The preplacodal region: an ectodermal domain with multipotential progenitors that contribute to sense organs and cranial sensory ganglia

ANDREA STREIT*

Department of Craniofacial Development, King's College London, Guy's Campus, London, UK

ABSTRACT The otic primordium belongs to a group of related structures, the sensory placodes that contribute to the paired sense organs - ear, eye and olfactory epithelium - and to the distal parts of the cranial sensory ganglia. Recent evidence suggests that despite their diversity, all placodes share a common developmental origin and a common molecular mechanism which initiates their formation. At the base of placode induction lies the specification of a unique "placode field", termed the preplacodal region and acquisition of this "preplacodal state" is required for ectodermal cells to undergo otic development. Here I review the molecular mechanisms that sequentially subdivide the ectoderm to give rise to the placode territory.

KEY WORDS: BMP, ear, ectoderm, epibranchial, eye, FGF, olfactory epithelium, sensory placodes, Wnt

Introduction

The adult vertebrate inner ear is sophisticated both in structure and function. Responsible for the perception of sound, balance and acceleration it comprises the semicircular canals, cochlea and endolymphatic duct and a large variety of different cell types including hair and supporting cells within the sensory patches. It is therefore remarkable that during development it arises from a simple epithelium, the otic placode, which is first visible around the 10 somite stage next to rhombomeres 5 and 6 of the hindbrain (Bancroft and Bellairs, 1977; Verwoerd, et al., 1981; Haddon and Lewis, 1996; Schlosser and Northcutt, 2000). Subsequently, the placode invaginates and separates from the surface ectoderm to form the otic vesicle, which then undergoes complex morphogenetic events to generate the mature inner ear. However, already long before the otic placode is morphologically distinct, patterning events in the ectoderm are well under way to restrict its formation to the future hindbrain and to determine the position of future otic cells in relation to precursors for other sensory placodes (for review: Streit, 2004; Bailey and Streit, 2006; Schlosser, 2006). In particular, classical and recent evidence has highlighted the importance of a unique territory in the head ectoderm that contains precursors for all cranial placodes, including the otic primordium and has therefore been named the preplacodal region (PPR; Jacobson, 1963; for review: Streit, 2004; Bailey and Streit, 2006; Schlosser, 2006). The acquisition of a 'preplacodal state' appears to be a prerequisite for ectodermal cells to become specified as otic precursors (Martin and Groves, 2006).

The preplacodal region – a common ground state for all sensory placodes

Cranial placodes form an apparently disparate group of structures that contribute to the eye, ear, olfactory epithelium and lateral line (fish, amphibians) and to the distal portions of the cranial sensory ganglia (Fig. 1A). Their derivatives in the adult vary largely in structure, function and in the cell types they produce ranging from simple lens fibre cells to sensory receptor cells like hair cells in the ear or olfactory receptor cells in the nasal epithelium. Their development and derivatives have recently been reviewed extensively elsewhere (Baker and Bronner-Fraser, 2001; Streit, 2004; Schlosser, 2006). Despite their apparent differences they share similarities during early development: all placodes form columnar epithelia next to the neural tube, contain cells that undergo epithelial-mesenchymal transition, contribute to the cranial sensory nervous system and are neurogenic with the exception of the lens. In addition, recent evidence suggests that they initially share a common developmental programme before they diversify and acquire unique identity (see below for discussion; Bailey, et al., 2006) and that cells must go through a

Abbreviations used in this paper: BMP, bone morphogenetic protein; FGF, fibroblast growth factor; PPR, preplacodal region.

*Address correspondence to: Andrea Streit. Department of Craniofacial Development, King's College London, Guy's Campus, London SE1 9RT, UK.
Fax: 44-20-7188-1674. e-mail: andrea.streit@kcl.ac.uk

0214-6282/2007/$30.00
© UBC Press
Printed in Spain
www.intjdevbiol.com
'preplacodal state' before they can respond to placode inducing signals (Martin and Groves, 2006). A continuous placode territory, where all placode precursors reside, can first be identified at neurula stages and is defined by the expression of unique set of molecular markers as well as by common properties of all cells contained in it (Jacobson, 1963; Kozlowski et al., 1997; Streit, 2002; Bhattacharyya et al., 2004; Schlosser and Ahrens, 2004; Bailey et al., 2006; for review: Streit, 2004; Bailey and Streit, 2006; Schlosser, 2006). Here, I review how sequential subdivision of the ectoderm leads to the establishment of the preplacodal region, its functional relevance to placode development and to otic induction in particular and how it becomes subdivided to generate precursors for different placodes.

Subdivision of the ectoderm: changes in gene expression and the segregation of cell fates

Like neural, neural crest and epidermal precursors, placodal cells are ectodermal derivatives. How and when do cells of different fates segregate? Fate map analysis in zebrafish, *Xenopus*, mouse and chick show that around the time of gastrulation the ectoderm is roughly subdivided into neural and non-neural ectoderm, although a large intermediate region exists in which both fates overlap (Keller, 1975; Keller, 1976; Tam, 1989; Kimmel et al., 1990; García-Martínez et al., 1993; Hatada and Stern, 1994; Lawson, 1999; Fernandez-Garre et al., 2002). This broad separation of cells with different fates is reflected by gene expression (Fig. 2A). Pre-neural markers such as ERNI (chick; Streit et al., 2000), Sox3 (Penzel et al., 1997; Rex et al., 1997; Kudoh et al., 2004), Geminin (Xenopus; Kroll et al., 1998) and SoxD (Xenopus; Mizuseki et al., 1998) are concentrated in the future neural domain and gradually decrease towards the non-neural ectoderm, while genes like Gata2, Gata3, Dlx-3, -5, Foxi1 or Foxi3, BMP4 and Msx1 show the opposite expression pattern (Papalopulu and Kintner, 1993; Akimenko et al., 1994; Streit et al., 1998; Pera et al., 1999; Sheng and Stern, 1999; Streit and Stern, 1999; Luo et al., 2001; Streit, 2002; Liu et al., 2003; Solomon et al., 2003; Ohyama and Groves, 2004; Matsuo-Takasaki et al., 2005). At this stage, precursors for different placodes, including the otic, are still widely dispersed and intermingled with future neural, epidermal and neural crest cells in the chick (Garcia-Martinez et al., 1993; Hatada and Stern, 1994; Streit unpublished), although a more restricted distribution has been reported in zebrafish (Kozlowski et al., 1997).

