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Abstract 2 

Background 3 

4 

5 

6 

7 

8 

Mood disorders (including major depressive disorder and bipolar disorder) affect 10-

20% of the population. They range from brief, mild episodes to severe, incapacitating 

conditions that markedly impact lives. Despite their diagnostic distinction, multiple 

approaches have shown considerable sharing of risk factors across the mood 

disorders.  

Methods 9 

10 

11 

12 

13 

14 

15 

To clarify their shared molecular genetic basis, and to highlight disorder-specific 

associations, we meta-analysed data from the latest Psychiatric Genomics 

Consortium (PGC) genome-wide association studies of major depression (including 

data from 23andMe) and bipolar disorder, and an additional major depressive 

disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; non-

overlapping N = 609,424).  

Results 16 

17 

18 

19 

20 

21 

22 

23 

Seventy-three loci reached genome-wide significance in the meta-analysis, including 

15 that are novel for mood disorders. More genome-wide significant loci from the 

PGC analysis of major depression than bipolar disorder reached genome-wide 

significance. Genetic correlations revealed that type 2 bipolar disorder correlates 

strongly with recurrent and single episode major depressive disorder. Systems 

biology analyses highlight both similarities and differences between the mood 

disorders, particularly in the mouse brain cell-types implicated by the expression 
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patterns of associated genes. The mood disorders also differ in their genetic 

correlation with educational attainment – positive in bipolar disorder but negative in 

major depressive disorder.  

1 

2 

3 

Conclusions 4 

5 

6 

7 

8 

9 

The mood disorders share several genetic associations, and can be combined 

effectively to increase variant discovery. However, we demonstrate several 

differences between these disorders. Analysing subtypes of major depressive 

disorder and bipolar disorder provides evidence for a genetic mood disorders 

spectrum.
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 Mood disorders affect 10-20% of the global population across their lifetime, 

ranging from brief episodes to incapacitating conditions that markedly impact lives 

(1–4). Major depressive disorder and bipolar disorder are the most common forms 

and have been grouped together since the Diagnostic and Statistical Manual of 

Mental Disorders’ third edition (DSM-III) (5). Although given dedicated chapters in 

DSM5, they remain grouped as mood disorders in the International Classification of 

Disorders (ICD11) (6, 7). 

Depressive episodes are common to major depressive disorder and type 2 

bipolar disorder, and are usually present in type 1 bipolar disorder (7). The bipolar 

disorders are distinguished from major depressive disorder by the presence of mania 

in type 1 and hypomania in type 2 (7). However, these distinctions are not absolute – 

some individuals with major depressive disorder develop bipolar disorder, and some 

endorse (hypo)manic symptoms (8–10). Following their first depressive episode, a 

non-remitting individual might develop recurrent major depressive disorder or bipolar 

disorder. Treatment guidelines for these disorders differ (11, 12). Identifying shared 

and distinct genetic associations for major depressive disorder and bipolar disorder 

could aid our understanding of these diagnostic trajectories. 

Twin studies suggest that 35-45% of variance in risk for major depressive 

disorder, and 65-70% for bipolar disorder, is accounted for by additive genetic 

factors (13). These genetic components are partially shared, with a twin genetic 

correlation (rg) of ~65%, and a common variant based rg of 30-35%, derived from 

genome-wide association study (GWAS) results (14–17). Progress has been made 
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in identifying specific genetic variants that underlie genetic risk. Recently, the 

Psychiatric Genomics Consortium (PGC) published a GWAS of bipolar disorder, 

including over 20,000 cases, with 30 genomic loci reaching genome-wide 

significance 
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(16). They also performed a GWAS of major depression, including over 

135,000 individuals with major depressive disorder and other definitions of 

depression, with 44 loci reaching genome-wide significance (15). The PGC GWAS of 

major depression has since been combined with a broad depression GWAS 

(Supplementary Note). 

GWAS have identified statistical associations with major depressive disorder 

and with bipolar disorder individually, but have not explored the genetic relationship 

between these disorders. In addition, both disorders exhibit considerable clinical 

heterogeneity and can be separated into subtypes. For example, the DSM5 includes 

categories for bipolar disorder type 1 and type 2, and for single episode and 

recurrent major depressive disorder (7). We use the PGC analyses of major 

depression and bipolar disorder, along with analyses of formally-defined major 

depressive disorder from UK Biobank, to explore two aims (18, 19). Firstly, we seek 

to identify shared and distinct mood disorder genetics by combining studies of major 

depressive disorder and bipolar disorder. We then explore the genetic relationship of 

mood disorders to traits from the wider GWAS literature. Secondly, we assess 

genetic similarities and differences between subtypes of bipolar disorder (from the 

PGC) and major depressive disorder (from UK Biobank), through comparing genetic 

correlations and polygenic risk scores.  
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Materials and Methods 2 

Participants  3 

4 

5 

6 

7 
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9 

Our primary aim was to combine analyses of bipolar disorder and major 

depression to examine the shared and distinct genetics of these disorders. Full 

descriptions of each study and their composite cohorts are provided in each paper 

(15, 16, 19). Brief descriptions are provided in the Supplementary Methods. 

