Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 06. Dec. 2018
Minimum Intervention Treatment Plan (MITP) – practical implementation in general dental practice.

Doméjean-Orliaguet S¹, Banerjee A², Gaucher C³, Milètic I⁴, Basso M⁵, Reich E⁶, Blique M⁷, Zalba J⁸, Lavoix L⁹, Roussel F⁹, Khandelwal P⁹

Abstract

The Minimum Intervention (MI) concept is well described in the literature and summarizes the clinical rationale for the preventive and cause-related approach in the management of dental caries. The GC Europe “MI Advisory Board” which is a Pan-European group of clinical academics and general dental practitioners aims to present an evidence-based, patient-centred MI treatment approach for use in routine dental practice. This treatment methodology is based on four phases of treatment planning: MI Identify, MI Prevent, MI Recall and MI restore. MI Identify: encompasses detection of dental caries and identifying factors affecting the susceptibility of the individual patient. A modified ICDS detection scoring system is presented to relate the visual appearance of lesions with the histological process and is related to the clinical signs of caries and radiological investigation. In addition, assessment of plaque and saliva is discussed using commercially available chairside kits. All this information can then be evaluated to assess the patient’s susceptibility, establish a diagnosis and set up a preventive MI treatment plan. MI Prevent and MI Recall: Depending on the susceptibility and the risk factors of the patient, preventive treatment regimens can be instituted. The “standard” approach includes oral hygiene instruction, dietary advice, patient motivation and maintenance. Those patients with high risk factors need “active” preventive care. This includes the measures to decrease the bacterial content of the oral cavity, placement of transitional restorations and use of remineralisation agents. Repeated diagnosis of the risk factors will be used to assess the need for the precise level of preventive measures and the amount of recall sessions individualized for each patient. MI Restore: MI Restore presents techniques for conservation of tooth structure when restorations have to be placed. Distinctions are made between non-invasive and invasive techniques.

Corresponding author:
Sophie Doméjean-Orliaguet, DDS, PhD
Senior Lecturer
Dental school, Department of Operative Dentistry & Endodontics
11 Boulevard Charles de Gaulle
63000 Clermont-Ferrand, France
Tel: +33 4 73 17 73 18
Fax: +33 4 73 17 73 06
E-mail: sophie.orliaguet@u-clermont1.fr

¹ University of Auvergne, EA 3847, France
² King’s College London Dental Institute at Guy’s Hospital, King’s College London, UK
³ University of Paris Descartes, France
⁴ University of Zagreb, Croatia
⁵ University of Milano, IRCCS Istituto Ortopedico Galeazzi, Italy
⁶ University of Cologne, Germany
⁷ Nancy, France
⁸ Pamplona, Spain
⁹ GC Europe, Belgium
Introduction

Minimum Intervention (MI) dentistry is a concept based on a better understanding of the caries process and the development of new diagnostic technologies and adhesive, bioactive restorative materials. MI can be defined as an approach for dentists to base their treatment plans on four key-points:

1. A comprehensive diagnosis of the disease (caries risk assessment/ susceptibility, early lesion detection);
2. The possibility to prevent caries and to remineralise early lesions;
3. Where necessary, minimally invasive operative treatment including refurbishment of previous restorations rather than their systematic replacement;
4. Patient education.

This concept has been evolved over a decade, by many experts, and is based on sound evidence-based principles. However, international consensus guidelines for its implementation in clinical practice are still lacking despite the growing literature. Studies have investigated the treatment decisions used in clinical practice and have shown wide variation in criteria between and within practitioners in different countries. They highlighted that dental practitioners still suffer from a lack of clarity on how to tailor a treatment plan to the individual needs of the patient.

A pan-European group of dental clinicians and clinical academics co-ordinated by GC Europe – namely the GC Europe MI Advisory Board - has developed a “Minimal Intervention Treatment Plan (MITP)”. The hope is that this simple and practical protocol, outlined in the following paper, could be developed and used by dentists working in different countries, under different health care systems and environmental pressures.

