Citation for published version (APA):
https://doi.org/10.4230/LIPIcs.CPM.2019.25

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 13. Oct. 2019
Abstract

We introduce the Longest Common Circular Factor (LCCF) problem in which, given strings S and T of length at most n, we are to compute the longest factor of S whose cyclic shift occurs as a factor of T. It is a new similarity measure, an extension of the classic Longest Common Factor. We show how to solve the LCCF problem in $O(n \log^4 n)$ time using $O(n \log^2 n)$ space.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases longest common factor, circular pattern matching, internal pattern matching, intersection of hyperrectangles
1 Introduction

We introduce a new variant of the Longest Common Factor (LCF) Problem, called the Longest Common Circular Factor (LCCF) Problem. In the LCCF problem, given two strings S and T, both of length at most n, we seek for the longest factor of S whose cyclic shift occurs as a factor of T. The length of the LCCF is a new string similarity measure that is 2-approximated by the length of the LCF. We show that the exact value of LCCF can be computed efficiently.

A linear-time solution to the LCF problem is one of the best-known applications of the suffix tree [2]. Just as the LCF problem was an extension of the classical pattern matching, the LCCF problem can be seen as an extension of the circular pattern matching. The latter can still be solved in linear time using the suffix tree and admits a number of efficient solutions based on practical approaches [4, 10, 17, 21, 28, 32], as well as an approximate variant [6, 7, 18, 20], and the problem of detecting various circular patterns [29]. The LCCF problem is further related to the notion of unbalanced translocations [9, 11, 31, 33, 34].

One can formally state the problem in scope as follows.

Longest Common Circular Factor (LCCF)

Input: Two strings S and T of length at most n each.

Output: A pair of longest factors, F of S and F' of T, for which there exist strings U and V such that $F = UV$ and $F' = VU$; we denote $\text{LCCF}(S, T) = (F, F')$.

This problem can be solved in a straightforward way in $O(n^2 \log n)$ time and $O(n)$ space using period queries [26, 27, 24]; see Section 2.1. Our main result is the following.

Theorem 1 (Main Result). The Longest Common Circular Factor problem on two strings of length at most n can be solved in $O(n \log^4 n)$ time and $O(n \log^2 n)$ space.

Henceforth, we assume for simplicity that $|S| = |T| = n$; otherwise, the shorter string can be padded with a special character $\#$ that does not occur in either of the strings.

Our approach. We apply local consistency techniques from the area of internal pattern matching (in case U and V are not highly periodic; Section 3) and Lyndon roots (otherwise; Section 4). The LCCF problem is reduced to finding configurations satisfying conjunction of four conditions of type $i \in \text{Occ}(X)$, where $\text{Occ}(X)$ is the set of occurrences of a factor X.

Each configuration can be decomposed into two subconfigurations (pairs of consecutive fragments), one in S and one in T. We guarantee that the number of subconfigurations is
nearly linear so that we can compute them all for both \(S \) and \(T \). Then, the task reduces to finding two subconfigurations which agree (produce a full configuration) and constitute an optimal solution. This is done using geometric techniques in Section 6. Each condition \(i \in \text{Occ}(X) \) can be seen as membership of a point in a range since \(\text{Occ}(X) \) forms an interval in the suffix array. This gives a reduction of the LCCF problem to an intersection problem for 4D-rectangles. The latter task is solved efficiently using a sweep line algorithm.

2 Preliminaries

We consider strings over an integer alphabet \(\Sigma \). If \(W \) is a string, then by \(|W| \) we denote its length and by \(W[1], \ldots, W[|W|] \) its characters. By \(x = W[i..j] \) we denote a fragment of \(W \) between the \(i \)th and \(j \)th character, inclusively. We also denote this fragment \(x \) by \(W[i..j+1] \), and we define \(\text{first}(x) = i \) as well as \(\text{last}(x) = j \). If \(\text{first}(x) = 1 \), then \(x \) is a prefix, and if \(\text{last}(x) = |W| \), it is a suffix of \(W \). Fragments \(x \) and \(y \) are consecutive if \(\text{last}(x) + 1 = \text{first}(y) \); we then also say that \(y \) follows \(x \).

The string \(W[i] \cdots W[j] \) that corresponds to the fragment \(x \) is a factor of \(W \). We say that two fragments match if the corresponding factors are the same. Let us note that a fragment can be represented by its endpoints in \(\mathcal{O}(1) \) space; this representation can also be used to specify the corresponding factor.

By \(W^R \) we denote the reversal of a string \(W \). We say that a positive integer \(p \) is a period of a string \(W \) if \(W[i] = W[i + p] \) for all \(i = 1, \ldots, |W| - p \). By \(\text{per}(W) \) we denote the shortest period of \(W \). A string \(W \) is called (weakly) periodic if its shortest period satisfies \(2 \text{per}(W) \leq |W| \). Fine and Wilf’s Periodicity Lemma [16] asserts that if a string \(W \) has periods \(p \) and \(q \) such that \(p + q \leq |W| \), then \(\gcd(p, q) \) is also a period of \(W \).