Summary statistics were derived from participants of Western European ancestries, 

and unless otherwise specified are available (or will be made available) at 

https://www.med.unc.edu/pgc/results-and-downloads. 10 

11 

12 

13 

14 
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Major depression data were drawn from the full cohort (PGC MDD: 135,458 

cases, 344,901 controls) from (15). This included data from 23andMe (20), access to 

which requires a Data Transfer Agreement; consequently, the data analysed here 

differ from the publicly-available summary statistics. Data for bipolar disorder were 

drawn from the discovery analysis previously reported (PGC BD: 20,352 cases, 

31,358 controls), not including replication results (16). 

Secondly, we wished to examine genetic correlations between mood disorder 

subtypes. Summary statistics were available for the primary bipolar disorder 

subtypes, type 1 bipolar disorder (BD1: 14,879 cases, 30,992 controls) and type 2 

bipolar disorder (BD2: 3,421 cases, 22,155 controls), and for schizoaffective bipolar 

disorder (SAB: 977 cases, 8,690 controls), a mood disorder including psychotic 

symptoms. Controls are shared across these subtype analyses.  
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Subtype GWAS were not available from PGC MDD. Instead, a major 

depressive disorder cohort was derived from the online mental health questionnaire 

in the UK Biobank (UKB MDD: 29,475 cases, 63,482 controls; Resource 22 on 

1 

2 

3 

http://biobank.ctsu.ox.ac.uk) (18). The definition of major depressive disorder in this 

cohort is based on DSM-5, as described in full elsewhere 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

(18), and in Supplementary 

Table 1 (7). Individuals meeting criteria for major depressive disorder were classed 

as “recurrent” if they reported multiple depressed periods across their lifetime (rMDD, 

N = 17,451), and “single-episode” otherwise (sMDD, N = 12,024, Supplementary 

Table 1). Individuals reporting depressive symptoms but not meeting case criteria 

were excluded from UKB MDD but used as a "sub-threshold depression" subtype to 

examine the continuity of genetic associations with major depressive disorder below 

clinical thresholds (subMDD, N = 21,596). All subtypes were analysed with all 

controls. Details on the quality control and analysis of the UK Biobank phenotypes is 

provided in the Supplementary Methods.  

Meta-analysis of GWAS data 15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

 We meta-analysed PGC MDD and UKB MDD to obtain a single major 

depressive disorder GWAS (combined MDD). We meta-analysed combined MDD 

with PGC BD, comparing mood disorder cases to controls (MOOD). Further meta-

analyses were performed between PGC MDD and each mood disorder subtype to 

assess the relative increase in variant discovery when adding different mood 

disorder definitions to PGC MDD (Supplementary Results).  

Summary statistics were limited to common variants (MAF > 0.05; 

Supplementary Methods) genotyped or imputed with high confidence (INFO score > 

0.6) in all studies. Controls were shared between PGC MDD and PGC BD, and 
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(because PGC MDD included summary data) the extent of this overlap was 

unknown. Meta-analyses were therefore performed in METACARPA, which controls 

for sample overlap of unknown extent between studies using the variance-

covariance matrix of the observed effect sizes at each variant, weighted by the 

sample sizes 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

(21, 22). METACARPA adjusted adequately for known overlap 

between cohorts (Supplementary Methods). For later analyses (particularly linkage 

disequilibrium score regression) we used as the sample size a "non-overlapping N" 

estimated for each meta-analysis (Supplementary Methods). The definition, 

annotation and visualisation of each meta-analysis is described in the 

Supplementary Materials.  

Sensitivity analysis using down-sampled PGC MDD 11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Cross-trait meta-analyses may be biased if the power of the composite 

analyses differs substantially (23, 24). The mean chi-square of combined MDD [1.7] 

exceeded that of PGC BD [1.39], suggesting this bias may affect our results 

(Supplementary Table 2). We therefore repeated our analyses, meta-analysing UKB 

MDD with summary statistics for PGC MDD that did not include participants from 

23andMe nor the UK Biobank (mean chi-square = 1.35). All analyses were 

performed on the full and the down-sampled analyses, with the exception of GSMR 

analyses. Full results of the down-sampled analyses are described in the 

Supplementary Materials.  