The minimum intervention treatment plan (MITP)

The basis of the MITP framework is shown in Figure 1 and is composed of four key phases of patient-centred treatment interlinking with each other: MI identify (disease experience, aetiology and risk of the individual patient); MI prevent (prevention of loss of tooth surface integrity or of further disease); and MI restore (non-invasive and minimally invasive therapies). A fourth key stage is the MI recall phase, vital in order to maintain oral health at a level suitable for the patient’s needs. This stage can be inserted at any point in the cycle, dependent on the individual’s requirements for maintenance of oral health.

Figure 2 shows a generic flowchart of the practical implementation of MITP. Its primary objective is to clarify and simplify patient-centred management pathways, which a dental team could follow together with the patient.

MITP first phase - MI IDENTIFY

The MI Identify phase can be divided into the following practical stages and each will be briefly discussed in the following sections:

Anamnesis - the process of verbal history taking

The skill of verbal history taking is taught at dental school and thereafter practiced and improved upon as clinical experience is gained. Computer software or hand-written notes / charts / tables can be used to assist in a systematic approach to this task ensuring no vital information is omitted. After ascertaining the reason for the visit, a relevant dental, social, behavioural
Figure 1: The patient-centred management cycle on which MITP is based. The recall component can enter the cycle at any point dependent on individual patient needs.

Figure 2: The MITP flowchart - bringing the patient-centred MI philosophy into general dental practice.
and medical history must be evaluated. Important information regarding dietary habits, oral hygiene procedures, past dental history and overall patient motivation can all help create a picture regarding the caries status and susceptibility of the individual patient.

Oral examination

After assessment of the soft tissues and periodontal status, priority can be given to the teeth themselves. The visual examination has to be performed on clean, dryable tooth surfaces, with the advisable use of magnification and good quality lighting. It is essential to define /detect the different stages of the caries process (from early enamel demineralisation to frank cavitation) in order to adapt the therapeutic option (from a remineralisation therapy to a restoration).

In 2005, the International Caries Detection and Assessment System (ICDAS) Foundation was set up to develop a “standardised” visual scoring system for use in dental education, research and clinical practice. This scoring system has been modified by the group and adapted for ease of use in clinical practice, and is outlined in Table 1. The use of a sharp dental explorer is no longer recommended, due to the risk of unnecessary damage to the hard tissues. The ICDAS committee recommended the use of a ball-ended explorer for caries detection, which is used gently across a tooth surface to confirm the loss of enamel surface integrity. In conjunction with visual examination, bitewing radiographic investigation has to be undertaken to help detect early approximal lesions. Bitewing radiographs allow the follow-up of early lesions for which a stabilisation / remineralisation therapy has been indicated.

Other clinically useful tools for early detection (e.g. laser fluorescence) are still under development or under clinical investigation for further validation and discussion is out with the scope of this paper.

Factors affecting patient susceptibility to caries

There are numerous factors (see Table 2) that have been recognized to affect an individual’s susceptibility to caries. This data can be obtained from both examination stages above and once gathered, must be processed to help make the final diagnosis and prognosis for the individual patient. This information must be used wisely to permit the appropriate treatment pathway to be followed and a simple, less ambiguous favourable/unfavourable (low/high) susceptibility rating is proposed (Table 2). Table 2 outlines some of the more easily discernible factors that might be elucidated from the verbal history and oral examination. A chart similar to Table 2 could be used clinically to augment the patient notes and provide objective longitudinal analysis of how the individual’s susceptibility might change over time. Furthermore, this level of record taking is essential for the ultimate engagement and education of the patient.

MITP second Phase - MI PREVENT

“Preventing the loss of the tooth surface integrity” is a challenge for the dental profession for the 21st century. This includes the global management of the caries process as well as all the other causes of the loss of mineralised tissues, e.g. toothwear. The MITP aims to organize a global approach based on rational recommendations and following the holistic concepts of health and welfare, as illustrated in the flowchart (Figure 2). Two aspects of preventive care are described according to the patient susceptibility and the presence or not of cavitated
Table 1: A modified ICDAS 5-point visual scoring system to be used in general dental practice. Green captions describe the visual appearance of occlusal / smooth surfaces and the associated black captions, the equivalent histological features of the lesion. The clinical images provide examples of each score.