2.1 \(\mathcal{O}(n^2 \log n) \)-Time and \(\mathcal{O}(n) \)-Space Algorithm

A period query [26] is an internal query that is defined on a text \(W \) as follows: Given a fragment \(x \) of the text, report all periods of \(x \) (represented as several arithmetic progressions). In particular, the answer gives the shortest period \(p = \text{per}(x) \) and the longest border \(U = x[1..|x| - p] = x[1 + p..|x|] \). Period queries can be answered in \(\mathcal{O}(\log n) \) time using a data structure of size \(\mathcal{O}(n) \). A randomized \(\mathcal{O}(n) \)-time construction of this data structure was presented in [27], whereas a deterministic variant appeared in [24, Theorem 1.1.12].

\textbf{Proposition 2.} The Longest Common Circular Factor problem on two strings of length \(n \) can be solved in \(\mathcal{O}(n^2 \log n) \) time and \(\mathcal{O}(n) \) space.

\textbf{Proof.} Let us set \(W = S \# T \# S \), where \# is a special character that occurs neither in \(S \) nor in \(T \). For every pair of positions \(i, j \in \{1..n\} \), we ask a period query for \(x = W[i..n + j] = S[i..n] \# T[1..j] \) and \(y = W[n + j + 1..2n + 1 + i] = T[j..n] \# S[1..i] \). This lets us recover the longest borders \(U \) of \(x \) and \(V \) of \(y \) so that \((UV, VU) \) is a common circular factor of \(S \) and \(T \). The longest of these factors over all pairs of positions \((i, j) \) corresponds to the LCCF. \(\blacktriangleleft \)

2.2 Synchronizing Sets

In this section, we present the notion of synchronizing sets recently introduced by Kociumaka and Kempa [23] for BWT construction and answering LCE queries. Intuitively, a \(\tau \)-synchronizing set \(P \) of a string \(W \) is a subset of position of \(W \) such that:

- the choice whether \(i \in P \) is made based on a context of \(2\tau \) subsequent characters,
- \(P \) contains at least one in every \(\tau \) positions of each region of \(W \) whose period exceeds \(\frac{1}{3}\tau \).
The underlying idea of making a locally consistent selection based on fixed-length contexts originates from internal pattern matching [27]. Later, the construction has been used for LCE queries [8] and derandomized [24]. We formalize our results using synchronizing sets as they provide a cleaner interface compared to that of the synchronizing functions of [24].

Definition 3 (Kempa and Kociumaka [23, Definition 3.1]). Let \(W \) be a string of length \(n \) and let \(\tau \leq \frac{n}{2} \) be a positive integer. We say that a set \(P \subseteq [1..n-2\tau+1] \) is a \(\tau \)-synchronizing set of \(W \) if it satisfies the following conditions (see Figure 1):

1. If \(W[i..i+2\tau) = W[i'..i' + 2\tau) \), then \(i \in P \) if and only if \(i' \in P \) (for \(i, i' \in [1..n-2\tau +1] \)),
2. \(P \cap [i..i+\tau) = \emptyset \) if and only if \(\text{per}(W[i..i+3\tau-2]) \leq \frac{1}{3}\tau \) (for \(i \in [1..n-3\tau +2] \)).

Figure 1 A 3-synchronizing set \(P = \{1, 2, 5, 8, 11, 12, 16, 19, 22, 24\} \) of a string \(W \) of length 30. The 10 positions in \(P \) are the starting positions of the occurrences of length-(2 · 3) factors \(aabbab, aaaaaa, bababa, \) and \(abaaa \) (marked as rectangles, listed top-down). Out of each three consecutive positions in \([1..25] \), at least one belongs to \(P \). The only exception is \([13..16] \) due to the fact that \(\text{per}(W[13..20]) = 1 \leq \frac{1}{3} \cdot 3 \).

A key technical result is a deterministic linear-time construction of a synchronizing set of optimal size \(O(\frac{n}{\log_{\sigma} n}) \). The linear running time is improved in [24, 23] to \(O(n \log_{\sigma} n) \) for small alphabet size \(\sigma \) and parameter \(\tau = \Theta(\log_{\sigma} n) \), but that is not relevant for this paper.

Lemma 4 ([23, Proposition 8.10], [24, Lemma 4.4.9]). Given a string \(W \) of length \(n \) and a positive integer \(\tau \leq \frac{n}{2} \), in \(O(n) \) time one can construct a \(\tau \)-synchronizing set of size \(O(\frac{n}{\tau}) \).

The central property of a synchronizing set \(P \) is that if a factor \(X \) is sufficiently long and not highly periodic, then most of the positions of \(P \) contained in the occurrences of \(X \) are located consistently. In our applications, we actually use the leftmost of these positions only. Hence, for an integer \(i \) and a set \(P \), we define \(\text{succ}_P(i) = \min\{p \in P : p \geq i\} \) to be the successor of \(i \) in \(P \). We assume that \(\min \emptyset = \infty \) so that \(\text{succ}_P(i) = \infty \) if \(i > \max P \).

Lemma 5. Let \(P \) be a \(\tau \)-synchronizing set in a string \(W \). If \(W[i..j] = X = W[i'..j'] \), where \(|X| \geq 3\tau -1 \) and \(\text{per}(X) > \frac{1}{\tau} \), then \(\text{succ}_P(i) - i = \text{succ}_P(i') - i' \leq |X| - 2\tau \).