With the formation of the definitive neural plate (Fig. 2B), neural specific genes like Sox2 become up-regulated (Rex et al., 1997; Kishi et al., 2000), while pre-neural markers either become confined to a broad band of ectoderm surrounding the neural plate (ERNI) or remain expressed in both domains (Sox3, Geminin). Likewise, some non-neural markers become upregulated in (e.g. Dlx and Gata) or confined to (e.g. Foxi1) the ectoderm next to the neural plate. Thus, at early neurula stages a contiguous stripe of ectoderm coexpresses pre-neural and non-neural ectoderm markers and has therefore been termed the ‘border’ (Streit and Stern, 1999; McLaren et al., 2003; Woda et al., 2003; Meulemans and Bronner-Fraser, 2004). Within the border region precursors for neural, neural crest, epidermis and placodes remain interspersed (Kozlowski et al., 1997; Streit, 2002; Bhattacharyya et al., 2004).

Shortly thereafter, members of the Six and Eya families of nuclear factors begin to be expressed in a horseshoe-shaped domain surrounding the rostral neural plate from fore- to hindbrain levels (Fig. 2C) (Mishima and Tomarev, 1998; Esteve and Bovolenta, 1999; Sahly et al., 1999; Kobayashi et al., 2000; Pandur and Moody, 2000; McLaren et al., 2003; Bessarab et al., 2004; Schlosser and Ahrens, 2004; Litsiou et al., 2005). Simultaneously, precursors for all placodes become concentrated in the Six/Eya territory to form a contiguous, unique domain: the preplacodal region (Streit, 2002; Bhattacharyya et al., 2004) (Fig. 1B). Unlike other factors that have a more widespread expression in the ectoderm (Dlx3/5 and Gata3), Six1, Six4, Eya1 and/or Eya2 are expressed only in a small patch next to the developing neural plate. Furthermore, Sox6, a non-neural ectodermal marker, is downregulated in this area (Bronner-Fraser et al., 2004). The border region is therefore considered the preplacodal domain (Fig. 2D).

![Fig. 1. Position of sensory placodes at the 10-somite and fate maps at late gastrula and neural plate stages.](image-url)
are exclusively expressed in the preplacodal region.

Around the same time, neural crest specific genes such as Snail2, FoxD3 or Sox10 begin to be expressed in a thin line along most of the neural plate (except its most rostral part, where no neural crest cells are generated; Couly and Le Douarin, 1985; Couly and Le Douarin, 1987). Although some overlap between neural crest and placode precursors is still observed at this stage in chick, both fates are completely segregated by the 4-5 somite stage, when the neural plate has begun to fold and neural folds are morphologically obvious (Fig. 2D) (Streit, 2002; Bhattacharya, et al., 2004). Thus, by late neurula stages, the preplacodal region is molecularly and cellularly distinct from other ectodermal derivatives.

Transcription factors that position the neural plate border

As outlined above, a number of transcription factors are co-expressed at the border of neural and non-neural ectoderm before the onset of definitive neural crest and placode markers and are therefore likely to function upstream of preplacodal genes. Indeed, some of these have been implicated in controlling the position of the border and appear to be required for the specification of border derivatives. Msx1 is a direct mediator of BMP signalling and as such functions in promoting epidermal and specification of border derivatives. Msx1 is a direct mediator of the position of the border and appear to be required for the genes. Indeed, some of these have been implicated in controlling and are therefore likely to function upstream of preplacodal gene expression (Woda, et al., 2003), while in addition both seem to play antagonistic roles during the specification of neural crest and placode precursors. Misexpression of Dlx5, Dlx3 or constitutively active Dlx3 represses neural and neural crest cells, while promoting the expression of preplacodal Six1 and -4 (Luo, et al., 2001; McLarren, et al., 2003; Woda, et al., 2003). In contrast, overexpression of dominant negative Dlx3 shifts the neural plate border laterally or results in a complete loss of preplacodal gene expression (Woda, et al., 2003), while in zebrafish, knockdown or deletion of dlx3b and -4b (b380 mutants) leads to a severe reduction of olfactory, trigeminal and otic pla-

![Fig. 2. Changes in gene expression from gastrula to early somite stages.](image)

Fig. 2. Changes in gene expression from gastrula to early somite stages. Diagrams show a cross section through chick embryos at gastrula (A), head process (B), 1-2-somite (C) and 4-5-somite (D) stages.