Estimation of SNP-based heritability and genetic correlations with published GWAS  21 

22 

23 

24 

Single nucleotide polymorphism (SNP)-based heritability was assessed using 

linkage disequilibrium score regression (LDSC) (25). SNP-based heritability 

estimates were transformed to the liability scale, assuming population prevalences of 
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15% for combined MDD, 1% for PGC BD, and 16% for MOOD, and lower and upper 

bounds of these prevalences for comparison (Supplementary Methods). LDSC 

separates genome-wide inflation into components due to polygenicity and 

confounding 

1 

2 

3 

4 

5 

6 

7 

8 

(25). Inflation not due to polygenicity was quantified as (intercept-

1)/(mean observed chi-square-1) (26). Genetic correlations were calculated in LDSC 

between each analysis and 414 traits curated from published GWAS. Local 

estimates of SNP-based heritability and genetic covariance were obtained using 

HESS v0.5.3b (Supplementary Methods and Results) (27, 28).  

Genetic correlations between subtype analyses 9 

10 

11 

12 

13 

14 
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16 

17 
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19 
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21 
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23 

24 

To assess the structure of genetic correlations within the mood disorders, 

SNP-based heritabilities and genetic correlations were calculated in LDSC between 

bipolar disorder subtypes (BD1, BD2, SAB), and major depressive disorder subtypes 

(rMDD, sMDD, subMDD). Putative differences between genetic correlations were 

identified using a z-test (p < 0.05), and formally tested by applying a block-jackknife, 

with Bonferroni correction for significance (p < 8.3x10-4; Supplementary Methods). 

Differences between the genetic correlations of PGC MDD and each bipolar disorder 

subtype, and between PGC BD and each major depressive disorder subtype were 

also tested (Bonferroni correction for significance, p < 0.0083). Genetic correlations 

were hierarchically clustered using the gplots package in R v1.4.1 (29, 30). 

Hierarchical clustering was performed using just the subtypes, and including results 

from six external GWAS relevant to mood disorders (Supplementary Methods). To 

validate our conclusion of a genetic mood disorder spectrum, we performed principal 

component analysis of the genetic correlation matrix including the six external 

GWAS (Supplementary Methods and Results).
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 1 

Association of PGC BD polygenic risk scores with major depressive disorder 2 

subtypes 3 

4 

5 

6 

Polygenic risk score analyses were performed using PRSice2 to assess 

whether rMDD was genetically more similar to PGC BD than were sMDD or subMDD 

(Supplementary Methods) (36). 

Gene-wise, gene-set, and tissue and single-cell enrichment analyses 7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

For all analyses, the p-values of SNPs in gene regions were combined to yield 

gene-wide p-values, using MAGMA v1.06 (Supplementary Methods and Results) 

(37). Gene set analysis was performed in MAGMA (Supplementary Methods and 

Results). Further analyses were performed to assess the enrichment of associated 

genes with expression-specificity profiles from tissues (Genotype-Tissue Expression 

project, version 7) and broadly-defined ("level 1") and narrowly-defined ("level 2") 

mouse brain cell-types (38, 39). Analyses were performed in MAGMA following 

previously described methods with minor modifications, with Bonferroni-correction for 

significance (Supplementary Methods) (38). Similar analyses can be performed in 

LDSC-SEG – we report MAGMA results, which reflect specificity of expression 

across the range, whereas LDSC-SEG compares the top 10% of the range with the 

remainder (40). Results using LDSC are included in the Supplementary Tables.  

Mendelian randomisation (GSMR) 20 

21 

22 

23 

Bidirectional Mendelian randomisation analyses were performed using the 

GSMR option in GCTA to allow exploratory inference of the causal direction of 

known relationships between mood disorder traits and other traits (41, 42). 
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Specifically, the relationship between the mood disorder analyses (MOOD, combined 

MDD, PGC BD) and schizophrenia, intelligence, educational attainment, body mass 

index, and coronary artery disease were explored (Supplementary Methods) 

1 

2 

3 

4 

5 

6 

(32, 

43–46). These traits were previously examined in the PGC major depression GWAS 

– we additionally tested intelligence following the results of our genetic correlation 

analyses (15). 

Conditional and reversed-effect analyses 7 

8 

9 

10 

11 

12 

13 

14 

15 

Additional analyses were performed to identify shared and distinct mood 

disorder loci, using mtCOJO, an extension of GSMR (Supplementary Methods) (41, 

42). Analyses were performed on combined MDD conditional on PGC BD, and on 

PGC BD conditional on combined MDD (Supplementary Results). To identify loci 

with opposite directions of effect between combined MDD and PGC BD, the MOOD 

meta-analysis was repeated with reversed direction of effects for PGC BD 

(Supplementary Methods and Results). 

 

Results 16 

Evidence for confounding in meta-analyses  17 

18 

19 

20 

21 

22 

23 

Meta-analysis results were assessed for genome-wide inflation of test 

statistics using LDSC (25). Generally, the LDSC intercept was significantly >1 (1.00-

1.06), which has previously been interpreted as confounding (Supplementary Table 

2). However, such inflation can occur in large cohorts without confounding (47). 