Proof. First, suppose for a proof by contradiction that \(\text{succ}_P(i) - i > |X| - 2\tau = j - i + 1 - 2\tau \). Consequently, \(P \cap [i..j - 2\tau + 2] = \emptyset \), which yields \(P \cap [p..p + \tau) = \emptyset \) for \(p \in [i..j - 3\tau + 2] \). Hence, Definition 3 implies \(\text{per}(W[p..p + 3\tau - 2]) \leq \frac{1}{\tau} \) for \(p \in [i..j - 3\tau + 2] \). Due to \(j - i + 1 = |X| \geq 3\tau - 1 \), this range is non-empty, so the Periodicity Lemma yields \(\frac{1}{\tau} < \text{per}(X) = \text{per}(W[i..j]) \leq \frac{1}{3\tau} \), contradicting our assumption that \(\text{succ}_P(i) - i > |X| - 2\tau \).

Due to \(\text{succ}_P(i) - i \leq |X| - 2\tau \), we now conclude that \(W[\text{succ}_P(i) .. \text{succ}_P(i) + 2\tau) = W[i' - i + \text{succ}_P(i) .. i' + \text{succ}_P(i) + 2\tau] \). Therefore, \(\text{succ}_P(i) \in P \) implies \(i' - i + \text{succ}_P(i) \in P \) in the light of Definition 3. Consequently, \(\text{succ}_P(i') - i' \leq \text{succ}_P(i) - i \). A symmetric argument shows that \(\text{succ}_P(i) - i \leq \text{succ}_P(i') - i' \), which completes the proof.
2.3 Types of Factors

We define the type of a (non-empty) string \(W \) as \(\text{type}(W) = \lfloor \log(|W| + 1) \rfloor - 1 \). We denote by \(\text{LCCF}_{a,b}(S,T) \) the longest common circular factor \((UV, VU)\) of \(S \) and \(T \) such that \(\text{type}(U) = a \) and \(\text{type}(V) = b \). We also say that it is the type-\((a,b)\) LCCF. Moreover, we denote by \(\text{LCF}(S,T) \) the (ordinary) longest common factor of \(S \) and \(T \) (corresponding to \(U = \varepsilon \) or \(V = \varepsilon \)). Our basic strategy is to compute \(\text{LCCF}_{a,b}(S,T) \) independently for each pair \((a,b)\) and report the longest alternative among the obtained common circular factors, including \((F,F')\) for \(F = \text{LCF}(S,T) \). However, we observe that if \(\text{LCCF}(S,T) = \text{LCCF}_{a,b}(S,T) = (UV, VU) \), then \(\frac{1}{2}|F| \leq \frac{1}{2}|UV| \leq \max(|U|, |V|) \leq |F| \), and therefore \(\text{type}(F) - 1 \leq \max(a,b) \leq \text{type}(F) \). Consequently, it suffices to iterate over \(O(|F|) \) pairs \((a,b)\) satisfying the latter condition.

For each type \(a \), we introduce a synchronizing set \(P_a \) of the concatenation \(ST \). For \(a = 0 \), we set \(P_0 = [1 \ldots |ST|] \), while for \(0 \leq a \leq \text{type}(ST) \), let us define \(P_a \) as a \(2^n-1 \)-synchronizing set of \(W \). Using Lemma 4, we make sure that \(|P_a| = \Omega\left(\frac{n}{2}\right) \) and the set \(P_a \) can be constructed in \(O(n) \) time, which sums up to \(O(n \log n) \) across all types \(a \).

Moreover, let us define
\[
P_a(S) = \{ p \in P_a : p \leq |S| \} \quad \text{and} \quad P_a(T) = \{ p - |S| : p \in P_a, p > |S| \}.
\]

Intuitively, \(P_a(S) \) and \(P_a(T) \) represent the subsets of \(P_a \) corresponding to \(S \) and \(T \), respectively. The following result relates these notions to the common factors of \(S \) and \(T \).

\begin{corollary}
If \(S[i \ldots j] = F = T[i' \ldots j'] \), where \(F \) is a type-\(a \) string satisfying \(\text{per}(F) > \frac{1}{6} \cdot 2^n \), then \(\text{succ}_{P_a}(S)(i) - i = \text{succ}_{P_a}(T)(i') - i' < |F| \).
\end{corollary}

\begin{proof}
The claim is trivial for \(a = 0 \) due to \(\text{succ}_{P_a}(S)(i) - i = \text{succ}_{P_a}(T)(i') - i' = 0 \). Otherwise, we have \(|F| \geq 2^n + 1 > 3 \cdot 2^n - 1 \) and \(\text{per}(F) \geq \frac{1}{6} \cdot 2^n = \frac{1}{3} \cdot 2^{n-1} \), so Lemma 5 yields \(\text{succ}_{P_a}(S)(i) - i = \text{succ}_{P_a}(T)(i') - i' \leq |F| - 2 \cdot 2^{n-1} < |F| \).
\end{proof}

3 Nonperiodic Case

We say that a string \(U \) of type \(a \) is \textit{highly periodic} if \(\text{per}(U) \leq \frac{1}{6} \cdot 2^n \). We consider now \(\text{LCCF}_{a,b}(S,T) = (F,F') \) such that \(F = UV \), \(F' = VU \), \(U \) is of type \(a \), \(V \) is of type \(b \), and neither \(U \) nor \(V \) is highly periodic. We call it the \textit{nonperiodic case}.