<table>
<thead>
<tr>
<th>Score</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>No or slight change in enamel translucency after prolonged air drying (>5 s). No enamel demineralisation or a narrow surface zone of opacity.</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Opacity or discolouration hardly visible on a wet surface, but distinctly visible after air drying. Enamel demineralisation limited to the outer 50% off the enamel layer.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Opacity or discolouration distinctly visible without air drying. No clinical cavitation detectable. Demineralisation involving between 50% of the enamel and the outer third of dentine.</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Localised enamel breakdown in opaque or discoloured enamel. +/- greyish discolouration from underlying dentine. Demineralisation involving the middle third of</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Cavitation in opaque or discoloured enamel exposing the underlying dentine. Demineralisation involving the inner third of dentine.</td>
</tr>
</tbody>
</table>

carious lesions: preventive standard care (or maintenance) and preventive active care.

Preventive standard care is indicated for low susceptibility patients in order to reduce the risk of recurrence of further disease (Table 3). This regimen includes daily oral hygiene (tooth brushing, use of fluoride toothpaste and inter-dental flossing), dietary advice as required and patient motivation. For patients who have not developed any new lesions over the past three years, this form of preventive strategy can be compared to conventional maintenance therapy. Individual oral health and diet prescription forms can be interesting tools for patient education and motivation (Figures 3 and 4). Individuals highly susceptible to caries can be provided with preventive active care, which includes the standard care regimen listed above plus professional decontamination, remineralisation, management of aetiological factors and the judicious use of fissure sealants (Table 3).

Decontamination

The modification of the oral microflora is an essential step of the MI approach of caries management14. Several options are available to rebalance the microflora, all of which can be used singly or in combination with one another:

- Professional Mechanical Tooth Cleaning (PMTC) involves the removal of dental plaque from all tooth surfaces using an ultrasonic scaler and fluoride prophylaxis paste with a polishing brush. It has been stated that even if caries is a multifactorial disease, dental plaque is the only cause and that "no one would question the old concept that a clean tooth never decays"17.
Table 2: Patient susceptibility chart. Listed are the major factors that, in combination, will provide a useful assessment of caries susceptibility. For simplicity, the rating of susceptibility has been limited to favourable or unfavourable.

<table>
<thead>
<tr>
<th>Status</th>
<th>“Yes” answer UNFAVOURABLE</th>
<th>“No” answer FAVOURABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
≥2 new/progressing /restored lesions in the last 2 to 3 years?72 |
| General factors | | |
| Diet | | |
Frequent snacks between meals? Anorexia, bulimia?72-78 |
| Fluoride | | |
No fluoride (toothpaste/rinse daily, fluoridated community)?73,79,80 |
| Health | | |
Sjogren’s Syndrome, chemotherapy, radiation to head and neck?81 |
| Medications | | |
Hyposalivatory medication?81,82 |
| Social | | |
Low socio-economic status?73,83-85 |
| Age | | |
Adolescent? Elderly?76,86,87 |
| Oral factors | | |
OHI?77,88-91 |
| Saliva | | |
Stimulated saliva flow <0.7ml/min?92 |
| Plaque | | |
Readily visible heavy plaque?86 |
| Bacterial balance? | | |
86,93,94
Table 3: Patient-centred management pathways based on lesion development and caries susceptibility, linked to the MITP flowcharts (Figures 1 and 2).