Estimates of inflation not due to polygenicity were small in all meta-analyses (4-7%, 

Supplementary Table 2).
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Combined MOOD meta-analysis 2 
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 We meta-analysed the PGC MDD, PGC BD and UKB MDD cohorts (MOOD, 

cases = 185,285, controls = 439,741, non-overlapping N = 609,424). 73 loci reached 

genome-wide significance, of which 55 were also seen in the meta-analysis of PGC 

MDD and UKB MDD (combined MDD, Table 1, Supplementary Table 3, 

Supplementary Figures 1-8). 39 of the 44 PGC MDD loci reached genome-wide 

significance in MOOD. In comparison, only four of the 19 PGC BD loci reached 

genome-wide significance in MOOD (Supplementary Table 3). MOOD loci 

overlapped considerably with previous studies of depression and depressive 

symptoms (51/73) (20, 23, 48–52), bipolar disorder (3/73) (53–56), neuroticism 

(32/73) (23, 57–59), and schizophrenia (15/73) (32, 60), although participants 

overlap between MOOD and many of these studies. Locus 52 (chromosome 12) 

passed genome-wide significance in a previous meta-analysis of broad depression 

and bipolar disorder, although the two other loci from this study did not replicate (51). 

Six of the 73 associations are entirely novel (p > 5x10-8 in previous studies of all 

phenotypes; Table 1, Supplementary Table 4). 

Down-sampled MOOD (cases = 95,481, controls = 287,932, non-overlapping 

N = 280,214) showed increased similarity to PGC BD compared to MOOD, but 

remained more similar to PGC MDD. Nineteen loci reached genome-wide 

significance in down-sampled MOOD, including nine (20%) from PGC MDD, 

compared with two (11%) reported in PGC BD (Supplementary Table 3). 17/19 loci 

were also observed in MOOD. Of the two loci not observed in MOOD, one passed 

genome-wide significance in PGC BD. 
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SNP-based heritability and genetic correlations  2 
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The estimate of SNP-based heritability for MOOD (8.8%) was closer to PGC 

MDD (8.8%) than to PGC BD (20%). Significant genetic correlations between MOOD 

and other traits included psychiatric and behavioural, reproductive, cardiometabolic, 

and sociodemographic traits (Figure 1, Supplementary Table 5). Genetic correlations 

with psychiatric and behavioural traits are consistently observed across psychiatric 

traits (17, 61). The genetic correlation between MOOD and educational attainment 

was -0.06 (p=0.004), intermediate between the results of combined MDD (rg = -0.11) 

and of PGC BD (rg = 0.19; Supplementary Table 6). Notably, the genetic correlation 

with intelligence was not significant in any of the three analyses (p>1.27x10-4). 

However, sensitivity analyses (see below), indicated that including 23andMe in PGC 

MDD obscured a negative genetic correlation with intelligence. 

The SNP-based heritability of down-sampled MOOD from LDSC was 11%, 

closer to PGC MDD than to PGC BD (Supplementary Table 2). Genetic correlations 

varied (Supplementary Tables 5 and 7) with some more similar to PGC BD 

(schizophrenia: down-sampled rg = 0.61, combined MDD rg = 0.35, PGC BD rg = 

0.7), and others more similar to combined MDD (ADHD: down-sampled rg = 0.48, 

combined MDD rg = 0.45, PGC BD rg = 0.14). The genetic correlation with 

intelligence was significant (rg = -0.13, p = 5x10-7), because the excluded 23andMe 

depression cohort has a positive genetic correlation with intelligence (rg = 0.06, p = 

0.01). The greater genetic correlation of MOOD with combined MDD (rg = 0.98) 

compared to PGC BD (rg = 0.55) persisted when comparing down-sampled MOOD 

to combined MDD (rg = 0.85) and PGC BD (rg = 0.75; Supplementary Table 6).  
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 Polygenic risk score analyses showed that individuals with high polygenic risk 

scores for PGC BD were more likely to report rMDD than sMDD, and more likely to 

report sMDD than subMDD (Supplementary Results). 
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Tissue and cell-type specificity analyses 4 
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The results of gene-wise and gene set analyses are described in the 

Supplementary Results. The tissue-specificity of associated genes differed minimally 

between the analyses (Supplementary Table 9). All brain regions were significantly 

enriched in all analyses, and the pituitary was also enriched in combined MDD and 

PGC BD (p < 9.43x10-4, Bonferroni correction for 53 regions, Supplementary Table 

9). Results from down-sampled MOOD and down-sampled MDD were generally 

consistent with the main analyses, except spinal cord was not enriched in either, nor 

was the cordate in the down-sampled MDD analysis.  

