Citation for published version (APA):
Re-evaluating diagnostic thresholds for intrahepatic cholestasis of pregnancy: case-control and cohort study

Abstract:
Objective: To determine the optimal total serum bile acid (TSBA) threshold and sampling time for accurate intrahepatic cholestasis of pregnancy (ICP) diagnosis.
Design: Case-control, retrospective cohort studies.
Setting: Antenatal clinics, clinical research facilities.
Population: Women with ICP or uncomplicated pregnancies.
Methods: Serial TSBA measurements were performed pre-/post-prandially in 42 women with ICP or uncomplicated pregnancy. Third trimester non-fasting TSBA reference ranges were calculated from 561 women of black, south Asian and white ethnicity. Rates of adverse perinatal outcomes for women with ICP but peak non-fasting TSBA below the upper reference range limit were compared with healthy populations.
Main Outcome Measures: Sensitivity and specificity of common TSBA thresholds for ICP diagnosis, using fasting and postprandial TSBA.
Calculation of normal reference ranges of non-fasting TSBA. Results: TSBA concentrations increased markedly postprandially in all groups, with overlap between healthy pregnancy and mild ICP (TSBA < 40 μmol/L). The specificity of ICP diagnosis was higher when fasting, however, corresponded to <30% sensitivity for diagnosis of mild disease. Using TSBA ≥ 40 μmol/L to define severe ICP, fasting measurements identified 9% (1/11), while non-fasting measurements detected over 91% with severe ICP. The highest upper limit of the non-fasting TSBA reference range was 18.3 μmol/L (95% confidence interval 15.0 to 35.6 μmol/L). A re-evaluation of published ICP meta-analysis data demonstrated no increase in spontaneous preterm birth or stillbirth in women with TSBA < 19 μmol/L. Conclusions: Postprandial TSBA levels are required to identify high-risk ICP pregnancies (TSBA ≥ 40 μmol/L). The postprandial TSBA rise in normal pregnancy indicates that a non-fasting threshold of ≥ 19 μmol/L would improve diagnostic accuracy.
Re-evaluating diagnostic thresholds for intrahepatic cholestasis of pregnancy: case-control and cohort study

Alice L. Mitchell1*, Caroline Ovadia1*, Argyro Syngelaki2, Kyriakos Souretis2, Marcus Martineau3, Joanna Girling4, Tharni Vasavan1, Hei Man Fan1, Paul T. Seed5, Jenny Chambers6, Julian R.F. Walters3, Kypros Nicolaides2, Catherine Williamson1#.

1 Department of Women and Children’s Health, Guy’s Campus, King’s College London, London, SE1 1UL, United Kingdom.
2 Harris Birthright Research Centre for Fetal Medicine, Fetal Medicine Research Institute, King’s College Hospital, London, SE5 8BB, United Kingdom.
3 Department of Metabolism, Digestion and Reproduction, Hammersmith Campus, Imperial College London, London, W12 0NN, United Kingdom.
4 Obstetrics and Gynaecology Department, West Middlesex Hospital, Middlesex, TW7 6AF, United Kingdom.
5 Women and Children’s Health, St Thomas’ Campus, King’s College London, London, SE1 7EH, United Kingdom.
6 Women’s Health Research Centre, Imperial College London, London, W12 0HS, United Kingdom.

* Authors contributed equally

# Corresponding author: Professor Catherine Williamson. Email: catherine.williamson@kcl.ac.uk.

Department of Women and Children’s Health, Guy’s Campus, King’s College London, London, SE1 1UL, United Kingdom. Telephone number: 020 7848 6350

Running title: Non-fasting bile acid reference range in pregnancy
ABSTRACT

Objective: To determine the optimal total serum bile acid (TSBA) threshold and blood-sampling time for accurate diagnosis of intrahepatic cholestasis of pregnancy (ICP). Design: Case-control and retrospective cohort studies. Setting: Antenatal clinics and clinical research facilities. Population: Women with ICP or uncomplicated pregnancies.

Methods: Serial TSBA measurements were performed pre-/post-prandially in 42 women with ICP and uncomplicated pregnancies were given timed standardised meals and serial TSBA measurements performed. Third trimester non-fasting TSBA reference intervals were next calculated from 561 women of black, south Asian and white ethnicity. Rates of adverse perinatal outcomes for women with ICP but peak non-fasting TSBA below the upper reference limit were compared with matched healthy populations.

Main Outcome Measures: Sensitivity and specificity of common TSBA thresholds for ICP and severe ICP, using fasting and postprandial TSBA measurements. Calculation of normal reference ranges of non-fasting TSBA in the third trimester of uncomplicated pregnancy.

