary
state characterised by a current in the clockwise direction, see Fig. 3, and a non-zero
entropy production. At stationarity, we measure the work W that the external driving
force exerts on the gyrator and the net heat Qh and Qc that the system absorbs from
the hot and cold reservoirs, respectively. Following Sekimoto [39, 53], these quantities
are, respectively,

W (t) =
∫ t

0
f1(X1(t′), X2(t′)) ◦ dX1(t′) +

∫ t

0
f2(X1(t′), X2(t′)) ◦ dX2(t′), (90)

Qh(t) =
∫ t

0

∂v(X1(t′), X2(t′))
∂x1

◦ dX1(t′)−
∫ t

0
f1(X1(t′), X2(t′)) ◦ dX1(t′), (91)

Qc(t) =
∫ t

0

∂v(X1(t′), X2(t′))
∂x2

◦ dX2(t′)−
∫ t

0
f2(X1(t′), X2(t′)) ◦ dX2(t′), (92)

where ◦ denotes that the stochastic integrals are interpreted in the Stratonovich sense.
When k < ks this system operates as an engine [57], i.e., 〈W (t)〉 < 0, 〈Qh(t)〉 > 0 and
〈Qc(t)〉 > 0, with

ks := c
ηC

2− ηC
, (93)
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Figure 4. Efficiency at stopping times for the Brownian gyrator. (a) Illustration
of the stopping time at the main event with stopping time Tme. A gyrator drawn
initially from its stationary distribution (red circle) is monitored until its location
crosses the black dashed line in the clockwise direction (red arrow). The location of
100 gyrators at the stopping time are shown with black filled circles whereas the green
circles denote the location of the gyrator at time t = 5. (b) Simulation results for the
efficiency ηt = −〈W (t)〉/〈Qh(t)〉 at fixed time t = 5 (blue squares) and the efficiency
ηTme = −〈W (Tme)〉/〈Qh(Tme)〉 at the main event Tme (red circles), defined by Eq. (95),
as a function of the parameter k/ks that quantifies the strength of the nonequilibrium
driving, see (88). The blue line is the theoretical value of the efficiency at large times
given by Eq. (94), and the black circles correspond to the bound (7); the black line is
a guide to the eye. The horizontal black dashed line is set at Carnot efficiency. Values
of the parameters used in simulations are µ = 1, u1 = 1, u2 = 1.2, Tc = 1, Th = 7, and
c = 0.9; markers denote average values estimated from 104 independent realisations
initially sampled from the stationary state. Numerical simulations are performed with
the Heun’s numerical integration scheme with a time step ∆t = 10−3 [2]. Error bars
denote the standard errors of the empirical mean.

the stall parameter and ηC Carnot’s efficiency (49). The efficiency of the engine in the
nonequilibrium stationary state satisfies

η = −

〈
dW
dt

〉
〈

dQh
dt

〉 = 2k
c+ k

≤ ηC. (94)

Note that when k → ks, then η → ηC.
We now investigate the efficiency of the Brownian gyrator at stopping times,

ηT = −〈W (T )〉/〈Qh(T )〉. The simplest example of stopping times are the trivial
stopping times T = t, with t a fixed time, for which ηt ≤ ηC. A more interesting
example is the time Tme of the main event, i.e. the gyrator crosses the positive x2 axis
while moving in the clockwise direction, occurs for the first time. Mathematically, Tme

can be defined as follows: let z(t) = x1(t) + ix2(t) be a complex number whose real
and imaginary parts are x1(t) and x2(t) respectively; we define z(t) = r(t)eiϕ(t), with
r(t) =

√
x2

1(t) + x2
2(t) its modulus and with ϕ(t) = tan−1(x2(t)/x1(t)) ∈ [−π, π] its
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Figure 5. Average values of thermodynamic observables (see legend) in the Brownian
gyrator are compared for a fixed time T = 5 (a) and the stopping time T = Tme (b)
defined in Eq. (95). The values of the parameters used in the numerical simulations
are the same as in Fig. 3.