For a pair of fragments \((u,v)\), by \(\Gamma_{u,v} \) we denote a condition which states that \(u \) is followed by a fragment that matches \(v \) and by \(\Delta_{u,v} \) we denote a condition which states that \(v \) follows a fragment that matches \(u \). We say that two pairs of consecutive fragments, \((x,y)\) in \(S \) and \((z,t)\) in \(T \), agree if and only if
\[
\Gamma_{y,z} \quad \text{and} \quad \Gamma_{t,x} \quad \text{and} \quad \Delta_{z,x} \quad \text{and} \quad \Delta_{t,x}.
\]

We reduce the LCCF problem in this case to the following abstract problem; see Figure 2.

\begin{figure}[h]
\centering
\begin{tabular}{|c|}
\hline
\textbf{FRACTION-FAMILIES-PROBLEM} \hline
\textbf{Input:} Two collections \(F_1 \) and \(F_2 \) of pairs of consecutive fragments of a string \(W \) of length \(n \), with \(m = |F_1| + |F_2| \) \hline
\textbf{Output:} \((x,y) \in F_1 \) and \((z,t) \in F_2 \) that agree and maximize \(|x| + |y| + |z| + |t|\) \hline
\end{tabular}
\end{figure}

For a string \(W \in \{S,T\} \) and a type \(a \), we introduce the following set of synchronizers:
\[
\text{LeftSync}_a(W,i) = P_a(W) \cap [i - 2^{a+2} + 2 \ldots i - 1],
\]
\[
\text{RightSync}_a(W,i) = P_a(W) \cap [i \ldots i + 2^{a+2} - 3].
\]
Figure 2: Pairs \((x,y)\) and \((z,t)\) agree; \(txyz\) and \(yztx\) form a common circular factor of \(S\) and \(T\).

Figure 3: Assume that \(\alpha \in \text{LeftSync}_a(S,i)\), \(\beta \in \text{RightSync}_b'(S,i)\), \(\beta' \in \text{LeftSync}_a(T,i')\), \(\beta' \in \text{RightSync}_b'(T,i')\). Then \(\Psi_S(\alpha, i, \beta) = (x, y)\) agrees with \(\Psi_T(\beta', i', \alpha') = (z, t)\) if and only if there is a common circular factor of \(S\) and \(T\): \(F = UV\), \(F' = VU\), where \(U = tx\) and \(V = yz\).

Using this terminology, an informal scheme of a general algorithm is as follows:

Algorithm 1: Compute-LCCF\(_{a,b}(S,T)\).

1. Compute the sets \(\text{CAND}_{a,b}(S)\), \(\text{CAND}_{b,a}(T)\)
2. Find two pairs \((x, y) \in \text{CAND}_{a,b}(S)\), \((z, t) \in \text{CAND}_{b,a}(T)\) which agree and have maximum \(|t| + |x| + |y| + |z|\)
3. return \(txyz\)

Lemma 7 (Correctness for Nonperiodic Case). The LCCF\(_{a,b}\) problem in the nonperiodic case can be reduced to the Fragment-Families-Problem \((\mathcal{F}_S, \mathcal{F}_T)\) for \(\mathcal{F}_S = \text{CAND}_{a,b}(S)\) and \(\mathcal{F}_T = \text{CAND}_{b,a}(T)\).
Proof. Take a pair of fragments f_S of S and f_T of T such that f_S is an occurrence of a factor $F = UV$ and f_T is an occurrence of a factor $F' = VU$ such that U is of type a, V is of type b, and none of them is highly periodic. Denote by u_S and v_S the consecutive fragments of f_S corresponding to U and V, and similarly by u_T and w_T the consecutive fragments of f_T corresponding to U and V, and let $i = \text{first}(u_S)$ and $j = \text{first}(w_T)$. Moreover, consider $\alpha = \text{succ}_{\pi_a}(\text{first}(u_S))$ and $\alpha' = \text{succ}_{\pi_a}(\text{first}(w_T))$. By Corollary 6, $\alpha - \text{first}(u_S) = \alpha' - \text{first}(w_T) \leq |U|$. Consequently, $\alpha \in \LeftSync_a(S,i)$ and $\alpha' \in \RightSync_a(T,j)$. Moreover, the relative position of α within u_S coincides with the relative position of α' within w_T.

Symmetrically, $\beta = \text{succ}_{\pi_a}(\text{first}(v_S)) \in \RightSync_a(S,i)$ and $\beta' = \text{succ}_{\pi_a}(\text{first}(v_T)) \in \LeftSync_a(T,j)$. Moreover, the relative position of β within v_S coincides with the relative position of β' within v_T. This means that there exists a pair $(x,y) \in \text{CAND}_{a,b}(S)$ such that $x = S[\alpha..i] = T[\alpha'..i' + |U|]$ and $y = S[i..\beta] = T[i' - |V|..\beta']$, and a pair $(z,t) \in \text{CAND}_{b,a}(T)$ such that $z = T[\beta'..i'] = S[\beta..i + |V|]$ and $t = T[i'..\alpha') = S[i - |U|..\alpha]$. The equalities listed above imply that the two pairs agree.

Conversely, for every two pairs $(x,y) \in \text{CAND}_{a,b}(S), (z,t) \in \text{CAND}_{b,a}(T)$ that agree, there exists a factor F in string S matching $txyz$ and a factor F' matching yzt in T. Thus, there is a one-to-one correspondence between pairs that agree and fragments of strings of right type that are cyclic shifts. Hence, by finding two pairs that agree and maximize $|x| + |y| + |z| + |t|$, we construct a solution to the LCCF$_{a,b}$ problem.