In contrast, cell-type enrichments differed between combined MDD and PGC 

BD (Figure 4, Supplementary Tables 10 and 11). Genes associated with PGC BD 

were enriched for expression in pyramidal cells from the CA1 region of the 

hippocampus and the somatosensory cortex, and in striatal interneurons. None of 

these enrichments were significant in combined MDD. Genes only associated with 

combined MDD were significantly enriched for expression in neuroblasts and 

dopaminergic neurons from adult mice. Further cell-types (dopaminergic 

neuroblasts; dopaminergic, GABAergic and midbrain nucleus neurons from 

embryonic mice; interneurons; and medium spiny neurons) were enriched for both 

combined MDD and PGC BD, but the rank and strength of enrichment differed, most 

notably for medium spiny neurons. The general pattern of differences persisted when 

comparing PGC BD with down-sampled MDD, although genes associated with 
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down-sampled MDD were not enriched for expression in adult dopaminergic 

neurons, embryonic midbrain nucleus neurons, interneurons, nor medium spiny 

neurons (Supplementary Figure 11). 
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Bidirectional Mendelian randomisation was used to investigate previously-

described relationships between mood disorder phenotypes (combined MDD, PGC 

BD) and external traits: schizophrenia, educational attainment, intelligence, body 

mass index (BMI) and coronary artery disease (CAD; Figure 5, Supplementary Table 

12).  

Positive bidirectional relationships were observed between combined MDD, 

PGC BD, and schizophrenia. This is consistent with psychiatric disorders causing 

further psychiatric disorders, or being correlated with other causal risk factors, 

including (but not limited to) a shared genetic basis. 

There was a negative bidirectional relationship between educational years 

and combined MDD, but a positive bidirectional relationship with PGC BD (albeit with 

only nominal significance from PGC BD to educational years). In contrast, no 

significant relationship was observed between mood phenotypes and intelligence. 

This is consistent with differing causal roles of education (or its correlates) on the 

mood disorders, with a weaker reciprocal effect of the mood disorders altering the 

length of education.  

A positive association was seen from BMI to combined MDD, but not from 

combined MDD to BMI. In contrast, only a nominally significant negative relationship 
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was seen from PGC BD to BMI. A positive association was observed from combined 

MDD to CAD; no relationship was observed between CAD and PGC BD.  
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We identified 73 genetic loci by meta-analysing cohorts of major depression 

and bipolar disorder, including 15 loci novel to mood disorders. Our mood disorders 

meta-analysis results (MOOD) are more like our major depressive disorder analysis 

(combined MDD) than our bipolar disorder analysis (PGC BD). Partly, this results 

from the greater power of the major depressive disorder analysis compared to the 

bipolar disorder analysis. Nevertheless, genetic associations from our sensitivity 

analysis with equivalently powered cohorts (using down-sampled MDD instead of 

combined MDD) still showed a greater similarity to those from major depressive 

disorder rather than bipolar disorder. 

This may reflect a complex genetic architecture in bipolar disorder, wherein 

one set of variants may be associated more with manic symptoms and another set 

with depressive symptoms. Variants associated more with mania may have higher 

effect sizes, detectable at current bipolar disorder GWAS sample sizes, and may not 

be strongly associated with major depressive disorder. This could contribute to the 

higher heritability of bipolar disorder compared to major depressive disorder, and 

agrees with reports that most of the genetic variance for mania is not shared with 

depression (13, 14). Meta-analysis of bipolar disorder and major depressive disorder 

cohorts would support variants associated more with depression, but not those 

associated with mania. This is consistent with our findings, and with depressive 

symptoms being both the unifying feature of the mood disorders and the core feature 

of major depressive disorder. 

We examined the genetic relationship between mood disorder subtypes, 

including adding relevant external traits for context (Supplementary Results). Bipolar 

18 
 

https://paperpile.com/c/j2gbOB/qiL9A+9q2tp


disorder type 2 showed greater genetic similarity to major depressive disorder 

compared to type 1, mirroring similar findings from polygenic risk scores analyses 
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(16, 56). Individuals with high polygenic risk scores for PGC BD were more likely to 

report recurrent than single-episode major depressive disorder. However, the genetic 

correlation of PGC BD with recurrent major depressive disorder was not significantly 

greater than that with single-episode major depressive disorder. This might reflect 

the difference in power between these methods. Genetic correlations between mood 

disorder subtypes support a genetic mood spectrum, with the schizophrenia-like 

bipolar disorder type 1 and schizoaffective disorder at one pole, and the depressive 

disorders at the other, with bipolar disorder type 2 occupying an intermediate 

position. 

Conditional and reversed-effect analyses (Supplementary Results) suggest 

that few of the loci we identified are disorder-specific. Nonetheless we observed 

some genetic differences between the mood disorders. The expression specificity of 

associated genes in mouse brain cell-types differed between bipolar disorder and 

major depressive disorder. Cell-types more associated with bipolar disorder 

(pyramidal neurons and striatal interneurons) were also enriched in analyses of 

schizophrenia (38). Cell-types more associated in major depressive disorder 

(neuroblasts, adult dopaminergic neurons, embryonic GABAergic neurons) had 

weaker enrichments in schizophrenia, but were enriched in analyses of neuroticism 