Results: TSBA concentrations increased markedly postprandially in all groups women with ICP and uncomplicated pregnancies, with overlap between healthy pregnancy and mild ICP (TSBA<40μmol/L). Whilst the specificity of ICP diagnosis using current thresholds was highest when fasting, however, corresponded to <30% sensitivity for the diagnosis of mild ICP. Using a TSBA threshold of ≥40μmol/L to define for diagnosis of severe ICP, Fasting-fasting TSBA measurements identified 9% (1/11) of women with severe ICP (TSBA ≥40μmol/L), while non-fasting measurements detected over 91% with severe ICP.

The highest upper limit of the non-fasting TSBA reference interval was in black women, 18.3μmol/L (95% confidence interval 15.0 to 35.6μmol/L). A re-evaluation of previously published
ICP meta-analysis data demonstrated no increase in spontaneous preterm birth or stillbirth in women with TSBA <19\(\mu\text{mol/L}\).

**Conclusions:** Postprandial TSBA levels are required to identify high-risk ICP pregnancies (TSBA\(\geq 40\mu\text{mol/L}\)). The postprandial TSBA rise in normal pregnancy indicates that a non-fasting threshold of \(\geq 19\mu\text{mol/L}\) would improve diagnostic accuracy.

**Funding:** Wellcome Trust, ICP Support, Fetal Medicine Foundation, NIHR, Tommy’s.

**Keywords:** cholestasis; clinical decision making; liver diseases in pregnancy.

**Tweetable Abstract:**

Non-fasting bile acids improve the diagnostic accuracy of ICP diagnosis.
Introduction

Intrahepatic cholestasis of pregnancy (ICP) is defined by gestational pruritus and elevated total serum bile acids (TSBA). The incidence of ICP varies between 0.2-5.6% of pregnancies,1,2 which may be accounted for by differences in ethnic populations3 as well as the diagnostic criteria used. Diagnostic thresholds for ICP range from ≥6μmol/L to >15μmol/L, depending upon hospital and national guidelines4–6, and there is currently no consensus as to whether TSBA should be measured fasting or postprandially,7 although it is well documented that TSBA concentrations rise after food.8,9

The reference interval for TSBA concentration has not been adequately established in pregnant women. Initial studies calculated the TSBA reference intervals based upon Gaussian data distribution, referencing mean ± 2x standard deviations.10 However, analysis of TSBA levels from four studies during healthy gestation demonstrated that normal TSBA concentrations are not normally-distributed,11 with concentrations up to 16.7μmol/L reported.12

ICP is associated with an increased risk of adverse pregnancy outcomes, including meconium-stained amniotic fluid, neonatal unit admission, spontaneous preterm birth, and stillbirth.13–15 Glantz et al. demonstrated an increased risk of fetal complications in 96 women with fasting TSBA >40μmol/L, describing this as ‘severe ICP’.15 An individual patient data meta-analysis, comprising fasting or postprandial samples from 5,557 women with ICP, determined that only women with peak TSBA levels ≥100μmol/L have an increased risk of stillbirth; those with TSBA ≥40μmol/L had increased risks of spontaneous preterm birth.14

No pharmacological treatment or monitoring strategy has been found to reduce stillbirth in ICP,16 such that many women undergo iatrogenic preterm birth with the aim of reducing this risk.4,14
However, preterm birth is associated with an increased risk for the neonate, including respiratory
distress \(^7\) and cognitive impairment in childhood.\(^8\) Thus, correct diagnosis of the severity of ICP is
necessary to enable clinicians to identify women with TSBA levels associated with increased risk of
stillbirth to facilitate informed decision-making about timing of delivery.

To address concerns regarding accuracy and thresholds for ICP diagnosis, we performed three
interlinked studies. In the first we measured fasting and serial postprandial TSBA levels in response
to standardised meals in women with ICP and uncomplicated pregnancies. In the second study we
determined reference intervals for postprandial TSBA from a separate cohort of women in their third
trimester of uncomplicated pregnancy. In the third study, data from a published individual patient
data meta-analysis \(^14\) were used to compare rates of adverse perinatal outcomes for women with ICP
but peak TSBA below the upper reference limit for TSBA identified in Study 2 with matched normal
populations, to determine the effect of altering the diagnostic threshold for ICP.