(A) At gastrula stages, the epiblast is roughly subdivided into neural and non-neural territories. (B) The neural plate can be identified morphologically expressing definitive neural markers (Sox2), while preneural markers (ERNI) become confined to the border, where non-neural markers become upregulated (Dlx5, Gata3, BMP4, Msx1, FoxiI). (C) Preplacodal markers begin to be expressed (Six1, Six4, Eya2); there is some overlap between BMP4, Msx1 and Pax7, which are later confined to the neural folds where neural crest cells arise. (D) Neural folds are morphologically distinct and express neural crest cells markers (Slug, Pax7). There is no overlap between neural crest and preplacodal genes. NP, neural plate; B, border; NNE, non-neural ectoderm; NC, neural crest; PPR, preplacodal region; EPI, future epidermis.
leads to an enlarged otic vesicle only within the normal ear field, where both genes are co-expressed. In contrast, loss of both genes completely abolishes the formation of otic structures (Solomon, et al., 2004; Hans, et al., 2007). Experiments in Xenopus demonstrate an even earlier role for Foxi; loss of Foxi1 function leads to an expansion of the neural plate at gastrula stages, while its overexpression suppresses neural development while simultaneously promoting epidermal character (Matsuo-Takasaki, et al., 2005). It should be noted that so far an early role for Foxi class genes has not been demonstrated in mouse; this may be due the difference in Foxi gene expression in different species. Together, these findings identify Foxi as one of the early players in ectodermal patterning involved in setting the border between neural and non-neural ectoderm and as a prerequisite for otic and epibranchial development. Future experiments will need to address its potential role in the formation of other placodes and its epistatic relation to genes specific for the placode territory.

Thus, members of the Dix, Msx and Foxi family are expressed early and in a broad domain and regulate neural crest and placode specific genes. They are therefore at the top of a hierarchy controlling the specification of cells that arise from the border region and are likely to be intracellular mediators of the signalling pathways that pattern the ectoderm and position the placode territory next to the cranial neural plate.

The Six/Eya/Dach network in placode development

Among the many transcription factors expressed in the preplacodal region, only members of the Six and Eya families match precisely the location of all placode precursors and are subsequently maintained in all placodes, but lost from non-placodal ectoderm. They have been implicated in multiple processes during placode formation and are therefore likely candidates to be involved in defining the placode territory at early developmental stages.

Six and Eya genes in sensory organ formation

Their importance in sensory organ development was initially reported in Drosophila, where their homologues sine oculis (so) and eyes absent (eya) form a non-linear, regulatory network that together with dachshund (dac) control eye development and photoreceptor cell specification (for review: Kumar and Moses, 2001; Donner and Maas, 2004; Pappu and Mardon, 2004; Rebay, et al., 2005). Loss of any of these genes results in defects or absence of the eye (Bonini, et al., 1993; Cheyette, et al., 1994; Mardon, et al., 1994; Quiring, et al., 1994; Serikaku and O’Tousa, 1994), while their overexpression leads to ectopic eye formation in restricted positions of other imaginal discs (Halder, et al., 1995; Bonini, et al., 1997; Chen, et al., 1997; Pignoni, et al., 1997; Shen and Mardon, 1997; Weasner, et al., 2007). So,eya and dac regulate each others’ expression and function downstream of the Pax6 homologue eyeless (ey): their expression and eye-inducing ability depends on the presence of functional Ey (Halder, et al., 1998; Niimi, et al., 1999; Bui, et al., 2000; Punzo, et al., 2002; Pappu, et al., 2005; for review: Kumar and Moses, 2001; Pappu and Mardon, 2004).

In vertebrates, six Six genes have been identified (Six1-6), while there are only four Eya genes (Eya1-4) (for review: Kawakami, et al., 2000; Wawersik and Maas, 2000; Hanson, 2001; Rebay, et al., 2005). Of those Six1, Six4, Eya1 and Eya2 are found in the pre-placodal region, while combinations of different family members are coexpressed in mature placodes (Mishima and Tomarev, 1998; Esteve and Bovolenta, 1999; Sahly, et al., 1999; Kobayashi, et al., 2000; Pandur and Moody, 2000; McLaren, et al., 2003; Bessarab, et al., 2004; Schlosser and Ahrens, 2004; Litsiou, et al., 2005). Of the Eya gene family, only Eya3 is never found in any placode. As in the fly, they are often co-localised with members of the Pax gene family (e.g. Pax6: lens, olfactory; Pax2: otic and epibranchial; Pax3: trigeminal) although their regulatory relationship appears to be more complicated. For example, in the mouse olfactory ectoderm initial expression of Six3, Eya1 and Dach1 proteins is Pax6 independent, while their maintenance in the placode requires Pax6 (Purcell, et al., 2005). Likewise, in the presumptive lens ectoderm, Pax6 is controlled by Six3 but once the placode is formed Six3 expression depends on Pax6 activity (Purcell, et al., 2005; Liu, et al., 2006). In the ear Pax2, Eya1 and Six1 are expressed in partially overlapping domains; Eya1 and Six1 expression is independent of Pax2, while Six1 depends on Eya1 function (Zheng, et al., 2003; Burton, et al., 2004). In the preplacodal region Sixand Eyttranscripts are present prior to the onset of Pax gene and are therefore likely to act independently.

The importance of Six and Eya genes for normal placode development has been demonstrated through loss-of-function in mouse, zebrafish and humans. Eya1 and Six1 have been studied extensively and play a role in the formation of most placode derivatives (see below), reflecting their widespread expression in the preplacodal region. Likewise, mutations in Eya4 and Six5 are associated with defects in placode derivatives (Klesert, et al., 2000; Wayne, et al., 2001; Zhang, et al., 2004), while information about Six2 and Eya2 is very sparse. Mice lacking Eya2 function have been generated, however, their placodal phenotype has not been described in detail (Grifone, et al., 2007). So far, no placode phenotype has been described for Six4 mutant mice (Ozaki, et al., 2001; Grifone, et al., 2005); one possible explanation may be functional redundancy between genes of the same family that are normally co-expressed. In support of this, Six1 and -4 double knock-out mice show a more severe muscle, kidney and trigeminal ganglion phenotype than Six1 mutants alone (Grifone, et al., 2005; Konishi, et al., 2006; Kobayashi, et al., 2007). However, it is not known whether this is also the case for other placodes.