<table>
<thead>
<tr>
<th>Lesions</th>
<th>No Lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavitated (Irreversible)</td>
<td>Non-cavitated (Reversible)</td>
</tr>
<tr>
<td>Lesion score: 3-4</td>
<td>Lesion score: 0-2</td>
</tr>
<tr>
<td>High Susceptibility</td>
<td>High Susceptibility</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active Care PLUS</th>
<th>Active Care</th>
<th>Active Care</th>
<th>Standard Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Care</td>
<td>Active Care</td>
<td>Active Care</td>
<td>Standard Care</td>
</tr>
<tr>
<td>Fissure Sealants</td>
<td>Fissure Sealants</td>
<td>Fissure Sealants</td>
<td></td>
</tr>
<tr>
<td>RESTORE</td>
<td>RECALL</td>
<td>RECALL</td>
<td>RECALL</td>
</tr>
<tr>
<td>Transitional restorations: (GIC)</td>
<td>2-6 months</td>
<td>3-6 months</td>
<td>6 months</td>
</tr>
<tr>
<td>Long term restorations (Equia™ GCC, Tokyo, Japan Composites)</td>
<td>Fissure Sealants</td>
<td>Fissure Sealants</td>
<td>6-12 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12-18 months</td>
</tr>
</tbody>
</table>
• Prescription of periodic use chlorhexidine mouthwash alongside PMTC in some cases such as patients with severe periodontitis or after a surgical procedure.

• High quality transitional / stabilizing restorations can be placed after excavation of caries-infected dentine which will remove the grossly infected biomass and also eliminate the areas of plaque retention. The ideal material for this type of restoration is a high-viscosity glass ionomer cement (GIC) because of its adhesive properties, its capacity to act as an ionic fluoride reservoir and its capacity to exchange ions with demineralised dental tissues. The Atraumatic Restorative Technique (ART) (manual excavation of infected dentine, GIC restoration performed using press-finger technique) can be easily performed in every day practice with success in both children and adult patients alike. Transitional restorations can also be considered as one of the first steps for patient education to tooth brushing by decreasing the discomfort / pain caused by brushing on exposed dentine.

Final restorations using more sophisticated techniques (e.g. composite restorations, inlays, onlays) are not indicated until the caries risk factors are under control.

Remineralisation

The effect of topical fluoride on enamel remineralisation is well described. Reviews recently published by The Cochrane Collaboration reported the effective-ness of fluoride toothpaste, varnish, gel and mouthwash in prevention of caries in children and adolescents.

More recently, the casein derivatives and specifically, Casein Phosphopeptide- Amorphous Calcium Phosphate (CPP-ACP, Recaldent™) has been developed and studied for its capacity to deliver higher amounts of phosphate and calcium ions on the tooth surface (Clinical Case 1). Despite the conclusion of Azarpazhooh and Limeback’s review stating that there is a lack of double-blind, randomised, clinical trials without any loss, CPP-ACP (Recaldent™)-based remineralisation technologies are promising as adjunctive treatments to topical fluoride in prevention of the caries disease and in the non-invasive management of early caries lesions, especially in high risk individuals.

Management of saliva aetiological factors

The role of saliva in the neutralisation of acids produced within dental plaque biofilm and its involvement in the remineralisation of enamel is well-documented. Thus, all the medical conditions or treatments affecting saliva in terms of flow and composition, can affect the protective role of saliva in the carious process, so increasing the patient’s susceptibility to disease. Also, conditions leading to an acidic oral environment such as a high acidic drink intake, anorexia or gastro-oesophageal reflux have to be considered and controlled to prevent loss of tooth structure and integrity. Along with the modification of the oral microflora, some simple advice can be given to the patient to help rebalance the oral environment. Cheese or milk consumption can counterbalance an acidic intake as
Clinical Case 1: Complex demineralisation situation treated with CPP-ACP, Recaldent™ (MI Paste Plus™, GCC, Tokyo, Japan) Clinical case from Dr M. Basso.

can waiting before tooth brushing after an acid attack. The use of chewing gum can promote saliva stimulation, increasing flow output and buffering capacity. Gum supplemented with xylitol and CPP-ACP may increase its remineralisation potential. For dry mouth conditions, mouthrinses and toothpastes containing baking soda may decrease of the levels of cariogenic S. mutans in saliva and plaque. Patient comfort products like Dry Mouth gel™ (GCC Tokyo, Japan) or salivary substitutes can also be prescribed.