(57). The higher rank of serotonergic neurons in major depressive disorder 

compared to bipolar disorder is striking given the use of drugs targeting the 

serotonergic system in treating depression (63). Nevertheless, cell-type enrichment 

analyses require cautious interpretation, especially given the use of non-human 

reference data (38, 64).  
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We explored potential causal relationships between the mood disorders and 

other traits using Mendelian randomisation. Interpreting these analyses is 

challenging, especially for complex traits, when the ascertainment of cases varies, 

and when few (< 20) variants are used as instruments (as in the PGC BD and down-

sampled analyses presented) 
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(41, 67, 68). Mood disorders demonstrate 

considerable heterogeneity, potentially confounding the results of Mendelian 

randomisation. That said, our results are consistent with a bidirectional influence of 

educational attainment on risk for mood disorders (and vice versa), with different 

directions of effect in the two mood disorders. We found no significant relationship 

between intelligence and either mood disorder. We also find results consistent with 

major depressive disorder increasing the risk for coronary artery disease in a 

relatively well powered analysis. This mirrors epidemiological findings, although the 

mechanism remains unclear (69). 

Despite the presence of depressive episodes, the mood disorders are 

diagnostically distinct, with differing epidemiology – for example, more women than 

men suffer from major depressive disorder, whereas diagnoses of bipolar disorder 

are roughly equal between the sexes (3). Differences in our genetic results between 

major depressive disorder and bipolar disorder may result from epidemiological 

heterogeneity, rather than distinct biological mechanisms (70). Deeper phenotyping 

of GWAS datasets is ongoing, and will enable the effect of such confounding factors 

to be estimated in future studies (71). 

We extend previous findings showing genetic continuity across the mood 

disorders (15–17, 56). Combined mood disorder analyses may increase variant 

discovery, as well as the discovery of shared and distinct neurobiological gene sets 

and cell-types. Our results indicate some genetic differences between major 
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depressive disorder and bipolar disorder, including opposite bidirectional 

relationships of each with educational attainment, a possible influence of major 

depressive disorder on coronary artery disease risk, and differing mouse brain cell-

types implicated by the enrichment patterns of associated genes in each disorder. 

Finally, our data are consistent with a genetic mood disorder spectrum with separate 

clusters for bipolar disorder type 1 and depressive disorders, linked by bipolar 

disorder type 2, and with depression as the common symptom. The identification of 

specific sets of genetic variants differentially associated with depression and with 

mania remains an aim for future research.  
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Figure Legends 

Figure 1: Selected genetic correlations of a) psychiatric traits and b) other traits with 

the main meta-analysis (MOOD), the separate mood disorder analyses (combined 

MDD and PGC BD), and the down-sampled analyses (down-sampled MOOD, down-

sampled MDD). Full genetic correlation results are provided in Supplementary Table 

5. 

Figure 2: SNP-based heritability estimates for the subtypes of bipolar disorder and 

subtypes of major depressive disorder. Points = SNP-based heritability estimates. 

Lines = 95% confidence intervals. Full SNP-based heritability results are provided in 

Supplementary Table 2. 

Figure 3: Genetic correlations across the mood disorder spectrum. Labelled arrows 

show genetic correlations significantly different from 0. Solid arrows represent 

genetic correlations not significantly different from 1 (p < 0.00333, Bonferroni 

correction for 15 tests). Full results are provided in Supplementary Table 8. 

Figure 4: Cell-type expression specificity of genes associated with bipolar disorder 

(PGC BIP, left) and major depressive disorder (combined MDD, right). Black vertical 

lines = significant enrichment (p < 2x10-3, Bonferroni correction for 24 cell-types). 

See Supplementary Table 10 for full results. 

Figure 5: GSMR results from analyses with the main meta-analysis (MOOD), and the 

major depression and bipolar disorder analyses (combined MDD, PGC BD). External 

traits are coronary artery disease (CAD), educational attainment (EDU), body mass 

index (BMI), and schizophrenia (SCZ). Betas are on the scale of the outcome GWAS 
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(logit for binary traits, phenotype scale for continuous). * p < 0.004 (Bonferroni 

correction for two-way comparisons with six external traits). For figure data, including 

the number of non-pleiotropic SNPs included in each instrument, see Supplementary 

Table 12. 

 

Data availability 

GWAS results from analyses including 23andMe are restricted by a data transfer 

agreement with 23andMe. For these analyses, LD-independent sets of 10,000 SNPs 

will be made available via the Psychiatric Genetics Consortium 

(https://www.med.unc.edu/pgc/results-and-downloads). Summary statistics not 

including 23andMe will be made available via the Psychiatric Genetics Consortium 

(https://www.med.unc.edu/pgc/results-and-downloads).
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Tables 