phase; the stopping time at the main event is defined as

Tme = inf
{
t > 0 : lim

ε↓0
ϕ(t− ε) > π/2, lim

ε↓0
ϕ(t+ ε) ≤ π/2, ϕ(t) > 0

}
.(95)

Figure 4(a) illustrates the stopping strategy defined by Eq. (95) with numerical
simulations. In Fig. 4(b), we compare the values of the efficiency ηt at a fixed time
t = 5 with the efficiency ηTme at the main event, both as a function of the driving
parameter k. We observe that ηt is well described by Eq. (94) and thus is smaller than
the Carnot efficiency, whereas ηTme can surpass the Carnot efficiency if the strength of
the driving force k is large enough (Fig. 4(b) red circles). Interestingly, the observed
super Carnot efficiencies at stopping times are in agreement with the bound (7),
ηTme ≤ ηC+〈∆Fc(Tme)〉/〈Qh(Tme)〉 and thus compatible with the second law at stopping
times (4). Moreover, the bound (7) becomes tight when k is large, which corresponds
to a close-to-equilibrium limit [cf. Fig. 1(b)]. Hence, efficiencies of stopped engines
can surpass the Carnot bound if 〈Qh(T )〉 > 0 and 〈∆Ssys(T )〉 > Tc〈∆v(T )〉, which is
consistent with the bound (7).

Notice that efficiencies of stopped heat engines can be larger than one because
internal system energy can be converted into useful work. To better understand this
feature, we plot in Fig. 5 the average energetic fluxes at stopping times, namely, 〈W (T )〉,
〈Qh(T )〉 and 〈Qc(T )〉, together with the change of the internal system energy 〈∆v(T )〉
and the internal system entropy change 〈∆Ssys(T )〉. At fixed times T = 5, we observe
the well-known features of a cyclic heat engine for which 〈∆v(t)〉 ' 〈∆Ssys(t)〉 ' 0
(Fig. 5(a)). Although the heat and work fluxes of stopped engines have the same sign as
those of cyclic heat engines, the 〈∆v(Tme)〉 < 0 and 〈∆Ssys(Tme)〉 < 0, which indicates
that on average the energy and entropy of the gyrator are at Tme smaller than their initial
values (Fig. 5(b)). This result suggests a recipe in the quest of super Carnot efficiencies
at stopping times, namely by designing stopping strategies that lead to a reduction of
the energy of the system. In our example, 〈∆Ssys(Tme)〉 > 〈∆v(Tme)〉, which enables the



Integral Fluctuation Relations for Entropy Production at Stopping Times 28

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
k/k s

-5

0

5

10

15

E
ffi

ci
en

cy

0.3 0.4 0.5 0.6 0.7 0.8 0.9
k/k s

-8

-6

-4

-2

0

2

4

6

E
ffi

ci
en

cy

(a) (b)

Figure 6. We compare simulation results for the Brownian gyrator of stopping-time
efficiencies ηT at fixed time T = 5 (blue squares) and at the stopping time of the main
event T = Tme (red circles). Panels (a) and (b) are obtained for two different values
of the parameter c (see legend), with the other simulation parameters set to the same
values as in Fig. 3. The black circles correspond to the right-hand side of Eq. (7)
and the black dashed line is set to Carnot efficiency; the lines between symbols are a
guide to the eye. The yellow shaded area illustrates the range of parameters at which
the system behaves as a ”type-III heater” at stopping times [62, 48], for which the
right-hand side of (7) becomes a lower bound to the stopping-time efficiency.

appearance of super-Carnot stopping-time efficiencies which are nevertheless compatible
with the second law at stopping times. This result motivates further research on so-
called type-II efficiencies at stopping times defined as the ratio between the average
input and output fluxes of entropy production [60, 44, 61].