**Methods**

**Patient and Public Involvement**

This study was designed in consultation with the charity ICP Support (www.icpsupport.org), whose
input was incorporated into the original study protocol, application for ethical approval, patient
information leaflets and consent forms. The protocol for Study 1 was modified following feedback
from participants to ensure that the breakfast meal was acceptable, and recruitment included
women identified through the charity social media and website. A video produced by participants
was available for subsequent women, which provided them with information on the timeline for the
study (https://m.youtube.com/watch?v=D9Bv8YIUlZI). Similar channels will be used to disseminate
the findings, including Q&A sessions, available on the charity’s YouTube and Facebook pages, and
website. For a study that was quite onerous to the participants, having PPI from the beginning enabled us to understand how much could be asked of women, and revealed how motivated women affected by ICP, in particular, are to participate in research. Similarly, ongoing feedback received through the study has enabled us to modify protocols for future studies. In future, formal collation of this feedback would be beneficial, particularly where undertaken at multiple sites and by multiple researchers.

Three interlinked studies were performed with the aim of establishing the optimal TSBA threshold and blood sampling time for accurate diagnosis of intrahepatic cholestasis of pregnancy (ICP) (Figure 1).

Study 1: Standardised Diet Case-Control Study

Pregnant women between 16\textsuperscript{th} and 39\textsuperscript{th} weeks’ gestation with singleton or multifetal pregnancies were recruited prospectively between 2012 and 2017 from Queen Charlotte’s and Chelsea Hospital, St. Thomas’ Hospital and West Middlesex University Hospital, United Kingdom, and via the charity ICP Support. Four women with uncomplicated pregnancy, one woman with mild ICP, and two women with severe ICP (defined as peak TSBA \( \geq 40 \text{umol/L} \)) were in their second trimester at the time of study; all other women were in their third trimester at the time of participation. Women with ICP were diagnosed according to each hospitals’ diagnostic criteria, which included unexplained pruritus and elevated random TSBA greater than the laboratory upper limit of normal, and exclusion of pre-existing liver disorders and pregnancy-specific causes of liver dysfunction such as HELLP (haemolysis, elevated liver enzymes and low platelets) syndrome, pre-eclampsia, and acute fatty liver of pregnancy. All women with ICP were diagnosed prior to study participation, and none with uncomplicated pregnancies later developed ICP.
Serum samples for analysis of TSBA were taken from 42 women given a standardised diet from 18:00 the preceding day until 15:00 on the day of investigation, as previously described. Participants were given fixed meals consisting of an evening meal the preceding day (50g fat, 100g carbohydrates, 1000 calories), breakfast (50g fat, 75g carbohydrates, 770 calories) and lunch (50g fat, 100g carbohydrates, 1000 calories). Blood samples were taken fasting and 3 hours post-lunch. A subset of 23 participants also underwent phlebotomy at 1 and 2 hours post-breakfast, immediately prior to lunch, and 20 minutes and 1 hour post-lunch; sample sizes for each blood sampling time can be found in Table S1. Samples where technical difficulties occurred were omitted from the analysis. Participants remained sedentary throughout the study. No adverse events were recorded. Blood samples were analysed blind using the Total Bile Acids Assay Kit (Diazyme, Diazyme Laboratories Inc, Poway, CA, USA) in validated clinical laboratories of the respective hospitals. Participants’ maximum TSBA concentration during the study day was used to group women with ICP by disease severity according to previously suggested thresholds: seven had mild ICP (all TSBA measurements <40μmol/L), eleven had ‘severe’ ICP (one or more TSBA measurements ≥40μmol/L), and 24 participants had uncomplicated pregnancies. Data were plotted using GraphPad Prism (version 8.4.1) (GraphPad Software Inc, San Diego, CA).

The specificity and sensitivity of ICP diagnosis were calculated using a spread of commonly used diagnostic thresholds (≥6μmol/L, ≥11μmol/L and >15μmol/L), and ≥40μmol/L threshold for severe ICP. Specificity and sensitivity were calculated for TSBA levels when fasting, and 20 minutes, 1 hour, and 3 hours post-lunch.

Study 2: Reference Interval Serum Samples
Non-fasting serum samples were retrospectively analysed from samples collected for a prospective observational cohort study for early prediction of pregnancy complications at King's College Hospital, London, UK. Women attending this visit, held at 30\(^{+0}\) to 34\(^{+6}\) weeks’ gestation between 2011 and 2014 and at 35\(^{+0}\) to 37\(^{+6}\) weeks’ gestation between 2014 and 2016, were invited to participate in the study, and serum samples were stored at -80\(^\circ\)C from those who provided informed written consent. Maternal characteristics and medical history were recorded. Data on pregnancy outcome were obtained from the maternity computerised records or the general medical practitioners of the women.