Fissure protection

Fissure sealants and surface protection have been recognized as effective techniques to prevent pit and fissure caries in children. They provide a physical barrier that inhibits microorganisms and food particles from collecting in pits and fissures. Sealants should be placed as soon as possible on pits and fissures of temporary and immature permanent teeth for highly susceptible patients (Clinical Case 2).
Oral hygiene routine:

<table>
<thead>
<tr>
<th>Daily toothbrushing</th>
<th>twice daily</th>
<th>three times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride toothpaste</td>
<td>normal strength</td>
<td>high strength</td>
</tr>
<tr>
<td></td>
<td>baking soda</td>
<td>child strength</td>
</tr>
<tr>
<td>Fluoride products</td>
<td>daily rinse</td>
<td>nightly gel</td>
</tr>
<tr>
<td></td>
<td>weekly rinse</td>
<td>weekly gel</td>
</tr>
<tr>
<td>Proximal cleaning</td>
<td>daily flossing</td>
<td>interdental brush</td>
</tr>
<tr>
<td>Tooth Mousse</td>
<td>morning after brushing</td>
<td>evening after brushing</td>
</tr>
<tr>
<td>Antibacterial agent</td>
<td>mouthrinse</td>
<td>antibacterial gel</td>
</tr>
<tr>
<td>Special devices</td>
<td>electric toothbrush</td>
<td>tongue brush</td>
</tr>
<tr>
<td></td>
<td>oral moisturizing gel</td>
<td>detergent-free toothpaste</td>
</tr>
</tbody>
</table>

Figure 3: An example of an oral hygiene prescription form which can act as a longitudinal record of the patient’s oral hygiene behaviour and a powerful motivational tool.

Food choice and lifestyle modification:

<table>
<thead>
<tr>
<th>Reduce</th>
<th>high sugar or starch snacks between main meals</th>
<th>high acid drinks</th>
<th>high caffeine drinks and foods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>smoking/tobacco use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase</td>
<td>water intake</td>
<td>baking soda mouthrinse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>consumption of milk-based snacks and drinks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dentally safe sweetener (to replace sugar)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chewing gum

| xylitol | Recaldent® |

Figure 4: An example of a simple diet prescription form that can aid patient understanding of the effects of diet on disease susceptibility, so enabling the patient to control their own future oral health management strategies.

Essentially, two types of pit and fissure sealant materials are currently available: flowable composite resin and GIC. Their different indications depend mostly on the clinical situation. GICs, during placement, are less sensitive to moisture than resin-based sealants. Thus, GICs are recommended in situations where placing a rubber dam is not possible (e.g. early eruption stage, phobic patients, young children). Moreover, Beirut et al. showed that high- viscosity GIC sealants have a four times higher chance of preventing caries development in re-exposed pits and fissures of occlusal surfaces in first molars than light-cured composite resin sealant material over a 1- to 3-year period.

MITP third phase - MI RESTORE

The goal of the MI approach is to stop/prevent the carious process but if the lesion has progressed to cavitation, restoration is the only way to rebuild the structural integrity and physiological function of the dentition. Also, the re-establishment of a smooth tooth-restoration surface...
Clinical Case 2: Fissure Protection. The patient was placed at high caries susceptibility due to the presence of several cavitated lesions. Composite sealants placed on the deep occlusal fissures of molars as fissure protection. Clinical Case from Dr S. Doméjean-Orliaguet.

to aid oral hygiene procedures and to reduce the colonization of a cariogenic plaque microflora, is of paramount importance1.

Restorative interventions in the MI philosophy are based on the principle of maximal preservation of natural tooth structure and on the use of biomimetic materials1. Depending on the loss of tooth structure, the depth of the lesion and the individual caries susceptibility, different restorative options have to be considered: a non-invasive restorative technique (e.g. remineralisation therapies and therapeutic sealants)48-51, or a minimally invasive restorative technique (Clinical Case 3).