In Fig. 6 we illustrate the bound provided by Eq. (7) for a wider range of parameters.
We observe that when k exceeds the stall parameter ks the thermodynamic fluxes obey
〈W (Tme)〉 < 0, 〈Qh(Tme)〉 < 0 and 〈Qc(Tme)〉 < 0. This behaviour is still compatible
with the second law of thermodynamics at stopping times. Indeed, for this range of
parameters ηTme < 0 and the bound (7) becomes ηTme ≥ ηC − 〈∆Fc(T )〉

〈Qh(T )〉 . This bound
is corroborated by numerical simulations in Fig. 6(a) and Fig. 6(b). We define this
type of operation as a ”type III heater”, which is different than the type I and type II
heaters [62, 48], that appear in stochastic thermodynamics at fixed times.

10. Discussion

We have derived fluctuation relations at stopping times for the entropy production of
stationary processes. These fluctuation relations imply a second law of thermodynamics
at stopping times — which states that on average entropy production in a
nonequilibrium stationary state always increases, even when the experimental observer
measures the entropy production at a stopping time— and imply that certain fluctuation
properties of entropy production are universal.

We have shown that the second law of thermodynamics at stopping times has
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important consequences for the nonequilibrium thermodynamics of small systems. For
instance, the second law at stopping times implies that it is possible to extract on average
heat from an isothermal environment by applying stopping strategies to a physical
system in a nonequilibrium stationary state; heat is thus extracted from the environment
without using a feedback control, as is the case with Maxwell demons [63, 64, 65].
Furthermore, we have demonstrated, using numerical simulations with a Brownian
gyrator, that the average efficiency of a stationary stochastic heat engine can surpass
Carnot’s efficiency when the engine is stopped at a cleverly chosen moment. This result
is compatible with the second law at stopping times, which provides a bound on the
efficiency of stochastically stopped engines. Note that the heat engines described in
this paper are non cyclic devices since they are stopped at the stopping time T . It
would be interesting to explore how stochastically stopped engines can be implemented
in experimental systems such as, electrical circuits [66], autonomous single-electron heat
engines [67], feedback traps [68], colloidal heat engines [11], and Brownian gyrators [56].

Integral fluctuation relations at stopping times imply bounds on the probability
of events of negative entropy production that are stronger than those obtained with
the integral fluctuation relation at fixed times. For example, the integral fluctuation
relation at stopping times implies that the cumulative distribution of infima of entropy
production is bounded by an exponential distribution with mean −1. Moreover, for
continuous processes the integral fluctuation relation at stopping times implies that
the cumulative distribution of the global infimum of entropy production is equal to
an exponential distribution. A reason why the integral fluctuation relation at stopping
times is more powerful than the integral fluctuation relation at fixed times — in the sense
of bounding the likelihood of events of negative entropy production — is because with
stopping times we can describe fluctuations of entropy production that are not accessible
with fixed-time arguments, such as fluctuation of infima of entropy production.

The integral fluctuation relation at stopping times implies also bounds on other
fluctuation properties of entropy production, not necessarily related to events of negative
entropy production. For example, we have used the integral fluctuation relation to derive
bounds on splitting probabilities of entropy production and on the number of times
entropy production crosses a certain interval. For continuous processes these fluctuation
properties of entropy production are universal, and we have obtained generic expressions
for these fluctuation properties of entropy production.

Since martingale theory has proven to be very useful to derive generic results about
the fluctuations of entropy production, the question arises what other physical processes
are martingales. In this context, the exponential of the housekeeping heat has been
demonstrated to be a martingale [30, 69]. The housekeeping heat is an extension of
entropy production to the case of non-stationary processes. We expect that all formulas
presented in this paper extend in a straightforward manner to the case of housekeeping
heat. Recently also a martingale related to the quenched dynamics of spin models [70]
and a martingale in quantum systems [71] have been discovered.

There exist universal fluctuation properties that are implied by the martingale
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property of e−Stot(t), but are not discussed in this paper. For example, martingale
theory implies a symmetry relation for the distribution of conditional stopping
times [72, 73, 21, 74]. These symmetry relations are also proved by using the optional
stopping theorem, but they cannot be seen as a straightforward consequence of the
integral fluctuation relation at stopping times.