561 samples were randomly selected from our database of stored samples with uncomplicated pregnancies resulting in live birth after 38 weeks’ gestation of phenotypically normal neonates with birth weight between the 10\(^{th}\) and 90\(^{th}\) percentiles for gestational age. The downloaded database file was sorted at random, and cases selected according to gestation at sampling to ensure a comparable distribution of samples across the gestational weeks of the third trimester of pregnancy. Samples were analysed retrospectively using Total Bile Acid reagent (Randox) run on a Siemens Advia 1800 by Affinity Biomarker Labs, London. Samples were analysed blind. Five samples produced TSBA values below the limit of detection at <0.3\(\mu\)mol/L; these data were included at an estimated value of 0.2\(\mu\)mol/L to retain all data. No adverse events were recorded from performing the venepuncture.

Non-fasting TSBA reference intervals were calculated for the third trimester of pregnancy according to black (n = 160), south Asian (n = 160) or white (n = 241) ancestry, exceeding the minimum suggested 120 samples for determining reference intervals and confidence intervals according to Clinical Laboratory and Standards Institute. Analyses were performed in Stata software (version 15.1, StataCorp, College Station, Texas). TSBA values were log-transformed and differences between ancestral groups compared using a one-way ANOVA with post-hoc Bonferroni correction, with
multiple linear regression with robust standard errors used to determine the size of the differences in non-fasting TSBA values. Correlations between the log(TSBA) and maternal age, maternal BMI or gestational age were determined assessed using Pearson’s correlation coefficient. All TSBA values were included for reference interval calculation, according to the International Federation of Clinical Chemistry and Clinical and Laboratory Standards Institute C28-A3 recommendations. Calculation of the lower and upper limits of reference intervals was performed using nonparametric method with 95% confidence intervals (CI).

Study 3: Comparison of adverse perinatal outcome rates for women with ICP with peak bile acids below a suggested diagnostic threshold with background population rates

Rates of adverse perinatal outcomes for women with peak TSBA concentrations below or equal to the highest upper limit of the calculated reference interval were obtained from participants in a published individual patient data meta-analysis of women with ICP, selecting women with non-fasted peak TSBA concentrations only. These were compared with published rates of adverse perinatal outcomes in uncomplicated pregnancies or at population levels, matching comparators as closely as possible, and compared using the Chi² test with Yates’ correction and Woolflogit to calculate the CI in GraphPad Prism.

De-identified original and summary data, and the study protocol are available upon reasonable request of the authors.

There are no core outcome sets relevant to this study.

Funding
This work was funded by Wellcome Trust (Grant Award: 092993/Z/10/Z, external peer review for scientific quality), ICP Support, Fetal Medicine Foundation, the National Institute for Health Research Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation (Grant Award: IS-BRC-1215-20006) and Tommy’s (Registered charity no. 1060508). CW is supported by an NIHR Senior Investigator Award. Paul T Seed is partly funded by King’s Health Partners Institute of Women and Children’s Health, Tommy’s and by ARC South London (NIHR). ICP Support was involved in participant recruitment for the timed meal study, and the Fetal Medicine Foundation provided the uncomplicated third trimester of pregnancy samples and funded the analysis of TSBA values for normal range calculation.

Results

To assess the diurnal TSBA variation, women with uncomplicated pregnancies and women diagnosed with ICP were given standardised meals with known calorie and fat content, and TSBA measured fasting and postprandially over the course of the day (Table 1). Women with ICP were separated into those with TSBA $<$40µmol/L throughout the day (mild ICP), and those with at least one sample $\geq$40µmol/L (severe ICP) (Figure 1).

In all participants, TSBA concentrations increased markedly after a meal, particularly in women with severe ICP (Figure 2A, Table S1). We sought to determine the optimal time after starting the meal to measure TSBA in women with mild or severe ICP, calculating the sensitivity and specificity for fasting and postprandial timepoints using different mild ($\geq$6, $\geq$11, and $\geq$15µmol/L) and severe ($\geq$40µmol/L) TSBA thresholds currently used $^{4,5,13,24}$ (Figure 2B-D, Table S2).
Fasting TSBA concentration was 100% specific for the diagnosis of ICP using thresholds \( \geq 11 \mu\text{mol/L} \) and 91% specific at \( \geq 6 \mu\text{mol/L} \) (Figure 2B). For women with mild ICP, all fasting TSBA were <11\,\mu\text{mol/L} (0% sensitive), and a threshold of \( \geq 6 \mu\text{mol/L} \) gave only 29% sensitivity (2/7 women). Optimal sensitivity was observed 20 minutes post-lunch (Figure 2C), but only a threshold of \( \geq 6 \mu\text{mol/L} \) achieved >90% sensitivity, which corresponded to just 10% specificity for mild ICP. Thus, no timepoint or currently used TSBA threshold achieved both good sensitivity and specificity for the diagnosis of mild ICP. When considering severe ICP diagnosis, fasting TSBA concentrations were only 9% (1/11) sensitive, whereas all postprandial measurements were >90% sensitive (Figure 2D), with 27% (3/11) of women with severe ICP having postprandial TSBA \( \geq 100 \mu\text{mol/L} \). Thus, the majority of women with severe ICP would not be diagnosed as having severe disease using a fasting sample.