\textbf{Lemma 8 (Complexity for Nonperiodic Case).} In the nonperiodic case, the LCCF problem can be reduced in $\mathcal{O}(n \log n)$ time to $\mathcal{O}(\log n)$ instances of the Fragment-Families-Problem with $m = \mathcal{O}(n)$.

\textbf{Proof.} For each type $a \in [0..\text{type}(\text{LCF}(S,T))]$, we compute the synchronizing sets $P_a(S)$ and $P_a(T)$ in $\mathcal{O}(n)$ time using Lemma 4 as described in Section 2.3. Observe that each position $p \in P_a(W)$ may belong to just $\mathcal{O}(2^a)$ sets $\text{LeftSync}_a(W,i)$. Consequently, the total size of the sets $\text{LeftSync}_a(W,i)$ (for a fixed type a) is $\mathcal{O}(n)$, and we can compute them in $\mathcal{O}(n)$ time using a sliding window. The running time across all types a is $\mathcal{O}(n \log n)$.

The family $\text{CAND}_{a,b}(W)$ is constructed straight from the definition based on the sets $\text{LeftSync}_a(W,i)$ and the synchronizing set $P_b(W)$. As $|\text{CAND}_{a,b}(W)| \leq \sum_i |\text{LeftSync}_a(W,i)|$, the size of this family is $\mathcal{O}(n)$, and the construction time is also linear. Across all $\mathcal{O}(\log n)$ pairs $a,b \geq 0$ with $\text{type}(\text{LCF}(S,T)) - 1 \leq \max(a,b) \leq \text{type}(\text{LCF}(S,T))$, the overall time complexity is $\mathcal{O}(n \log n)$.

\section{Periodic Case}

We consider now LCCF$_{a,b}(S,T) = (F,F')$ such that $F = UV$, $F' = VU$, U is of type a, V is of type b, and both U and V are highly periodic.

Recall that a Lyndon string is a string that is lexicographically smaller than all its non-trivial cyclic shifts. If W is a weakly periodic string with the shortest period p, then its Lyndon root λ is the Lyndon string that is a cyclic shift of $W[1..p]$. A Lyndon representation of W is then (c,e,d) such that $W = \lambda^c \lambda^e \lambda^d$ where $|\lambda'| = c < |\lambda|$ and $|\lambda''| = d < |\lambda|$; see [13]. Lyndon strings have the following synchronization property that follows from the periodicity lemma: if λ is a Lyndon string, then it has exactly two occurrences in λ^2; see [12].

For a string W, by $\text{HPerPref}_a(W)$ and $\text{HPerSuf}_a(W)$ we denote the longest highly periodic type-a prefix and type-a suffix of W, respectively (or the empty string if there is no appropriate prefix or suffix). Let us start with the following simple observation; see Figure 4.
Figure 4 Illustration of Observation 9. A highly periodic suffix of W that is also a prefix of W' of length at most $\min(|X|,|Y|) - |\lambda|$ can be extended by $|\lambda|$ characters.

Observation 9. Let W and W' be two strings for which the strings $X = \text{HPerSuf}_a(W)$ and $Y = \text{HPerPref}_a(W')$ have the same Lyndon root λ. Then the longest suffix of W that is also a prefix of W' has length greater than $\min(|X|,|Y|) - |\lambda|$.

For a position i in a string W and a type a, we denote by $\text{LeftLyn}_a(W, i)$ the set of positions where the first, second, and last occurrence of the Lyndon root start in $\text{HPerSuf}_a(W[1..i])$. If the latter string is empty, we assume that $\text{LeftLyn}_a(W, i)$ is also empty. Similarly, we define $\text{RightLyn}_a(W, i)$ as the set of positions where the first, second to last, and last occurrence of the Lyndon root start in $\text{HPerPref}_a(W[i..|W|])$. We can redefine the set of candidates as follows (see Figure 5)

$$\text{CAND}_{a,b}(W) = \{\Psi_W(\alpha, i, \beta) : \alpha \in \text{LeftLyn}_a(W, i), \beta \in \text{RightLyn}_b(W, i), i \in [1..|W|]\}.$$

The following lemma implies the correctness of our algorithm in this case.

Lemma 10 (Correctness for Periodic Case). The LCCF$_{a,b}$ problem in the periodic case can be reduced to the FRAGMENT-FAMILIES-PROBLEM ($\mathcal{F}_S, \mathcal{F}_T$) for the redefined sets $\mathcal{F}_S = \text{CAND}_{a,b}(S)$ and $\mathcal{F}_T = \text{CAND}_{b,a}(T)$.

Proof. Take a pair of fragments f_S of S and f_T of T such that f_S is an occurrence of a factor $F = UV$ and f_T is an occurrence of a factor $F' = VU$ ($(F, F') = \text{LCCF}_{a,b}(S, T)$) such that U is of type a, V is of type b, and both U and V are highly periodic. Denote by v_S and v_T the consecutive fragments of f_S corresponding to U and V, and similarly by u_T and u_T the consecutive fragments of f_T corresponding to V and U, and let $i = \text{first}(v_S)$ and $j = \text{first}(u_T)$.