Mice heterozygous for Eya1 display a phenotype very similar to an inherited form of deafness in humans, the Branchio-Oto-Renal (BOR) syndrome, a form of conductive hearing loss due to defects in middle ear development (Abdelhak, et al., 1997; Xu, et al., 1999). Mice completely lacking Eya1 function have severe inner ear defects (Johnson, et al., 1999; Xu, et al., 1999; Li, et al., 2003; Zou, et al., 2004; Friedman, et al., 2005; Zou, et al., 2006); otic development arrests at vesicle stages, sensory patches remain small and while cochlear-vestibular neurons initially form, they later undergo apoptosis. In addition, the trigeminal ganglion is reduced in size, epibranchial placode derived petrosal, geniculate and nodose ganglia are missing or greatly reduced and fail to express neuronal determination genes. Zebrasfish dgeared mutants (Eya1) also show ear defects and the development of the lateral line placodes is impaired, however cranial ganglia are generally unaffected (Kozlowski, et al., 2005; Whitfield, 2005). Eya1 mutations in humans are also associated with congenital
eye defects (Azuma, et al., 2000), although these have not been described in mice. Finally, mutations in the eya-homologous region of Eya4 lead to late-onset deafness in humans (Wayne, et al., 2001; Zhang, et al., 2004; Schonberger, et al., 2005).

Like Eya1, Six1 has been implicated in normal development of the inner ear and mutations in human Six1 cause BOR syndrome like Eya1 mutations (Ruf, et al., 2004). Mice lacking Six1 function display very similar phenotypes to Eya1 mutant mice: otic vesicles are small, lack the cochlea and semicircular canals and do not form a cochlear-vestibular ganglion (Laclef, et al., 2003; Li, et al., 2003; Zheng, et al., 2003; Ozaki, et al., 2004). In addition, trigeminal and epibranchial placode derived neurons are reduced or absent and development of the olfactory epithelium is impaired. In zebrafish, Six1 promotes the formation of hair cells by increasing their proliferation, while inhibiting neurogenesis by inducing apoptosis (Bricaud and Collazo, 2006). Finally, Six5 mutations lead to cataract formation in the lens (Kiesert, et al., 2000; Sarkar, et al., 2000; Bateman, et al., 2006) and are associated with BOR syndrome in humans (Hoskins, et al., 2007).

The widespread defects in almost all placode derivatives in Six1 and/or Eya1 mutants argue for a conserved function of this network during sensory placode formation or for an involvement at very early stages development, maybe in the preplacodal region. Unfortunately, none of the above studies has addressed this issue. In Xenopus, Six1 function has been assessed at preplacodal stages (Brugmann, et al., 2004), where it promotes the expression of other preplacodal genes like Eya1, while repressing neural, neural crest and epidermal fates. These findings point to a potentially early role of Six and Eya proteins in ectodermal patterning by establishing the preplacodal region and conferring common preplacodal properties (see below). However, further studies are required to determine their precise role at these early stages.

Molecular function and targets of the Six/Eya/Dach network

Six, Eya and Dach proteins are thought to interact physically and to act as a transcription factor complex to activate downstream target genes (for review: Relaix and Buckingham, 1999; Kawakami, et al., 2000; Wawersik and Maas, 2000; Hanson, 2001; Silver and Rebay, 2005). Six genes encode homeodomain DNA binding proteins (Seo, et al., 1999; Kawakami, et al., 2000) that can act either as transcriptional activators or repressors depending on the recruitment of appropriate cofactors. One group of such cofactors are the Dach proteins (Mardon, et al., 1994; Hammond, et al., 1998; Davis, et al., 1999), nuclear factors which together with other repressors inhibit target gene transcription. In addition, Dach proteins themselves seem to bind DNA (Ikeda, et al., 2002) and modulate BMP signalling by interacting with Smad4 (Wu, et al., 2003; Kida, et al., 2004). Eya proteins represent transcriptional coactivators that are recruited to DNA via their interaction with Six proteins (Ohto, et al., 1999; Silver, et al., 2003). Recently, Eya proteins have been shown to have catalytic activity as protein phosphatases and this activity appears to be required for their function as activators (Li, et al., 2003; Rayapureddi, et al., 2003; Tootle, et al., 2003). Direct binding has indeed been shown for Eya and Dach and Six and Eya proteins (Chen, et al., 1997; Pignoni, et al., 1997; Ohto, et al., 1999; Ikeda, et al., 2002; Li, et al., 2003; Silver, et al., 2003) and nuclear translocation of Eya protein is dependent on its interaction with members of the Six family (Ohto, et al., 1999). Furthermore, Groucho repressors have been shown to bind Six proteins, in particular Six3 directly and thus modulate its activity (Kobayashi, et al., 2001; Zhu, et al., 2002).

So far only a few direct target genes have been identified, among them cyclin D1 and CyclinA1 and -D1, involved in cell cycle control (Coletta, et al., 2004; Yu, et al., 2006). Indeed, both Six1 and Eya2 appear to promote tumorigenesis by enhancing proliferation (Coletta, et al., 2004; Zhang, et al., 2005; Yu, et al., 2006), while high levels of Eya2 seem to trigger apoptosis (Clark, et al., 2002). In the otic vesicle, loss of Eya1 and Six1 leads to reduced proliferation, while in Drosophila loss of either so, dac or eya initially results in overgrowth followed by cell death (Bonini, et al., 1993; Pignoni, et al., 1997; Xu, et al., 1999; Li, et al., 2003; Ozaki, et al., 2004; Kozlowski, et al., 2005; Zou, et al., 2006). In zebrafish, Six1 plays opposite roles in hair cells and otic neurons that arise from common sensory patches. Six1 induces apoptosis in neuronal precursors, but promotes proliferation in sensory hair cells (Bricaud and Collazo, 2006) thereby regulating the balance between both cell types. Thus, the Six/Eya/Dach network may control the number of placode precursors during early stages of development, differential proliferation and apoptosis during morphogenesis and the number of precursors for different cell types within placodes.