Locus Chr BP Index SNP A1 A2 OR SE p Previous report 

1 1 37192741 rs1002656 T C 0.97 0.005 2.71x10-11 DO, N 

2 1 72837239 rs7531118 T C 0.96 0.004 1.05x10-16 D, DO, S, O 

4 1 80795989 rs6667297 A G 0.97 0.005 5.86x10-11 D, DO 

5 1 90796053 rs4261101 A G 0.97 0.005 1.78x10-8 D 

6 1 175913828 rs10913112 T C 0.97 0.005 1.46x10-10 DO, O 

7 1 177370033 rs16851203 T C 0.96 0.007 2.38x10-9 DO, S, O 

9 2 22582968 rs61533748 T C 0.97 0.004 3.84x10-11 DO, N 

10 2 57987593 rs11682175 T C 0.97 0.004 2.18x10-11 D, DO, BS, N, S, O

11 2 157111313 rs1226412 T C 1.03 0.005 1.27x10-8 D, DO, N, O 

12 2 198807015 rs1518367 A T 0.97 0.005 1.18x10-8 BS, S, O 

13 3 108148557 rs1531188 T C 0.96 0.006 1.61x10-9 O 

14 3 158107180 rs7430565 A G 0.97 0.004 2.30x10-11 D, DO, N, O 

16 4 42047778 rs34215985 C G 0.97 0.006 1.72x10-10 D, DO, N 

17 5 77709430 rs4529173 T C 0.97 0.005 4.29x10-9 O 

18 5 88002653 rs447801 T C 1.03 0.004 2.29x10-10 D, DO, N, O 

19 5 92995013 rs71639293 A G 1.03 0.005 5.85x10-9 DO, N 

20 5 103904226 rs12658032 A G 1.04 0.005 2.19x10-16 D, DO, N, O 

21 5 106603482 rs55993664 A C 0.97 0.006 1.87x10-8 NOVEL LOCUS 

22 5 124251883 rs116755193 T C 0.97 0.005 1.47x10-10 D, O 

23 5 164523472 rs11135349 A C 0.97 0.004 2.96x10-11 D, DO, N 

24 5 166992078 rs4869056 A G 0.97 0.005 5.21x10-9 D 

25 6 28673998 rs145410455 A G 0.94 0.007 7.17x10-18 D, DO, BO, BS, 
DS, N, S, O 

26 6 101339400 rs7771570 T C 0.97 0.004 9.68x10-10 DO, N, O 

27 6 105365891 rs1933802 C G 0.98 0.004 1.05x10-8 DO, S, O 

28 7 12267221 rs4721057 A G 0.97 0.004 7.31x10-11 D, DO, N, O 
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29 7 24826589 rs79879286 C G 1.04 0.006 1.97x10-11 B, BS, DO, S 

30 7 82514089 rs34866621 T C 1.03 0.005 2.21x10-8 DO, O 

31 7 109099919 rs58104186 A G 1.03 0.004 7.12x10-9 D, DO 

34 9 11379630 rs10959753 T C 0.96 0.005 1.45x10-13 D, DO, N, O 

35 9 37207269 rs4526442 T C 0.96 0.006 7.97x10-11 DO, O 

36 9 81413414 rs11137850 A G 1.03 0.005 1.25x10-8 NOVEL LOCUS 

38 9 119733380 rs10759881 A C 1.03 0.005 8.56x10-9 D, DO 

40 9 122664468 rs10818400 T G 0.98 0.004 1.29x10-8 N 

41 9 126682068 rs7029033 T C 1.04 0.008 2.61x10-8 D, DO, O 

42 10 104684544 rs78821730 A G 0.96 0.007 2.95x10-8 N, BS, S, O 

43 10 106563924 rs61867293 T C 0.96 0.005 5.64x10-12 D, DO, N, O 

44 11 16293680 rs977509 T C 0.97 0.005 1.19x10-8 DO, N, O 

45 11 31850105 rs1806153 T G 1.03 0.005 2.81x10-9 D, DO, N, O 

46 11 32765866 rs143864773 T C 1.04 0.008 1.70x10-8 NOVEL LOCUS 

47 11 61557803 rs102275 T C 0.97 0.005 5.04x10-11 B, DO, BO, O 

48 11 63632673 rs10792422 T G 0.98 0.004 2.18x10-8 O 

49 11 88743208 rs4753209 A T 0.97 0.004 4.15x10-9 DO, N, O 

50 11 99268617 rs1504721 A C 0.98 0.004 2.24x10-8 O 

51 11 113392994 rs2514218 T C 0.97 0.005 3.22x10-10 DO, BS, N, S, O 

52 12 2344644 rs769087 A G 1.03 0.005 3.27x10-8 B, BD, BO, DS, 
BS, S, O 

53 12 23947737 rs4074723 A C 0.97 0.004 3.18x10-9 D, DO, N, O 

54 12 121186246 rs58235352 A G 0.95 0.009 1.64x10-10 DO, O 

55 12 121907336 rs7962128 A G 1.02 0.004 3.63x10-8 NOVEL LOCUS 

56 13 44327799 rs4143229 A C 0.95 0.008 2.73x10-10 D 

57 13 53625781 rs12552 A G 1.04 0.004 1.25x10-23 D, DO, O 

58 14 42074726 rs61990288 A G 0.97 0.004 2.29x10-10 D, DO, O 

60 14 64686207 rs915057 A G 0.98 0.004 1.92x10-8 D, DO, O 

61 14 75130235 rs1045430 T G 0.97 0.004 9.83x10-11 D, DO, N, O 

62 14 104017953 rs10149470 A G 0.97 0.004 1.15x10-10 D, DS, DO, BS, S, 
O 
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63 15 36355868 rs1828385 A C 0.97 0.004 1.15x10-8 NOVEL LOCUS 