Postprandial TSBA concentrations for women with uncomplicated pregnancies were greater for many women than currently used diagnostic thresholds for ICP (Figure 2A, Table S1). Thus, we calculated reference intervals for TSBA in uncomplicated pregnancies using non-fasting samples (a pragmatic time for phlebotomy during pregnancy, when fasting prior to sampling is particularly unacceptable \(^{25}\)). We measured non-fasting TSBA concentrations from 561 women in the third trimester of uncomplicated pregnancies of black, south Asian, or white ethnicity (Study 2, Figure 1, Table 2).

The distribution of TSBA concentrations was skewed for all ethnicities, which best transformed to an approximately Gaussian distribution using log transformation (Figure S1). Black women had non-fasting TSBA 25.8% higher (CI 9.6% to 44.4%, \( p = 0.001 \)) than white women, and 24.3% higher (CI 5.7% to 46.1%, \( p = 0.008 \)) than south Asian women. Non-fasting TSBA levels from south Asian women were similar to those of white women (1.22% higher, CI -12.1% to 16.5%, \( p = 0.866 \)) (Figure
No correlation was observed between TSBA and gestational age within the third trimester, maternal age, or BMI in any ethnic group (Table S3).

Due to the non-normal distribution of TSBA values, we determined the normal reference range for the different ancestral groups using the nonparametric method. The lower reference limit for TSBA was between 0.7-1.0μmol/L (CI 0.2 to 1.5μmol/L) for all groups; however, the upper reference limit varied by ethnicity, at 10.4μmol/L (CI 8.7 to 11.5μmol/L), 15.5μmol/L (CI 11.5 to 47.6μmol/L), and 18.3μmol/L (CI 15.0 to 35.6μmol/L) for white, south Asian and black women, respectively (Table 2).

Applying the highest upper TSBA reference limit of 18.3μmol/L, 2/7 women with mild ICP who participated in the standardised diet study (Study 1) did not reach this threshold (Figure 2A). Applying a TSBA threshold of ≤19μmol/L, 0.9% (5/561) of women with uncomplicated pregnancy from Study 2 would have been falsely diagnosed, compared to 2.3% (13/561) of women using the >15μmol/L non-fasting threshold (used by South Australia Maternal and Neonatal Community of Practice) or 6.8% (38/561) using a ≥10μmol/L non-fasting threshold (commonly used in hospitals in the United Kingdom).

We therefore considered the implications for using ≥19μmol/L as the threshold for the diagnosis of ICP for women who had previously been diagnosed with ICP but whose non-fasting TSBA values remained <19μmol/L during pregnancy. Using individual patient data previously collected for a meta-analysis of perinatal outcomes in ICP from an international cohort (Study 3, Figure 1), we found that 18.5% (658/3509) of women would not have been diagnosed with ICP using this threshold. To determine whether this would alter the risk of adverse outcomes were this group of women not diagnosed as having ICP, we compared rates of adverse perinatal outcomes of these
women with studies in women with uncomplicated pregnancies or at the population level, selecting studies that most closely represented the ICP cohort.

Consistent with previous reports, women with ICP whose peak non-fasting TSBA was <19μmol/L had no increased risk of stillbirth compared to the background population (Table S4). Whilst these women with ICP had higher rates of preterm birth, this likely resulted from iatrogenic preterm birth as the rate of spontaneous preterm birth was lower than the background population. It is also probable that the higher preterm birth rate in this cohort of women with ICP women contributed to higher rates of neonatal unit admission and low Apgar scores.

Discussion

Main Findings

This study has revealed the diurnal variation in TSBA for women with both cholestatic and uncomplicated pregnancies, demonstrating the difficulties in determining clinically-appropriate diagnostic thresholds to identify affected women with acceptable sensitivity and specificity. Considering that the adverse perinatal outcomes of ICP are associated with peak TSBA concentration, measuring non-fasting rather than fasting TSBA has greater clinical relevance for decisions about patient management according to severity of hypercholanaemia. Thus, use of this timepoint for diagnosis necessitates definition of the non-fasting normal range for TSBA in uncomplicated pregnancies. The women assessed did not receive a standardised diet, however, they represent a real-world cohort whose TSBA measurements are likely to represent typical levels based upon their normal diets. As a woman’s typical TSBA concentrations are likely more relevant to the fetal bile acid exposure and stillbirth risk rather than TSBA results after a fixed meal stimulant (akin
to the oral glucose load in gestational diabetes mellitus), we suggest that this non-fasting reference range is of greater clinical relevance.