Although data in Drosophila show that the Six/Eya/Dach cassette can induce cell fate changes by making non-eye cells adopt an eye fate, the exact molecular mechanisms of how they operate during this process are still unknown (Bonini, et al., 1997; Pignoni, et al., 1997; Shen and Mardon, 1997; Weasner, et al., 2007). Eyeless is directly regulated by sine oculis, however further targets have not been identified. In vertebrates, functional Six and Eya are required for myogenesis (Heanue, et al., 1999) for review Relaix and Buckingham, 1999), but the evidence that they control cell specification without affecting proliferation during placode development is very poor. As mentioned above, misexpression of Six1 promotes preplacodal gene expression (Brugmann, et al., 2004), but by itself or in combination with Eya is insufficient to generate mature placiodes or to activate Pax genes (Christophorou and Streit, unpublihised). Since only cells within the preplacodal region are competent to respond to placode inducing signals, one potential role of Six and Eya genes may be to impart competence to such inducing factors.

In summary, there is considerable evidence for a crucial role of the Six/Eya/Dach network in various aspects of placode development, however in many cases the precise molecular mechanisms remain to be identified. Characterisation of direct targets in different cellular contexts will be an important step to understand their function.

Signalling pathways inducing the neural plate border and the preplacodal region

Formation of the preplacodal region is initiated through a series of events that first define the border of the neural plate and subsequently subdivide the border into placode and neural crest precursors. This is achieved through interactions with surrounding tissues – neural plate, future epidermis and the underlying head mesoderm – which secrete factors that promote or attenuate placode formation. Thus, different signalling pathways converge
to position the placode territory in the head ectoderm next to the neural plate.

FGF pathway

Several observations implicate FGFs as one of the factors that initiate the formation of the border region. In the chick, misexpression of FGF8 rapidly induces ectopic expression of a set of genes normally coexpressed in the border: ERNI, Sox3, Dlx5 and Msx1 (Streit and Stern, 1999; Streit, et al., 2000; Litsiou, et al., 2005). However, FGF alone is not sufficient to generate any of the cell types that arise from the border: neural crest and placodes (Mayor, et al., 1997; LaBonne and Bronner-Fraser, 1998; Monsoro-Burq, et al., 2003; Ahrens and Schlosser, 2005; Litsiou, et al., 2005). In contrast, FGF inhibition using the antagonist SU5402 or dominant negative receptors shows that active signalling through the FGF pathway is required for at least some of the border genes (Sox3, ERNI; Streit, et al., 2000) and for the generation of border derivatives (Mayor, et al., 1997; LaBonne and Bronner-Fraser, 1998; Monsoro-Burq, et al., 2003; Ahrens and Schlosser, 2005; Litsiou, et al., 2005). Together, these findings argue for a role of FGFs in promoting border character in ectodermal cells as a prerequisite to generate neural crest and placode cells. Accordingly, FGFs are expressed in the head mesoderm and trunk paraxial mesoderm that comes to underlie the border region and in Xenopus at the edge of the neural plate (Niswander and Martin, 1992; Shamim and Mason, 1999; Streit and Stern, 1999; Ahrens and Schlosser, 2005).

In addition, FGFs seem to play a role in preplacodal induction at slightly later stages. FGF signalling from surrounding tissues (head mesoderm in chick, neural plate in Xenopus) is required for the induction of preplacodal markers, while ectopic expression of FGF8 promotes expression of Eya2, but not of any other placode specific gene (Brugmann, et al., 2004; Ahrens and Schlosser, 2005; Litsiou, et al., 2005). Thus, FGFs play a dual role in the supporting placode formation: initially they promote the expression of border genes and later initiate expression of a subset of preplacodal markers.

BMP pathway

Modulation of BMP signalling has been widely implicated in early ectodermal patterning (Wilson, et al., 1997; Marchant, et al., 1998; Barth, et al., 1999; Tribulo, et al., 2003; for review Sasai and De Robertis, 1997; Aybar and Mayor, 2002; Stern, 2005). Indeed, Foxi is dependent on BMP signalling in fish and frogs (Matsuo-Takasaki, et al., 2005; Phillips, et al., 2006). In zebrafish, Foxi expression is reduced or lost in BMP7 and BMP2a mutants, while it is downregulated in Xenopus in the presence of the BMP antagonist Chordin. In contrast, overexpression of BMP4 causes an expansion of Foxi at the expense of neural tissue. Likewise, BMP signalling is required for Dlx gene expression in chick, frog and fish (Nguyen, et al., 1998; Feledy, et al., 1999; Pera, et al., 1999; Luo, et al., 2001), while Msx1 is a direct target of BMP signalling and mediates its ability to promote epidermis (Suzuki, et al., 1997). These findings implicate BMP activity, like FGF signalling, in the regulation of border specific genes.

One model mainly based on experiments in Xenopus suggests that a gradient of BMP activity within the ectoderm acts to allocate different cell fates for review (Sasai and De Robertis, 1997; Aybar and Mayor, 2002; Monica and Brivanlou, 2006). In support of this idea, Xenopus animal caps treated with different concentrations of BMP antagonists form epidermis in the presence of high levels of BMP activity, while neural crest and preplacodal cells are generated at intermediate and neural plate at low levels (Wilson, et al., 1997; Tribulo, et al., 2003; Brugmann, et al., 2004; Glavic, et al., 2004). Likewise, zebrafish mutants with reduced BMP activity (and thus a shallower gradient) show a relatively larger expansion of the neural crest territory than of the neural plate (Nguyen, et al., 1998; Barth, et al., 1999). However, the placode territory is merely displaced,

![Image](https://via.placeholder.com/150)
but not expanded and different placodes are affected differentially arguing against a simple gradient model (Neave, et al., 1997; Nguyen, et al., 1998).