Let $X = \text{HPerSuf}_a(S[1..i])$ and $Y = \text{HPerPref}_b(T[j..n])$. Note that u_S is a highly periodic suffix of X and that X has the same period as U (a different period would contradict the periodicity lemma). Symmetrically, u_T is a highly periodic prefix of Y and Y has the same period as U. Let λ be the Lyndon root of U, and observe that λ is also the Lyndon root of X and Y. By Observation 9, we have

$$|X| - |U| < |\lambda| \text{ or } |Y| - |U| < |\lambda|,$$

as otherwise we would be able to find a Common Circular Factor of type (a,b) that is longer by $|\lambda|$, thus contradicting our choice of f_S ad f_T.

Figure 5 In this case, $\text{CAND}_{a,b}(W)$ contains $\Psi_W(\alpha_p, i, \beta_q)$ for $p, q \in \{1, 2, 3\}$.
Figure 6 Four cases from the proof of Lemma 10.

If \(|X| - |U| < |\lambda|\), then the first occurrence of \(\lambda\) in \(u_S\) is also the first or second occurrence of Lyndon root in \(X\). This is due to the synchronization property of Lyndon strings. Moreover, the first \(\lambda\) in \(u_T\) is also the first occurrence of \(\lambda\) in \(Y\). On the other hand, if \(|Y| - |U| < |\lambda|\), then the last occurrence of \(\lambda\) in \(u_T\) is the last or the second to last occurrence of \(\lambda\) in \(w_T\), whereas the last occurrence of \(\lambda\) in \(u_S\) is also the last occurrence of \(\lambda\) in \(X\). In either case, \(u_S\) and \(u_T\) contain a pair of corresponding occurrences of \(\lambda\) whose starting positions belong to \(\text{LeftLyn}_a(S,i)\) and \(\text{RightLyn}_b(T,j)\), respectively; see Figure 6.

As the same reasoning can be applied to \(v_S\) and \(v_T\), there exist pairs \((x,y) \in \text{CAND}_{a,b}(S)\) and \((z,t) \in \text{CAND}_{b,a}(T)\) which correspond to our choice of occurrences of the Lyndon roots. These pairs agree and \(|x| + |y| + |z| + |t| = |F|\); thus, \(\text{Fragment-Families-Problem} (F_S,F_T)\) will find a solution at least that good.

The converse direction is identical to the one from the proof of Lemma 7.

We proceed with an efficient implementation. A run in string \(W\) is a maximal weakly periodic fragment \(W[i..j]\) with a given period \(p\). We use 2-period queries which, given a weakly periodic fragment \(u\) of a string, compute its shortest period and the run of the same period it belongs to. Such queries can be answered in \(O(1)\) time after \(O(n)\)-time preprocessing [27, 24] (for a simplified solution, see [5]). Let us also recall that the Lyndon representation of a run can be computed in constant time after linear-time preprocessing [13].

Lemma 11 (Complexity for Periodic Case). In the periodic case, the LCCF problem can be reduced in \(O(n \log n)\) time to \(O(\log n)\) instances of the Fragment-Families-Problem with \(m = O(n)\).
Proof. First, we spend \(O(n \log n) \) time in total to construct the sets \(\text{LeftLyn}_a(W, i) \) and \(\text{RightLyn}_a(W, i) \) for each \(W \in \{S, T\} \) and \(a \leq \text{type}(W) \). For this, we use the following result:

\(\triangleright \) Claim 12. After \(O(n) \)-time preprocessing of a string \(W \), each set \(\text{LeftLyn}_a(W, i) \) and \(\text{RightLyn}_a(W, i) \) can be constructed in \(O(1) \) time.

Proof. To compute \(\text{HPPerPref}_a(u) \) for a fragment \(u \) of \(W \), it suffices to ask a 2-period query for \(u[1 \ldots 2^{e+1} - 1] \) (see [27, 5]), determine the Lyndon representation of the resulting run (see [13, 5]), and then trim its Lyndon representation to \(u \). A symmetric solution works for \(\text{HPPerSuf}_a(u) \). This allows us to construct the sets \(\text{LeftLyn}_a \) and \(\text{RightLyn}_a \).

\(\triangleright \)

Now, the family \(\text{CAND}_{a,b}(W) \), which is of size at most \(9n \), can be computed in \(O(n) \) based on the sets \(\text{LeftLyn}_a(W, i) \) and \(\text{RightLyn}_b(W, i) \). Our reduction to the \text{Fragment-Families-Problem} problem relies on \(O(\log n) \) such families constructed for pairs \(a, b \geq 0 \) such that \(\text{type}(\text{LCF}(S, T)) - 1 \leq \max(a, b) \leq \text{type}(\text{LCF}(S, T)) \); see Section 2.3 and Lemma 8.

\(\triangleright \)

5 General Case

Finally, we consider the general problem of computing \(\text{LCCF}_{a,b}(S, T) = (F, F') \). It can be reduced to several instances of the \text{Fragment-Families-Problem} directly by combining the techniques of the previous two sections.

\(\triangleright \) Lemma 13 (Correctness for General Case). The \(\text{LCCF}_{a,b} \) problem can be reduced to the \text{Fragment-Families-Problem} \((F_S, F_T) \).

