Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher’s definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher’s website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The Influence of Recording Equipment on the Accuracy of Respiratory Rate Estimation from the Electrocardiogram or Pulse Oximeter

P. Charlton1,2 and T. Bonnici1,2, D. Clifton3, J. Alastuey1, L. Tarassenko3, P.J. Watkinson4, R. Beale12

1King's College London \hspace{0.5cm} 2Guy's and St Thomas’ NHS Foundation Trust \hspace{0.5cm} 3University of Oxford \hspace{0.5cm} 4Oxford Biomedical Research Centre

Patient monitors filter electrocardiogram (ECG) and pulse oximeter (PPG) signals prior to output. Would respiratory rate (RR) estimates derived from these signals be more accurate if unfiltered signals were used?

Methods

Signal Acquisition: 42 young (18-40 years), and 16 elderly (≥ 70) healthy volunteers took part. Minimally filtered PPG and ECG signals were acquired using laboratory equipment. Filtered signals were acquired from a tethered monitor. Filtered PPG was also acquired from a wireless monitor. Reference RR was obtained from oronasal airflow and chest impedance signals.

RR Estimation: Breaths were detected from the respiratory modulations (Fig. 2) in the time-domain using 3-point peak detection. In the frequency-domain, the RR was identified as the frequency with the maximum FFT power within 6-40 bpm.

Statistical Analysis: The null hypothesis, that the difference between RMSEs obtained using laboratory and routine equipment is zero, was tested using the paired, two-sample t-test at 5\% significance level.

Results

The null hypothesis, that filtering had no impact on accuracy of RR estimates was accepted, when using all but two of the estimation methods (Table 1). In one of these instances the filtered signals provided more accurate estimates (blue), and in the other the unfiltered signals gave higher accuracy (red).

Conclusions

The accuracy of RRs estimated from PPG and ECG signals differed minimally between minimally filtered and routinely filtered signals in this healthy cohort. We found no evidence to suggest that more accurate RR estimates could be obtained from unfiltered signals in this cohort.

Future Work

This is part of a larger study to assess the influence of physiological and technical factors on the accuracy of algorithms for RR estimation from the ECG and PPG.

Table 1: The median (quartiles) subject-specific RMSEs of RR estimates derived from ECG and PPG signals. RR was estimated in the time and frequency domains from the three respiratory modulations: AM, FM and BW (as shown in Fig. 2).

<table>
<thead>
<tr>
<th>Signal</th>
<th>Time-domain Methods</th>
<th>Frequency-domain Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM</td>
<td>FM</td>
</tr>
<tr>
<td>PPG</td>
<td>Minimally filtered</td>
<td>3.4(2.9 - 4.6)</td>
</tr>
<tr>
<td></td>
<td>Tethered Monitor</td>
<td>4.0(2.6 - 5.0)</td>
</tr>
<tr>
<td></td>
<td>Wireless Monitor</td>
<td>3.9(3.0 - 4.7)</td>
</tr>
<tr>
<td>ECG</td>
<td>Minimally filtered</td>
<td>3.7(2.6 - 4.5)</td>
</tr>
<tr>
<td></td>
<td>Tethered Monitor</td>
<td>3.0(2.3 - 4.7)</td>
</tr>
</tbody>
</table>

References

Acknowledgements

This research was supported by the EPSRC [Grant EP/F058845/1], the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre at Guy’s & St Thomas NHS Foundation Trust, and the NIHR Oxford Biomedical Research Centre Programme. The views expressed are those of the authors and not necessarily those of the EPSRC, NHS, NIHR or Department of Health.