In chick, the main region sensitive to modulation of BMP signalling is the neural plate border itself (Streit and Stern, 1999). Here, misexpression of BMP antagonists leads to a shift of the border towards the non-neural ectoderm, while misexpression of BMP4 narrows the neural plate and shifts the border medially. In contrast, modulation of the BMP pathway away from the border does not have any effect. Likewise, local reduction of BMP signalling close to the preplacodal region expands this territory in chick and *Xenopus*, but is not sufficient to induce it ectopically in future epidermis (Glavic, et al., 2004; Ahrens and Schlosser, 2005; Litsiou, et al., 2005). One possible explanation to reconcile these differences is that *Xenopus* animal caps may contain border territory and are therefore particularly sensitive to changes in BMP activity.

Thus, modulation of BMP activity and loss- or gain-of-function experiments for border specific transcription factors show the same effect: they shift the border of the neural plate. It is therefore likely that BMP signalling acts via mediators such as Foxi1, Dlx and Msx to alter preplacodal gene expression indirectly.

Wnt pathway

As discussed above, both FGF and BMP pathways modulate the expression of preplacodal genes: FGF8 activates Eya2, while inhibition of BMP signalling expands preplacodal markers (Brugmann, et al., 2004; Ahrens and Schlosser, 2005; Litsiou, et al., 2005). However, even the combination of FGF and BMP antagonists is not sufficient to induce preplacodal character in ectoderm away from the endogenous placode territory or in the future trunk ectoderm (Brugmann, et al., 2004; Ahrens and Schlosser, 2005; Litsiou, et al., 2005). Like inhibition of BMP, misexpression of Wnt antagonists leads to an expansion of preplacodal gene expression at the expense of future epidermis (Brugmann, et al., 2004; Litsiou, et al., 2005). Interestingly, Six1, -4 and Eya2 also extend into the trunk ectoderm, where placode formation is not normally observed. In contrast, activation of canonical Wnt signalling represses preplacodal gene expression suggesting that Wnt attenuation allows the specification of placode precursors (Litsiou, et al., 2005). Furthermore, a combination of FGF with Wnt and BMP antagonists induces an ectopic preplacodal region in naïve ectoderm in the absence of neural and mesodermal tissue indicating that these factors promote placode character directly (Litsiou, et al., 2005). Thus, temporal and spatial integration of all three signals is important to generate placode precursors.

Unlike placode precursors, neural crest cells require canonical Wnt signalling (for review: Aybar and Mayor, 2002; Knecht and Bronner-Fraser, 2002). These findings suggest that at the border of the neural plate exposure to different levels of Wnt activity determines whether cells adopt placode or neural crest cell fates. Indeed, activation of Wnt signalling expands neural crest markers into the placode territory, while its inhibition has the opposite effect (Litsiou, et al., 2005). In this context it is interesting that at slightly later stages when the otic placode begins to form, Wnt signalling promotes placode formation: Pax2a cells that activate the pathway become otic, while those that do not, develop into epidermis (Ohyama, et al., 2006). These findings highlight that interpretation of the same signalling pathway is highly context dependent and is determined by the developmental history of individual cells.

A model for induction of the preplacodal region

The data summarised above highlight that induction of the preplacodal region is a multi-step process, which requires the integration of different signals produced by different tissues. The following model tries to integrate tissue interactions and signalling pathways (Fig. 3). As a first step, a border territory is set up in the early neurula ectoderm between future neural and epidermal cells. Genes specific for this region are under the control of FGF and/or BMP signalling. BMP4 and -7 are expressed in the non-neural ectoderm and transcript levels and phospho-smad activity are highest at the edge of the neural plate (Fainsod, et al., 1994; Streit, et al., 1998; Streit and Stern, 1999; Faure, et al., 2002), which in turn may lead to the upregulation of some border genes (Dlx, Msx, Foxi1). FGFs emanating from the organiser and the mesoderm underlying the border maintain the expression of Sox3 and ERNI and cooperate with BMPs to promote Dlx and Msx gene expression. Once established the border gives rise to two different cell types: neural crest and placodes. BMP4 and -7 transcripts concentrate in the forming neural folds (Fainsod, et al., 1994; Liem, et al., 1995), where Wnts begin to be expressed; together they promote formation of neural crest cells. The future heart mesoderm expands anteriorly and comes to underlie the placode territory (Kimmel and Warga, 1988; Keller and Tibbetts, 1989; Tam, et al., 1997; Redkar, et al., 2001; Hochgreb, et al., 2003). This tissue expresses FGF4, the BMP antagonist DAN and the Wnt inhibitor Cerberus (Ogita, et al., 2001), while more lateral and posterior mesoderm contains high levels of Wnt8c (Hume and Dodd, 1993; Litsiou, et al., 2005). Wnt8b is found in the trunk, but not the head ectoderm (Garcia-Castro, et al., 2002; Schubert, et al., 2002). Thus, the preplacodal region is surrounded by inhibitory factors at its medial, lateral and posterior edges. Signals from the heart mesoderm protect the overlying ectoderm from these inhibitory influences and allow it to adopt placode fate.