With respect to the MI treatment philosophy, the “surgical” excisional approach to caries should be undertaken only as a last resort1,4,7. In that philosophy, neither enamel nor dentine should be removed simply because it has lost calcium and phosphate ions as a result of acid attack. Non-invasive procedures have to be taken into account in the decision process as no current restorative material can perfectly replace or mimic natural tooth structure in the long term. The application of specific remineralisation products (e.g. fluoride, RecaldentTM) on damaged tooth surfaces may heal demineralised tooth structure (Clinical Case 1).

Clinical Case 3: The second inferior premolar presented a carious lesion of the distal surface. The minimal invasive cavity preparation includes only the proximal surface: slot technique. The dental material chosen for the restoration is a GIC.
Clinical case from Dr J. Zalba
Enamel lesions can be remineralised (see MIP second phase- MI Prevent). Moreover, if lesions have not clinically cavitated, but have still histological penetrated dentine, there is potential for the overlying demineralised enamel to be remineralised using topical solutions and, in conjunction with the preventive measures outlined in the previous section, this can help to arrest further disease development. Also, there is evidence that lesions where the caries-infected and affected dentine are sealed beneath a well-placed adhesive restoration or therapeutic sealants, do not clinically or radiographically progress over at least 10 years. Of course, success will depend on numerous factors, including the size and depth of the lesion and the various patient factors including susceptibility factors, compliance to oral hygiene / dietary recommendations and recall. However, once a decision is made to surgically intervene (excessive loss of tooth structure, high patient susceptibility, low patient compliance), then minimally invasive strategies have to be considered. The main principle of the MI Restore is to limit the three-dimensional extent of caries removal. Extension for prevention is no longer a tenable concept according to current knowledge of the carious process and the developments of adhesive restorations. Only the removal of highly infected dentine biomass is required and affected dentine close to the pulp, which has a potential of remineralisation, can be retained and modified to “caries-inactive” when an overlying, sealed adhesive restoration is placed. Adopting the minimally invasive strategy of repairing previous restorations or placement of small restorations in small cavities and providing an adequate seal using adhesive restorative materials, allow the tooth structure a chance to heal.

Another consideration is the type of restorative material to be used. The MI restoration placed by the dentist with knowledge of the chemistry of the dental materials and their clinical handling characteristics, is likely to be successful for many years assuming the patient can maintain a favourable oral environment. Current materials of choice include dental resin composites and GICs. Resin composite has well reported advantages of high quality aesthetics, surface finish, wear resistance and strength. Advantages of ‘bio-active’ GIC include the self-adhesive chemical bond to tooth structure, the release of fluoride ions into subjacent dentine layers and its
relative simplicity of placement when compared to resin composite. When compared to resin composite, GIC generally shows lower resistance to compressive forces, rapid surface abrasion, evidence of marginal leakage and a less satisfactory long-term aesthetic appearance. In recent years, GIC chemistry has been developed in order to overcome some of these problems, so extending their indications for use. Recently, a new system coating GIC with a nano-filled light-cured resin (EQUIM Fuji IX GP Extra™ with G-Coat Plus™ GCC Tokyo, Japan) has been shown to improve the wear resistance and hardness of the restoration (Clinical Case 4).

MITP fourth phase – MI RECALL

MITP is based on the susceptibility of each patient and is customized according to the specific aetiological factors involved in each clinical case. Its success is largely dependent on the tailored preventive procedures and on the follow-up regimen. The main objectives of the MI recall visit are to control the oral balance, to prevent oral disease and possibly to detect and treat it at an early stage.

A recent systematic review on the subject published by the Cochrane Collaboration pointed out that there is still an ongoing international debate in relation to the clinical effectiveness and cost-effectiveness of recall intervals for specific types of care. Furthermore, the literature shows that the recall frequency varies markedly according to the different recommendations and policies among and within countries for children and adults. The MITP advisory board developed a consensus summarised in Table 3. Table 4 presents in detail how to structure the MI recall examination.