Fasting TSBA concentrations of women with mild ICP from our standardised diet study were generally below the current diagnostic thresholds, and most women who had severe ICP (TSBA \( \geq 40 \mu\text{mol/L} \)) would not have been diagnosed as such using fasting samples. The European Association for the Study of Liver threshold currently suggests that fasting TSBA \( \geq 11 \mu\text{mol/L} \) is diagnostic.\(^6\) However, this may miss correct risk stratification, as women whose fasting TSBA level is \(<40 \mu\text{mol/L} \) can rise postprandially to \( \geq 40 \mu\text{mol/L} \), when risk of perinatal complications is increased,\(^13\) or even higher to \( \geq 100 \mu\text{mol/L} \), when the risk of stillbirth is elevated.\(^14\)

**Strengths and Limitations**

A limitation to this study is the relatively small numbers of women included with ICP for the standardised diet study, and that TSBA concentrations were not assessed at all timepoints during the study in all women due to technical issues or patient consent. However, with the data stratified into mild and severe disease, the differences between fasting and postprandial elevation between these groups were still evident.

Another limitation of the standardised diet study was that most women with severe ICP were treated with ursodeoxycholic acid (UDCA), whilst only one woman with mild ICP took the drug. It is possible that UDCA treatment influenced the TSBA concentration and caused the proportion of UDCA in the TSBA assay to increase, as was reported in a study where most women had TSBA \(<40 \mu\text{mol/L} \).\(^28\) However, a recent study of longitudinal changes in individual bile acids in ICP did not show a significant increase in TSBA concentration in UDCA-treated women.\(^29\)
A strength of this study is the large cohort of women analysed for non-fasting TSBA in the third trimester, which demonstrated the variation in the normal range for TSBA between different ethnic groups. Samples were obtained alongside routine clinical appointments, and so reflect a pragmatic timepoint upon which to base real-world clinical decisions. Rates of adverse perinatal outcomes assessed using individual patient data provided for meta-analysis were selected from one of the largest international studies of women with ICP yet performed, and comparisons made with the best matched data obtainable for each comparison — the selection of which was performed before analysis in order to reduce potential bias.

**Interpretation**

Our re-evaluation of the reference limits for TSBA based on non-fasting samples holds implications for the ICP diagnosis. We demonstrated no definitive evidence of markedly adverse spontaneous perinatal outcomes for women with ICP with non-fasting peak TSBA <19µmol/L compared to uncomplicated pregnancies, with iatrogenic preterm birth likely responsible for the higher rates of overall preterm birth, neonatal unit admission and low Apgar score,\textsuperscript{27} which could potentially be avoided by redefining the diagnostic threshold for ICP. Reassuringly, our findings are similar to previous studies which reported that fetal complications increased in ICP when TSBA levels were >40µmol/L,\textsuperscript{13-15} and another study that did not find any differences in perinatal outcomes between women with ICP when stratified into groups with TSBA <13µmol/L or between 13-40µmol/L.\textsuperscript{30}

**Conclusion**

Based upon the results of this study, we suggest that a non-fasting TSBA value of ≥19µmol/L is used as a clinical diagnostic threshold for ICP, as an alternative to fasting thresholds. It is important that
pregnant woman with otherwise unexplained pruritus whose non-fasting TSBA levels are <19μmol/L are monitored regularly for changes in TSBA, given that pruritus often predates hypercholanaemia. Use of appropriate diagnostic levels is likely to reduce the number of women diagnosed with ICP, thereby reducing maternal anxiety, avoiding unnecessary antenatal consultations and potential complications associated with iatrogenic preterm birth. Furthermore, the use of postprandial TSBA measurements is more likely to identify women with TSBA ≥100μmol/L and at increased risk of stillbirth, and will empower clinicians to individualise interventions aimed at reducing the risk of adverse outcomes in this small but important group of women.

Acknowledgements

We would like to thank the women who participated in the study, and the research midwives who collected the samples at the clinical research facilities at Queen Charlotte’s Hospital, in particular Ramona Mannino, and the research midwives at West Middlesex Hospital and St. Thomas’ Hospital. We would like to thank Prof. Gary Frost for his advice on the calorie content for the meals for the standardised diet study. Infrastructure support was provided by the NIHR Imperial Biomedical Research Centre and the NIHR Imperial Clinical Research Facility and Guy’s and St. Thomas’ Clinical Research Facility. The views expressed are those of the authors and not necessarily those of KHP, Tommy’s, the NHS, the NIHR or the Department of Health and Social Care.