Anterior-posterior patterning of the preplacodal region

Within the preplacodal region precursors for different placodes are intermingled, although some separation of individual populations along the anterior posterior axis is already apparent. Precursors for anterior placodes (adenohypophysis, olfactory, lens) are located in the rostral preplacodal region, while precursors for posterior placodes (trigeminal, epibranchial, otic, lateral line) are restricted more caudally (D’Amico-Martel and Noden, 1983; Couly and Le Douarin, 1985; Couly and Le Douarin, 1988; Kozlowski, et al., 1997; Streit, 2002; Bhattacharyya, et al., 2004; Litsiou, et al., 2005). This approximate subdivision is reflected by the onset of regionally restricted expression of transcription factors (and few other genes), shortly after the induction of the placode territory. As development proceeds, the preplacodal region becomes molecularly divided in successively smaller sub-domains such that by the time placodes can be identified morphologically each appears to have a unique transcription factor code (Torres and Giraldez, 1998; Bailey and Streit, 2006; Schlosser, 2006). These changes...
from data in the literature that show territory. Note: the relative boundaries of gene expression are inferred part of the trigeminal region and Pax2 and -8 in the otic/epibranchial posteriorly. At early somite stages Pax3 is upregulated in the ophthalmic and Otx2 are concentrated anteriorly, while Irx1-3 and Gbx2 are restricted length of the preplacodal region (anterior to the left, posterior to the right). early neurula stages preplacodal markers are expressed along the entire is characterised by intrathalamica (Kobayashi, 2001; Li and Joyner, 2001), while Six3 and Irx3 define a boundary different compartments (for review: Martinez, 2001; Nakamura, et al., 2001). Although these patterns appear to be roughly complementary, closer inspection reveals that differ-

Fig. 4. Anterior-posterior patterning of the preplacodal region. At early neurula stages preplacodal markers are expressed along the entire length of the preplacodal region (anterior to the left, posterior to the right). Soon thereafter, regionalised gene expression is apparent: Pax6, Six3 and Otx2 are concentrated anteriorly, while irx1-3 and Gbx2 are restricted posteriorly. At early somite stages Pax3 is upregulated in the ophthalmic region and Pax2 and -8 in the otic/epibranchial territory. Note: the relative boundaries of gene expression are inferred from data in the literature that show in situ hybridisation with a single gene (references see text). Double in situ hybridisation is required to confirm this model.

Transcription factors in anterior-posterior patterning

At neurula stages, the rostral preplacodal region begins to express Otx2, Six3, Pitx3, Dmbx1 and Pax6, while its caudal part is characterised by Irx1-2 and -3 and Gbx2 (Li, et al., 1994; Bally-Cuif, et al., 1995; Oliver, et al., 1995; Panneese, et al., 1995; Hirsch and Harris, 1997; Belletrof, et al., 1998; Gomez-Skarmeta, et al., 1998; Shamim and Mason, 1998; Goriely, et al., 1999; Zhou, et al., 2000; Glavic, et al., 2002; Gogoi, et al., 2002; Matsumoto, et al., 2004; Dutta, et al., 2005; Zilinski, et al., 2005; Liu, et al., 2006; for review: Schlosser, 2006). Although these patterns appear to be roughly complementary, closer inspection reveals that different transcripts do not share the same rostro-caudal boundary (Fig. 4). Rather pairs of transcription factors have boundaries at different levels: Six3 expression abuts Irx, while Otx2 and Gbx2 abut at slightly more posterior levels. These patterns are very reminiscent of their expression in the neural plate, where the same pairs of genes control the subdivision of the brain into different compartments (for review: Martinez, 2001; Nakamura, 2001; Hidalgo-Sanchez, et al., 2005). Gbx2 and Otx2 are involved in positioning the midbrain-hindbrain boundary (Broccoli, et al., 1999; Millet, et al., 1999; Katahira, et al., 2000; Acampora, et al., 2001; Li and Joyner, 2001), while Sipx3 and Irx3 define a boundary in the forebrain that later corresponds to the zona limitans intrathalamica (Kobayashi, et al., 2002).

At early somite stages, members of the Pax gene family become expressed in more restricted domains within the preplacodal region (Bang, et al., 1997; Hirsch and Harris, 1997 Li, 1994; Stark, et al., 1997; Heller and Brandli, 1999; Groves and Bronner-Fraser, 2000). Pax3 is detected in the ophthalmic part of the trigeminal, Pax8 in the otic and Pax2/epibranchial, otic and lateral line territory. Together Pax genes cover the entire placode region in non-overlapping patterns except Pax2 and -8 which are co-expressed in the future otic placode. Interestingly, in the neural plate Pax2 and -8 represent another pair of transcription factors that position a boundary, in this case between future diencephalon and mesencephalon (Okafuji, et al., 1999; Schwarz, et al., 1999; Matsunaga, et al., 2000; Schwarz, et al., 2000). As it is the case for Six3/Irx3 and Otx2/Gbx2, in the brain Pax2 and -8 negatively cross regulate each other, leading to sharpening of the molecular boundary and separation of different cell fates. It is tempting to speculate that the same molecular mechanisms that pattern the brain also operate to impart regional identity to the placodes.

Loss of Otx2 function results in severe defects in the head including the brain, olfactory and lens placode as well as patterning of the otic vesicle (Acampora, et al., 1995; for review: Acampora, et al., 2001). However, because of the severe fore- and midbrain defects, it has been difficult to assay its direct function in placode development without the availability of tissue specific knock outs. Mice deficient in Gbx2 (Lin, et al., 2005) and Pax2 function show patterning defects in the otic vesicle (Torres, et al., 1999; Burton, et al., 2004), while loss of Six3 or Pax6 affects lens and olfactory development (Hogan, et al., 1988; Quinn, et al., 1996; Grindley, et al., 1997; Lagutin, et al., 2003; Liu, et al., 2006). In *Xenopus*, Irx1 is required for the expression of the early preplacodal marker *SIX1* and later placode specific genes like *Sox2* and *Pax2* (Glavic, et al., 2004). Thus, mutation in or loss of any of these genes leads to defects in placode development, although their role in early patterning of the preplacodal region remains elusive probably due to functional redundancy with other members of the same family that are expressed in similar patterns (Schlosser, 2006).