In order to customize the MI recall frequency, several important points have to be kept in mind:

- **The carious process is a slow process:** It takes about two years for a carious lesion to progress through the enamel. Patients aged 12 years or older having recall dental examinations at intervals longer than 6 months are not disadvantaged as they do not exhibit more severe dental caries or periodontal disease than those attending at intervals of 6 months.

- **Living in a fluoridated area retards lesion progression:** Residence in a fluoridated area has a marked retarding effect on both enamel and dentinal lesion progression. A clinical study conducted in 1996 in Brazil among schoolchildren specified that the lesion progression from the outer half of enamel into the outer half of dentine takes approximately 3–4 years in schoolchildren from the fluoridated areas and 2½ years in the non-fluoridated areas.

- **Age can be a predisposing factor:** In a low caries prevalence population, both the incidence of new caries lesions and that of lesion progression are lower during young adulthood than during adolescence. The risk of both new approximal enamel lesions and lesion progression is clearly greatest during early adolescence, in the first 2–3 years after eruption. For the elderly patient, professional support may be required for prolonged periods of time until efficient control could be achieved.
Table 4: How to structure the MI recall examination? Why and how to do it?

<table>
<thead>
<tr>
<th>Factors</th>
<th>What? Why?</th>
<th>How?</th>
</tr>
</thead>
<tbody>
<tr>
<td>General health</td>
<td>Up-date of the medical history</td>
<td>- Patient’s interview</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Questionnaire</td>
</tr>
<tr>
<td>Oral health review</td>
<td>Up-date of the dental history</td>
<td>- Patient’s interview</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Questionnaire</td>
</tr>
<tr>
<td>Comprehensive oral environment</td>
<td>Plaque control</td>
<td>- Plaque indicator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Plaque pH test</td>
</tr>
<tr>
<td></td>
<td>Bacteria assessment</td>
<td>- Bacteria test</td>
</tr>
<tr>
<td></td>
<td>Saliva assessment</td>
<td>- pH test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Buffer capacity test</td>
</tr>
<tr>
<td>Tooth surface integrity</td>
<td>Interception of:</td>
<td>- Visual exam</td>
</tr>
<tr>
<td></td>
<td>- Incipient lesions</td>
<td>- Use of magnification</td>
</tr>
<tr>
<td></td>
<td>- Defective sealants</td>
<td>- ”Gentle” probing as recommended by the ICDAS committee (ball-ended probe)</td>
</tr>
<tr>
<td></td>
<td>- Defective restorations</td>
<td>- Bitewings radiographs</td>
</tr>
<tr>
<td></td>
<td>(Fracture, open margins, sensitivity)</td>
<td></td>
</tr>
<tr>
<td>Effectiveness of the preventive regimen</td>
<td>Remineralisation control</td>
<td>- Visual exam</td>
</tr>
<tr>
<td></td>
<td>Early lesions stabilisation</td>
<td>- Bitewings radiographs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- QLF (Quantitative Light Fluorescence) for mineral content assessment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Dietary habit questionnaire</td>
</tr>
<tr>
<td>Re-assessment of the caries susceptibility</td>
<td>Pathological factors</td>
<td>- Same procedure as the baseline susceptibility assessment</td>
</tr>
<tr>
<td></td>
<td>Protective factors</td>
<td></td>
</tr>
<tr>
<td>Re-assessment of the patient’s motivation</td>
<td>Patient education</td>
<td>- Patient’s interview</td>
</tr>
<tr>
<td>and compliance</td>
<td></td>
<td>- Comparison with previous results</td>
</tr>
<tr>
<td>Re-adjustment of the MITP</td>
<td>Re-adjustment of:</td>
<td>- According to:</td>
</tr>
<tr>
<td></td>
<td>- The preventive regimen</td>
<td>- The up-dated patient’s susceptibility</td>
</tr>
<tr>
<td></td>
<td>- The restorative regimen</td>
<td>- The patient’s demand</td>
</tr>
<tr>
<td></td>
<td>- The recall frequency</td>
<td>- The clinical judgement of the dental team</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The Health System in which the practitioner is working through</td>
</tr>
</tbody>
</table>
• **The health system of each country has to be considered:** As an example, in the UK, following NHS regulations in the General Dental Service, dental practitioners are encouraged to perform 6-monthly check-ups and registration with an NHS dentist lapses after a 15-month gap between visits.