Since the integral fluctuation relation at stopping times (39) is a direct consequence
of the martingale property e−Stot(t), testing the fluctuation relation (39) in experiments
could serve as a method to demonstrate that e−Stot(t) is a martingale. It is not so easy
to show in an experiment that a stochastic process is a martingale: it is a herculean
task to verify the condition (28). A recent experiment [75] shows that the entropy
production of biased transport of single charges in a double electronic dot behaves as
a martingale. The inequality (64) for the infima of entropy production was shown to
be valid in this experiment. The integral fluctuation relation at stopping times (39)
provides an interesting alternative to test martingality of e−Stot(t), because the integral
fluctuation relation at stopping times is an equality. Hence, the integral fluctuation
relation at stopping times could serve as a proxy for the martingale structure of e−Stot(t)

in experiments.
Testing the integral fluctuation relation at stopping times in experimental setting

may also be advantageous with respect to testing the standard fluctuation relation at
fixed times. The number of samples required to test the standard fluctuation relation
increases exponentially with time, since events of negative entropy are rare. This makes
it difficult to test the conditions of stochastic thermodynamics at large time scales with
the standard integral fluctuation relation. Moreover, at fixed times the distribution of
the empirical mean of the exponentiated negative entropy production is not known. The
integral fluctuation relation at stopping times does not have these issues, since negative
fluctuations of entropy can be capped at a fixed value −s−, which is independent of
time t, and these negative values can be reached at any time. Moreover, we have
derived an exact universal expression for the distribution of the sample mean of the
exponentiated negative entropy production at stopping times, which can be used to
determine the statistical significance of empirical tests of the integral fluctuation relation
at stopping times. The integral fluctuation relation at stopping times is thus a useful
relation to test the conditions of stochastic thermodynamics in a certain experimental
setup.

Appendix A. The exponential of the negative entropy production is a
(uniformly integrable) martingale

We prove that e−Stot(t) is a martingale. To this aim, we have to verify the two conditions
(27) and (28) for M(t) = e−Stot(t). We present two proofs, one for processes in discrete
time using the expression (1) for the entropy production, and a general proof for
reversible right-continuous processes ~X(t) using the expression (33) for the entropy
production.
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Appendix A.1. Reversible processes in discrete time

In discrete time

e−Stot(t,ω) = p̃(~x1, ~x2, . . . , ~xt)
p(~x1, ~x2, . . . , ~xt)

(A.1)

with p̃ the probability density function associated with the time-reversed dynamics. We
have simplified the notation a bit and used that ~x(t) = ~xt.

The condition (27) follows from e−Stot(t,ω) ≥ 0 and E
[
e−Stot(t,ω)

]
= 1 for all t ≥ 0.

The martingale condition (28) also holds,

E
[
e−Stot(t,ω)|Fs

]
=
∫ (

t∏
n=s+1

d~xn

)
p(~x1, ~x2, . . . , ~xt|~x1, ~x2, . . . , ~xs)

× p̃(~x1, ~x2, . . . , ~xt)
p(~x1, ~x2, . . . , ~xt)

=
∫ (

t∏
n=s+1

d~xn

)
p(~x1, ~x2, . . . , ~xt)
p(~x1, ~x2, . . . , ~xs)

p̃(~x1, ~x2, . . . , ~xt)
p(~x1, ~x2, . . . , ~xt)

=
∫ (

t∏
n=s+1

d~xn

)
p̃(~x1, ~x2, . . . , ~xt)
p(~x1, ~x2, . . . , ~xs)

= p̃(~x1, ~x2, . . . , ~xs)
p(~x1, ~x2, . . . , ~xs)

= e−Stot(s,ω). (A.2)

Appendix A.2. Reversible stationary processes that are right-continuous

We assume that ~X(t) is rightcontinuous and that the two measures P and P ◦ Θ are
locally mutually absolutely continuous, such that the entropy production (33) can be
defined. Because of the definition of entropy production,

e−Stot(t,ω) =
d(P ◦Θ)|Ft

dP|Ft

. (A.3)

The condition (27) follows from e−Stot(t,ω) ≥ 0 and E
[
e−Stot(t,ω)

]
= 1 for all t ≥ 0.