Signalling pathways in anterior-posterior patterning

In the neural plate, regional identity is initially set up through the graded activity of Wnts, FGF and retinoic acid, all of which possess posteriorising activity and control some of the transcription factors described above (for review: Yamaguchi, 2001; Wilson and Houst, 2004; Kiecker and Lumsden, 2005; Rhinn, et al., 2005). Gbx2 and Otx2 are involved in positioning the midbrain-hindbrain boundary (Broccoli, et al., 1999; Millet, et al., 1999; Katahira, et al., 2000; Acampora, et al., 2001; Li and Joyner, 2001), while Sipx3 and Irx3 define a boundary in the forebrain that later corresponds to the zona limitans intrathalamica (Kobayashi, et al., 2002).

At early somite stages, members of the Pax gene family become expressed in more restricted domains within the preplacodal region (Bang, et al., 1997; Hirsch and Harris, 1997 Li, 1994; Stark, et al., 1997; Heller and Brandli, 1999; Groves and Bronner-Fraser, 2000). Pax3 is detected in the ophthalmic part of the trigeminal, Pax8 in the otic and Pax2/epibranchial, otic and lateral line territory. Together Pax genes cover the entire placode region in non-overlapping patterns except Pax2 and -8 which are co-expressed in the future otic placode. Interestingly, in the neural plate Pax2 and -8 represent another pair of transcription factors that position a boundary, in this case between future diencephalon and mesencephalon (Okafuji, et al., 1999; Schwarz, et al., 1999; Matsunaga, et al., 2000; Schwarz, et al., 2000). As it is the case for Six3/Irx3 and Otx2/Gbx2, in the brain Pax2 and -8 negatively cross regulate each other, leading to sharpening of the molecular boundary and separation of different cell fates. It is tempting to speculate that the same molecular mechanisms that pattern the brain also operate to impart regional identity to the placodes.

Loss of Otx2 function results in severe defects in the head including the brain, olfactory and lens placode as well as patterning of the otic vesicle (Acampora, et al., 1995; for review: Acampora, et al., 2001). However, because of the severe fore- and midbrain defects, it has been difficult to assay its direct function in placode development without the availability of tissue specific knock outs. Mice deficient in Gbx2 (Lin, et al., 2005) and Pax2 function show patterning defects in the otic vesicle (Torres, et al., 1999; Burton, et al., 2004), while loss of Six3 or Pax6 affects lens and olfactory development (Hogan, et al., 1988; Quinn, et al., 1996; Grindley, et al., 1997; Lagutin, et al., 2003; Liu, et al., 2006). In *Xenopus*, Irx1 is required for the expression of the early preplacodal marker *SIX1* and later placode specific genes like *Sox2* and *Pax2* (Glavic, et al., 2004). Thus, mutation in or loss of any of these genes leads to defects in placode development, although their role in early patterning of the preplacodal region remains elusive probably due to functional redundancy with other members of the same family that are expressed in similar patterns (Schlosser, 2006).

Signalling pathways in anterior-posterior patterning

In the neural plate, regional identity is initially set up through the graded activity of Wnts, FGF and retinoic acid, all of which possess posteriorising activity and control some of the transcription factors described above (for review: Yamaguchi, 2001; Wilson and Houart, 2004; Kiecker and Lumsden, 2005; Rhinn, et al., 2005). Do the same signalling pathways control anterior posterior patterning in the preplacodal region? Experiments in *Xenopus* revealed that the formation of neural crest cells indeed requires Wnt and retinoic acid activity and that anterior neural folds, which normally do not generate neural crest cells, do so in the presence of these factors (Villanueva, et al., 2002). In chick and Xenopus, the expression of preplacodal markers can be expanded into the trunk ectoderm in the presence of Wnt antagonists (Bruggmann, et al., 2004; Litsiou, et al., 2005). In contrast, the zebrafish mutants masterblind and headless, in which Wnt signalling is overactivated, show a loss of anterior placodes (lens, olfactory), but an expansion of trigeminal neurons around the anterior neural plate (Kim, et al., 2000; Heisenberg, et al., 2001). Thus, differential activation of the Wnt pathway along the rostro-caudal axis influences patterning of the preplacodal region suggesting that the mechanisms that allocate regional identity in the neural plate may act more globally to pattern the entire ectoderm.

Cells in the preplacodal region share a common developmental programme

As outlined at the beginning of this review, placodes form diverse structures with different functional properties and a vari-

ORIELY, A., DIEZ DEL CORRAL, R. and STOREY, K. G. (1999). c-irx2 expres-

Establishment of the preplacodal region 457

ZHU, C. C., DIKER, M. A., UCHIKAWA, M., KONDOH, H., LAGUTIN, O. V. and

ZOU, D., SILVIUS, D., FRITZSCH, B. and XU, P. X. (2004). Eya1 and Six1 are essential for early steps of sensory neurogenesis in mammalian cranial pla-

Published Online: 27th August 2007

Related, previously published Int. J. Dev. Biol. articles

See our Special Issue Ear Development edited by Fernando Giraldez and Bernd Fritzsch at: http://www.ijdb.ehu.es/web/contents.php?vol=51&issue=6-7

Analysis of Netrin 1 receptors during inner ear development
Tanja Matilainen, Maarja Haugas, Jordan A. Kreidberg and Marjo Salminen

Cell proliferation during the early compartmentalization of the Xenopus laevis inner ear
Quincy A. Quick and Elba E. Serrano

Single-cell transcriptional profiles and spatial patterning of the mammalian olfactory epithelium
Ian Tietjen, Jason Rihel and Catherine G. Dulac

Functional analysis of FGF3 during zebrafish inner ear development
V Vendrell, D Gimmnopulos, T Becker, T Schimmang
Int. J. Dev. Biol. (2001) 45: S105-S106

Regulation of neural crest cell populations: occurrence, distribution and underlying mechanisms.
J L Vaglia and B K Hall

B K Hall and S Ekanayake