Disclosure of interests:

CW and CO consult for Mirum Pharmaceuticals, and CW consults for GSK. PTS reports grants from King’s Health Partners Institute of Women and Children’s Health, grants from Tommy’s (Registered charity 1060508), grants from ARC South London (NIHR), during the conduct of the study. JRFW
reports personal fees from GE Healthcare, grants from Intercept Pharmaceuticals, grants from
Novartis Pharmaceuticals, outside the submitted work. Other authors declare no conflict of interest.

Contribution to Authorship:

CW conceptualised and oversaw the study. ALM, CO and CW wrote the paper. JRFW advised on the
measurement times for the standardised diet study. CO, MM, TV, JG, CW and JC were involved with
setting up and running the standardised diet study. MM, TV, HMF, CO, JG, JC and ALM processed
serum samples from the standardised diet study. Regarding the samples for the reference range of
TSBA in uncomplicated pregnancies, KN selected the appropriate samples, AS and KS performed the
sample collection and data acquisition. PTS advised on appropriate data and statistical analysis for
reference interval calculation and correlations. ALM analysed the TSBA results for the standardised
diet, and the reference intervals. CO produced the meta-analysis comparison. All authors edited,
revised and contributed to the intellectual content of the manuscript.

Details of ethics approval

Women gave written informed consent before inclusion and the study was carried out in compliance
with the 1975 Declaration of Helsinki Guidelines. Permission was obtained from the ethics
Committees of Hammersmith Hospitals NHS Trust, London (11/LO/0396) in 2012 for the
standardised diet study, and from the National Research Ethics Committee (REC number: 02-03-033)
in 2011 for the reference interval calculation study.
References


29. Manna L, Ovadia C, Lövgren-Sandblom A, Chambers J, Begum S, Seed P, et al. Enzymatic quantification of total serum bile acids as a monitoring strategy for women with intrahepatic...

Figure 1: Participation flowchart of patient groups. ICP, intrahepatic cholestasis of pregnancy; TSBA, total serum bile acids.
Figure 2: Total serum bile acids are elevated postprandially. A. Bile acids were measured before and after standardised meals (arrows) in women with uncomplicated pregnancy (n = 24, white circles), or women diagnosed with ICP, who were separated by disease severity during the study day: mild ICP (n = 7, all TSBA measurements <40μmol/L; red squares) or severe ICP (n = 11, one or more TSBA measurements ≥40μmol/L; blue triangles); mean values are indicated by the corresponding coloured line. Dotted lines indicate different current diagnostic thresholds for ICP, with ≥40μmol/L indicating severe ICP, and ≥100μmol/L indicating increased risk of stillbirth.14 ICP, intrahepatic cholestasis of pregnancy; TSBA, total serum bile acids. Specificity and sensitivity analyses were calculated using 6, 11, and 15μmol/L thresholds as a diagnosis for mild ICP, and 40μmol/L threshold for diagnosis of severe disease at different times of the day (fasting, and 20 minutes, 1 hour and 3 hours post-lunch). B. Specificity for correct identification of women without either mild or severe ICP, determined as the percentage of correct identification of women without ICP. Sensitivity to detection of women with C. mild ICP or D. severe ICP, determined as the percentage of women correctly identified as having ICP. TSBA, total serum bile acids.
Table 1: Clinical and demographic characteristics of women with uncomplicated pregnancies, and women with mild or severe ICP. Values presented are median (range), or number (%). Participants in the second and third trimester were included; of the participants in the second trimester, 5 women had uncomplicated pregnancies, 1 woman had mild ICP, and 2 women had severe ICP. ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, γ-glutamyltransferase; ICP, intrahepatic cholestasis of pregnancy; UDCA, ursodeoxycholic acid. * Reference ranges for liver function during pregnancy are detailed in 23. # Both patients had a history of gallstones prior to pregnancy.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Uncomplicated pregnancy</th>
<th>Mild ICP</th>
<th>Severe ICP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>24</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td><strong>Age in years, median (range)</strong></td>
<td>34 (28 to 40)</td>
<td>35 (27 to 38)</td>
<td>36 (27 to 43)</td>
</tr>
<tr>
<td><strong>Gestational age at study participation, median (range)</strong></td>
<td>33&lt;sup&gt;10&lt;/sup&gt; (16&lt;sup&gt;10&lt;/sup&gt; to 39&lt;sup&gt;10&lt;/sup&gt;)</td>
<td>35&lt;sup&gt;15&lt;/sup&gt; (29&lt;sup&gt;15&lt;/sup&gt; to 38&lt;sup&gt;15&lt;/sup&gt;)</td>
<td>35&lt;sup&gt;12&lt;/sup&gt; (16&lt;sup&gt;12&lt;/sup&gt; to 37&lt;sup&gt;12&lt;/sup&gt;)</td>
</tr>
<tr>
<td><strong>Ethnicity, number (%)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>15 (60)</td>
<td>6 (86)</td>
<td>8 (72)</td>
</tr>
<tr>
<td>Black</td>
<td>1 (4)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Asian</td>
<td>5 (20)</td>
<td>1 (14)</td>
<td>3 (27)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (4)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Not recorded</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td><strong>Pregnancy details</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous pregnancies ≥24 weeks, number (%)</td>
<td>0</td>
<td>11 (44)</td>
<td>1 (14)</td>
</tr>
<tr>
<td>Singleton pregnancy, number (%)</td>
<td>24 (100)</td>
<td>6 (86)</td>
<td>9 (82)</td>
</tr>
<tr>
<td>Gestational diabetes mellitus, number (%)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (27)</td>
</tr>
<tr>
<td><strong>Liver function</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal cholelithiasis, number (%)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>2 (18) #</td>
</tr>
<tr>
<td>Receiving UDCA treatment at time of study, number (%)</td>
<td>0 (0)</td>
<td>1 (14)</td>
<td>10 (91)</td>
</tr>
<tr>
<td>Highest gestational total bile acids, median (range), µmol/L</td>
<td>8 (1 to 20)</td>
<td>31.5 (22 to 52)</td>
<td>103.5 (63 to 444)</td>
</tr>
<tr>
<td>Highest gestational AST, median (range), IU/L</td>
<td>28.5 (16 to 42)</td>
<td>71.5 (24 to 327)</td>
<td>190 (25 to 403)</td>
</tr>
<tr>
<td>Highest gestational ALT, median (range), IU/L</td>
<td>16 (8 to 46)</td>
<td>77 (9 to 306)</td>
<td>366 (22 to 729)</td>
</tr>
<tr>
<td>Highest gestational Alk Phos, median (range), IU/L</td>
<td>98 (47 to 219)</td>
<td>249.5 (160 to 335)</td>
<td>264 (172 to 383)</td>
</tr>
<tr>
<td>Highest gestational Bilirubin, median (range), µmol/L</td>
<td>5 (3 to 11)</td>
<td>7.5 (4 to 31)</td>
<td>9 (8 to 48)</td>
</tr>
<tr>
<td>Highest gestational GGT, median (range), IU/L</td>
<td>12 (7 to 21)</td>
<td>35 (7 to 37)</td>
<td>23 (15 to 152)</td>
</tr>
</tbody>
</table>
Table 2: Maternal demographics of women with uncomplicated pregnancies and reference intervals calculations of total serum bile acids from non-fasting serum samples.