Proof. In the proofs of Lemmas 7 and 10 the \(U \) and \(V \) parts of the factors were considered separately. Hence, it is enough to define \(\text{CAND}_{a,b}(W) \) as

\[\text{CAND}_{a,b}(W) = \{ \Psi_W(\alpha, i, \beta) : \alpha \in \text{LeftSync}_a(W, i) \cup \text{LeftLyn}_a(W, i), \beta \in \text{RightSync}_b(W, i) \cup \text{RightLyn}_b(W, i), i \in [1 \ldots |W|] \} \].

Depending on whether \(U \) or \(V \) is highly periodic or not, the existence of an agreeing pair \((x, y) \in F_S \) and \((z, t) \in F_T \) can be shown by repeating the arguments in the proofs of Lemma 7 or Lemma 10, respectively.

\(\triangleright \)

\(\triangleright \) Lemma 14 (Complexity for General Case). The \(\text{LCCF} \) problem can be reduced in \(O(n \log n) \) time to \(O(\log n) \) instances of the \text{Fragment-Families-Problem} with \(m = O(n) \).

Proof. The families can be computed combining the methods from Lemmas 8 and 11, obtaining the desired complexities and sizes.

\(\triangleright \)

6 Solution to Fragment-Families-Problem

In this section we show how to solve the \text{Fragment-Families-Problem} for a string \(W \) of length \(n \) by a reduction to intersecting special 4-dimensional rectangles.

First, we give a geometric interpretation of two predicates:

\(\triangleright \) a factor \(U \) has an occurrence in \(W \) starting at position \(q \) (is a prefix of the suffix starting at position \(q \)), and

\(\triangleright \) \(U \) has an occurrence ending at position \(q \) (is a suffix of the prefix ending at position \(q \)) relating them to the membership of \(q \) in a corresponding subinterval of \([1 \ldots n]\).

Let us recall that the suffix array \([30]\) of a string \(W \), \(\text{SA}_W \), is a permutation of \([1 \ldots n]\) such that \(W[\text{SA}_W[i] \ldots n] < W[\text{SA}_W[i + 1] \ldots n] \) for every \(i \in [1 \ldots n - 1] \). By \(\text{FirstPos}(U) \) let us denote the set of starting positions of occurrences of \(U \) in \(W \). Our geometric interpretation is possible due to the following well known fact (see [12]).
Observation 15. The set $\text{FirstPos}(U)$ consists of consecutive elements in SA_W.

Let $\text{LastPos}(U)$ be the set of ending positions of occurrences of U in W. We also use the FirstPos, LastPos notation for fragments which means operations on corresponding factors.

Observation 16.
1. A fragment u is a prefix/suffix of the suffix starting (prefix ending) at position q if and only if $q \in \text{FirstPos}(u)$, $q \in \text{LastPos}(u)$, respectively.
2. $\Gamma_{u,v} \equiv ((\text{last}(u) + 1) \in \text{FirstPos}(v))$ and $\Delta_{u,v} \equiv ((\text{first}(v) - 1) \in \text{LastPos}(u))$.

We define a d-rectangle $(d \geq 2)$ as a Cartesian product of d closed intervals, such that at least $d - 2$ of them are singletons. E.g., $(3) \times [2..5] \times [1..7] \times \{0\}$ is a 4-rectangle. In other words, a d-rectangle is an isothetic hyperrectangle of dimension at most 2.

By $I(U)$ and $J(U)$ we denote the subintervals of $[1..n]$ that correspond to the intervals of $\text{FirstPos}(U)$ in the suffix array SA_W and of $\text{LastPos}(U)$ in the (analogously defined) prefix array of W, PA_W, respectively, as stated in Observation 15. (PA_W is a permutation of $[1..n]$ such that $W[1..\text{PA}_W[i]]^R < W[1..\text{PA}_W[i + 1]]^R$ for every $i \in [1..n - 1]$). For pairs (x, y) and (z, t) of consecutive fragments, we denote:

$$\text{RECT}(x, y) = I(x) \times J(y) \times \{\text{SA}_W^{-1}[\text{last}(y) + 1]\} \times \{\text{PA}_W^{-1}[\text{first}(x) - 1]\}.$$

$$\text{RECT}'(z, t) = \{\text{SA}_W^{-1}[\text{last}(t) + 1]\} \times \{\text{PA}_W^{-1}[\text{first}(z) - 1]\} \times I(z) \times J(t).$$

Observation 16.2 now implies the following.

Observation 17. Two pairs of consecutive fragments (x, y), (z, t) agree if and only if $\text{RECT}(x, y) \cap \text{RECT}'(z, t) \neq \emptyset$.

Two d-rectangles $[a_1..b_1] \times \cdots \times [a_d..b_d]$ and $[a'_1..b'_1] \times \cdots \times [a'_d..b'_d]$ are called compatible if, for each $i \in \{1, \ldots, d\}$, $[a_i..b_i]$ or $[a'_i..b'_i]$ is a singleton. Let us note that the 4-rectangles in the above observation are compatible.

6.1 Intersecting 4D Rectangles

We consider two families of 4-rectangles with weights and wish to find a pair of intersecting rectangles, one per family, with maximum total weight. The general problem of finding such an intersection of two families of m weighted hyperrectangles in d dimensions can be solved in $O(m \log^{2d} m)$ time by an adaptation of a classic approach [14]. Below, we consider a special variant of the problem that has a much more efficient solution.