• **The recall frequency has to be adjusted to patient’s response to treatment:** At each recall appointment, the interval should be reviewed according to the patient’s responses to the oral care provided and the health outcomes. Patients should be informed that their recommended recall interval may vary over time.

Conclusions

• MITP is introduced as a simple patient-centred approach to MI oral health management in general dental practice.

• The successful implementation of MI requires a team approach ideally, involving the dentist co-ordinating care between the dental hygienist, therapist, oral health educator and dental nurse, adjusted to the relevant health care system.

• MI relies on a primary holistic/oral physician’s approach to the management of dental caries

• MI applies to all patient groups, with suitable adaptation when appropriate.

• The MI Advisory Board presents an easy to follow, step-by-step flowchart to be used in daily practice (Figure 2).

Resumen

La odontología se ha transformado completamente durante aproximadamente la última década. Uno de los temas más interesantes y que aún no se aplica completamente en la práctica, es la Mínima Intervención (MI) en Odontología. El concepto de Mínima Intervención (MI) se describe adecuadamente en la literatura,
y resume la lógica clínica del enfoque en la prevención y la causa en cariología. La Junta Consultiva de MI de GC Europe (GC Europe MI Advisory Board), que es un grupo paneuropeo de académicos y médicos generales, tiene como propósito presentar un enfoque de tratamiento MI basado en evidencia, para la práctica dental clínica rutinaria. Esta metodología de tratamiento se basa en su propio planeamiento de 4-Fases de Tratamiento; por ejemplo, Identificación MI, Prevención MI, Citación MI, y Restauración MI. Identificación MI Esta fase abarca/pone énfasis ‘no sólo’ en ubicar la caries sino también en identificar los factores que afectan la susceptibilidad del paciente. Nos remitimos tanto al criterio modificado de ICDAS (a fin de acceder a los signos clínicos de caries) como a criterios radiológicos similares (para aletas de mordida). Además, mediante varias técnicas de fácil aplicación, se identifican otros factores como calidad de la placa y saliva. Luego se evalúa toda esta información para calcular la susceptibilidad del paciente, establecer un diagnóstico y constituir un plan de tratamiento preventivo. Prevención MI y Citación MI Dependiendo de la susceptibilidad y factores de riesgo del paciente, se establecen los reglamentos de tratamiento preventivo. El enfoque ‘estándar’ incluye recomendaciones de higiene oral, asesoramiento dietético, motivación y mantenimiento del paciente. Aquellos pacientes con factores de alto riesgo necesitan de cuidado preventivo ‘activo’, el cual incluye medidas para disminuir el contenido bacterial de la cavidad oral, colocación de restauraciones transitorias y uso de agentes remineralizantes. Se utilizará un diagnóstico reiterado de los factores de riesgo a fin de evaluar, de manera individualizada para cada paciente, la necesidad de nivel exacto de medidas preventivas y el número de citaciones. Restauración MI Restauración MI presenta técnicas para la conservación de la estructura dental cuando se requiera colocar restauraciones. Se hacen distinciones entre técnicas no invasivas e invasivas. Esta sección incluye la presentación de casos clínicos en donde el enfoque ‘no invasivo’ o ‘de restauración’ han demostrado tener éxito.

References

11. ICDAS-Committee. International Caries Detection and Assessment System II (ICDAS II); 2005.

59. ANDEM. Recommandations et références dentaires. 1996.

Monitor and identify the main caries causing bacteria with Saliva-Check Mutans from GC.

Cavities and pre-cavitation white spot lesions indicate an active disease caused by cariogenic bacteria such as Streptococcus mutans.

Enhance the preventative measures and motivate your patients with Saliva-Check Mutans, a simple and accurate chairside test which detects, in 15 minutes only, the patient’s level of S. Mutans.