The martingale condition (28) follows readily from (A.3):

E
[
e−Stot(t,ω)|Fs

]
= e−Stot(s,ω), s ≤ t. (A.4)

The relation (A.4) is a direct consequence of (A.3) and the definition of the Radon-
Nikodym derivative: The Radon-Nikodym derivative e−Stot(s,ω) = d(P◦Θ)|Fs

dP|Fs

is by
definition a Fs-measurable random variable for which

EP

[
IΦ
d(P ◦Θ)|Fs

dP|Fs

]
= EP◦Θ [IΦ] (A.5)

for all Φ ∈ Fs. We show that E
[
e−Stot(t,ω)|Fs

]
is a random variable with this property,

and therefore (A.4) is valid. Indeed, for Φ ∈ Fs it holds that:

EP
[
IΦEP

[
e−Stot(t,ω)|Fs

]]
= EP

[
EP

[
IΦe

−Stot(t,ω)|Fs

]]
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= EP
[
IΦe

−Stot(t,ω)
]

= EP◦Θ [IΦ] . (A.6)

Note that the martingale condition (28) is consistent with the tower property of
conditional expectations: E [E [X|Ft] |Fs] = E [X|Fs].

Appendix A.3. Uniform integrability

We prove that the stochastic process e−Stot(t∧τ), with t ∈ [0,∞) and τ a fixed positive
number, is uniformly integrable. The process e−Stot(t∧τ) can be written as

e−Stot(t∧τ) = E
[
e−Stot(τ,ω)|Ft

]
. (A.7)

Since a stochastic process Y (t) of the form Y (t) = E[Z|Ft] is uniformly integrable [26],
we obtain that e−Stot(t∧τ) is uniformly integrable.

Appendix B. Integral fluctuation relation for entropy production within
infinite-time windows

We derive two corollaries of the optional stopping theorem, which is Theorem 3.6 in [26]
and equation (29) in this paper.

Corollary 1. Let T be a stopping time of a stationary process ~X(t) and let Stot(t) be the
stochastic entropy production of ~X(t) as defined in (33), with the two measures P and
P ◦Θ locally mutually absolutely continuous. If t is continuous, then Stot(t) is assumed
to be rightcontinuous. If the two conditions

(i) P(T <∞) = 1,
(ii) limt→∞E

[
e−Stot(t)IT>t

]
= 0,

are met, then

〈e−Stot(T )〉 = 1. (B.1)

Recall that IΦ(ω) is the indicator function define in (31). We use a proof analogous
to the discrete time proof of Theorem 8.3.5 on page 222 of reference [76].

Proof. We decompose 〈e−Stot(T )〉 into three terms,

〈e−Stot(T )〉 = 〈e−Stot(T∧t)〉 − 〈e−Stot(t)IT>t〉+ 〈e−Stot(T )IT>t〉.

Since the right-hand side holds for arbitrary values of t we can take limt→∞. Using (39)
and the condition (ii) we obtain

〈e−Stot(T )〉 = 1 + lim
t→∞
〈e−Stot(T )IT>t〉. (B.2)

Because of condition (i), it holds that limt→∞ e
−Stot(T )IT>t = 0 in the P-almost sure

sense. Because e−Stot(T )IT>t is a nonnegative monotonic decreasing sequence we can
apply the monotone convergence theorem, see e.g. [33], and we obtain

lim
t→∞
〈e−Stot(T )IT>t〉 = 〈 lim

t→∞
e−Stot(T )IT>t〉 = 0. (B.3)
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Corollary 2. Let T be a stopping time of a stationary process ~X(t) and let Stot(t) be the
stochastic entropy production of ~X(t) as defined in (33), with the two measures P and
P ◦Θ locally mutually absolutely continuous. If t is continuous, then Stot(t) is assumed
to be rightcontinuous. If the two conditions

(i) limt→∞ e
−Stot(t) = 0 in the P-almost sure sense,

(ii) there exist two positive numbers s− and s+ such that Stot(t) ∈ (−s−, s+) for all
t ≤ T ,

are met, then
〈e−Stot(T )〉 = 1. (B.4)

Proof. We show that if the conditions of the present corollary are met, then also the
conditions of corollary 1 are met, and therefore (B.4) holds.