<table>
<thead>
<tr>
<th>Max-Weight Intersection of Compatible Rectangles in 4D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Two families R_1 and R_2 of 4-rectangles in Z^4 with integer weights containing m rectangles in total, such that each $R_1 \in R_1$ and $R_2 \in R_2$ are compatible</td>
</tr>
<tr>
<td>Output: Check if there is an intersecting pair of 4-rectangles $R_1 \in R_1$ and $R_2 \in R_2$ and, if so, compute the maximum total weight of such a pair</td>
</tr>
</tbody>
</table>

A very similar problem was considered as Problem 3 in [19] for an arbitrary d. The sole difference is that the weight of an intersection of two d-rectangles $R_1 \in R_1$ and $R_2 \in R_2$ in that problem was the maximum ℓ_1-norm of a point in $R_1 \cap R_2$. A solution to Problem 3 for $d = 4$ in the case that the 4-rectangles are compatible working in $O(m \log^3 m)$ time and $O(m \log^2 m)$ space was given as [19, Lemma 5.8]. The algorithm presented in that lemma actually solves the Max-Weight Intersection of Compatible Rectangles in 4D problem and applies it for specific weight assignment of the 4-rectangles on the input. It uses hyperplane sweep and a variant of an interval stabbing problem. Henceforth, we will use the following result.
Fact 18 (see [19, Lemma 5.8]). Max-Weight Intersection of Compatible Rectangles in 4D can be solved in \(O(m \log^3 m) \) time and \(O(m \log^2 m) \) space.

6.2 Algorithm for Fragment-Families-Problem

Let us recall that the suffix tree [35] of a string \(W \), \(ST_W \), is a compacted trie of all the suffixes of \(W \). It can be computed in \(O(n) \) time (see [15]) and reading the suffixes of \(W \) in its preorder traversal yields the suffix array of \(W \). An efficient implementation of Observation 15 is known; see [1, 25].

Lemma 19. The sets \(\mathcal{I}(u) \) and \(\mathcal{J}(u) \) can be computed in \(O(n + m) \) total time for a batch of \(m \) fragments \(u \) of a length-\(n \) string \(W \).

Proof. Without loss of generality, it suffices to show how to compute \(\mathcal{I}(u) \). For every explicit node of \(ST_W \), we can compute the interval of elements of \(SA_W \) that are located in its subtree. This can be done in a bottom-up order in \(O(n) \) time.

A weighted ancestor query in \(ST_W \), given a terminal node \(w \) and positive integer \(d \), returns the ancestor of \(w \) located at depth \(d \) (being an explicit or implicit node). A batch of \(m \) such queries (for any tree of \(n \) nodes with positive integer weights of edges) can be answered in \(O(n + m) \) time; see [25, Section 7.1].

A weighted ancestor query can be used to compute, given a fragment \(u \) of \(W \), the corresponding (explicit or implicit) node \(w \) of \(ST_W \). The interval stored in the nearest explicit descendant of \(w \) equals \(\mathcal{I}(u) \).

We are now ready to show a solution to the Fragment-Families-Problem.

Lemma 20. The Fragment-Families-Problem can be solved in \(O(n + m \log^3 m) \) time and \(O(n + m \log^2 m) \) space.

Proof. We construct families \(\mathcal{R}_1 \) and \(\mathcal{R}_2 \) of weighted 4-rectangles. For every \((x, y) \in \mathcal{F}_1 \), we add \(\text{RECT}(x, y) \) to \(\mathcal{R}_1 \) with weight \(|x| + |y| \). For every \((z, t) \in \mathcal{F}_2 \), we add \(\text{RECT}'(z, t) \) to \(\mathcal{R}_2 \) with weight \(|z| + |t| \). By Observation 17, the solution to Max-Weight Intersection of Compatible Rectangles in 4D for \(\mathcal{R}_1 \) and \(\mathcal{R}_2 \) is the solution to Fragment-Families-Problem \(\mathcal{F}_1, \mathcal{F}_2 \).

Note that we have \(|\mathcal{R}_1| = |\mathcal{F}_1| \) and \(|\mathcal{R}_2| = |\mathcal{F}_2| \). Using Lemma 19 and a linear-time algorithm for constructing \(SA_W \) and \(PA_W \) (and \(SA_W^1 \) and \(PA_W^1 \)) [15], computation of 4-rectangles \(\text{RECT}, \text{RECT}' \) can be done in \(O(n + m) \) time in total. Finally, Max-Weight Intersection of Compatible Rectangles in 4D can be solved in \(O(m \log^3 m) \) time and \(O(m \log^2 m) \) space.

As a consequence of Lemmas 13 and 14 and the above lemma, we obtain the main result.

Theorem 1 (Main Result). The Longest Common Circular Factor problem on two strings of length at most \(n \) can be solved in \(O(n \log^4 n) \) time and \(O(n \log^2 n) \) space.

7 Conclusions

We have presented an \(O(n \log^4 n) \)-time algorithm for computing the Longest Common Circular Factor (LCCF) of two strings of length \(n \). Let us recall that the Longest Common Factor (LCF) of two strings can be computed in \(O(n) \) time. We leave an open question if the LCCF problem can also be solved in linear time.
References

25:14 Quasi-Linear-Time Algorithm for Longest Common Circular Factor