Reference intervals were calculated using nonparametric method to account for non-normally distributed results. The lower (2.5%) and upper (97.5%) reference limits are noted with 95% confidence intervals indicated in brackets. BMI, body mass index; CI, confidence interval; TSBA, total serum bile acids.

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>South Asian</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of women</td>
<td>160</td>
<td>160</td>
<td>241</td>
</tr>
<tr>
<td>Gestation, weeks*days (range)</td>
<td>33±6 (30±0 to 37±6)</td>
<td>33±6 (30±0 to 37±6)</td>
<td>34±0 (30±0 to 37±6)</td>
</tr>
<tr>
<td>Age (years), median (range)</td>
<td>31 (18 to 49)</td>
<td>32 (20 to 43)</td>
<td>34 (19 to 43)</td>
</tr>
<tr>
<td>BMI, median (range)</td>
<td>29.4 (20.1 to 45.0)</td>
<td>27.6 (20.4 to 44.5)</td>
<td>27 (21.3 to 43.9)</td>
</tr>
<tr>
<td>Nulliparous, %</td>
<td>40.3</td>
<td>47.5</td>
<td>55.2</td>
</tr>
<tr>
<td>TSBA (μmol/L), median (range)</td>
<td>4.2 (0.2 to 35.7)</td>
<td>3.3 (0.2 to 51.1)</td>
<td>3.9 (0.2 to 11.7)</td>
</tr>
<tr>
<td>Reference interval for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSBA (μmol/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower limit (95% CI)</td>
<td>1.0 (0.2 to 1.5)</td>
<td>0.7 (0.2 to 1.2)</td>
<td>0.9 (0.2 to 1.5)</td>
</tr>
<tr>
<td>Upper limit (95% CI)</td>
<td>18.3 (15.0 to 35.6)</td>
<td>15.5 (11.5 to 47.6)</td>
<td>10.4 (8.7 to 11.5)</td>
</tr>
</tbody>
</table>