Because of condition (i), the stopping time T is almost surely finite: 1 =
limt→∞ P [Stot(t) > s+] ≤ P [T <∞] and P [T <∞] ≤ 1, therefore P [T <∞] = 1.

Because of condition (i) and (ii) we obtain limt→∞E
[
e−Stot(t)IT>t

]
= 0:

e−Stot(t)I(T > t) ≤ es−I(T > t) is a positive variable that is bounded from above.
Hence, the dominated convergence theorem applies and limt→∞E

[
e−Stot(t)IT>t

]
=

E
[
limt→∞ e

−Stot(t)IT>t
]

= 0.

Appendix C. Derivation of the bound (71) on the statistics of N×

We denote by M×(t) the number of times entropy production has crossed the interval
[−∆,∆] in the direction −∆ → ∆ within the time interval [0, t], and therefore
N× = limt→∞M×(t).

We define two sequences of stopping times Tn and T̃n, with n ∈ [0, N×]∩Z, namely,
Tn = inf {t : M×(t) ≥ n} (C.1)

and
T̃n = inf {t : t ≥ Tn, Stot(t) /∈ (−∆, s+)} , (C.2)

where s+ is considered to be a very large positive number.
We apply the fluctuation relation (41) to the two stopping times T̃n and Tn. The

integral fluctuation relation (41) implies that
E
[
e−Stot(T̃n)|N× ≥ n

]
= E

[
e−Stot(Tn)|N× ≥ n

]
. (C.3)

Since e−Stot(Tn) ≤ e−∆, the right-hand side of (C.3) is bounded by
E
[
e−Stot(Tn)|N× ≥ n

]
≤ e−∆. (C.4)

The left-hand side of (C.3) can be decomposed into two terms,
E
[
e−Stot(T̃n)|N× ≥ n

]
= E

[
e−Stot(T̃n)IStot(T̃n)≥s+

|N× ≥ n
]

+ E
[
e−Stot(T̃n)IStot(T̃n)≤−∆|N× ≥ n

]
, (C.5)
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where I is the indicator function defined in (31). We take the limit s+ →∞ and obtain

lim
s+→∞

E
[
e−Stot(T̃n)|N× ≥ n

]
= lim

s+→∞
E
[
e−Stot(T̃n)IStot(T̃n)≤−∆|N× ≥ n

]
≥ e∆ lim

s+→∞
E
[
IStot(T̃n)≤−∆|N× ≥ n

]
.

Since

P [N× ≥ n+ 1|N× ≥ n] = lim
s+→∞

E
[
IStot(T̃n)≤−∆|N× ≥ n

]
(C.6)

we obtain the inequality

lim
s+→∞

E
[
e−Stot(T̃n)|N× ≥ n

]
≥ e∆ P [N× ≥ n+ 1|N× ≥ n] t. (C.7)

The relation (C.3) together with the two inequalities (C.4) and (C.7) imply

P [N× ≥ n+ 1|N× ≥ n] ≤ e−2∆ with n > 0. (C.8)

This is the formula (71) which we were meant to prove.
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K. Proesmans, S. Sasa, F. Severino, and K. Sekimoto for fruitful discussions.

References

[1] C. Maes, “On the origin and the use of fluctuation relations for the entropy,” Séminaire Poincaré,
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[72] É. Roldán, I. Neri, M. Dörpinghaus, H. Meyr, and F. Jülicher, “Decision making in the arrow of
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