64 15 37643831 rs8037355 T C 0.97 0.004 4.09x10-15 D, DO, O 

65 16 6310645 rs8063603 A G 0.97 0.005 5.36x10-11 D, DO 

66 16 7667332 rs11077206 C G 1.03 0.004 5.49x10-10 D, DO, N, O 

67 16 13038723 rs12935276 T G 0.97 0.005 4.75x10-10 D, DO, N, O 

68 16 13750257 rs7403810 T G 1.03 0.005 7.52x10-11 DO, BS, S, O 

69 16 72214276 rs11643192 A C 1.03 0.004 1.46x10-11 D, O 

70 17 27363750 rs75581564 A G 1.04 0.006 2.47x10-10 D, DO, O 

71 18 31349072 rs4534926 C G 1.03 0.004 9.14x10-9 DO, N 

72 18 36883737 rs62099069 A T 0.97 0.004 9.52x10-10 D, O 

73 18 42260348 rs117763335 T C 0.97 0.005 1.33x10-8 O 

74 18 50614732 rs11663393 A G 1.03 0.004 1.56x10-10 D, DO, N, O 

75 18 52517906 rs1833288 A G 1.03 0.005 4.54x10-8 D, DS, DO, N, S, 
O 

76 18 53101598 rs12958048 A G 1.04 0.005 4.86x10-14 D, DO, BS, N, S, O

77 19 30939989 rs33431 T C 1.02 0.004 4.04x10-8 DO, O 

78 20 45841052 rs910187 A G 0.97 0.005 3.09x10-9 DO, O 

79 22 41621714 rs2179744 A G 1.03 0.005 3.83x10-12 D, B, DO, BS, N, 
S, O 

80 22 42815358 rs7288411 A G 1.03 0.005 3.86x10-8 NOVEL LOCUS 

81 22 50679436 rs113872034 A G 0.96 0.006 1.10x10-9 O 

 

Table 1: Loci genome-wide significant (p < 5x10-8) in the MOOD meta-analysis.  

Locus – shared locus number for annotation (Supplementary Table 3), Chr – chromosome, 

BP – base position, A1 – effect allele, A2 – non-effect allele, Previous report – locus 

previously implicated in PGC MDD (D), PGC BD (B), previous combined studies of bipolar 

disorder and major depressive disorder (BD), other studies of major depressive disorder or 

depressive symptoms (DO), other studies of bipolar disorder (BO), previous combined 

studies of bipolar disorder and schizophrenia (BS), previous combined studies of major 

depressive disorder and schizophrenia (DS), neuroticism (N), schizophrenia (S), or other 

studies (O – see Supplementary Table 4). 
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Supplementary Note 

Relationship between these analyses and recent depression analyses from the UK 

Biobank 

The PGC GWAS of major depression included data from the first 150,000 UK 

Biobank individuals whose genotypic data was released (1). Depression GWAS in 

the full UK Biobank cohort have since been published, including both broad and 

narrow definitions (2). The broad depression GWAS was meta-analysed with data 

from the PGC publication (3). We conducted a further meta-analysis of PGC and UK 

Biobank major depressive disorder data, using data from the online mental health 

phenotyping, including questions derived from the Composite International 

Diagnostic Interview – Short Form (4, 5). This phenotype has good concordance with 

direct clinical assessments of major depressive disorder and can be considered a 

major depressive disorder phenotype, compared to the less specific broad 

depression phenotype used by Howard et al (3, 6, 7). The effects on GWAS of using 

different depression phenotypes from the UK Biobank is investigated in depth 

elsewhere (8). We compare our results with those from Howard et al where 

appropriate (3). 

Supplementary Methods 

Participants 

The PGC MDD cohort consists of an anchor set of 29 cohorts (16,823 cases 

and 25,632 controls), with case individuals meeting international consensus criteria 

(DSM-IV, ICD-9, or ICD-10) for a lifetime diagnosis of major depressive disorder 

using structured diagnostic instruments. Six additional cohorts (118,635 cases and 
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319,269 controls) were drawn from broader population-based studies, and cases 

met criteria through self-report or responses to structured diagnostic instruments. 

Controls in most samples were screened for the absence of lifetime psychiatric 

disorders. All participants were of Western European ancestries. Individuals from the 

anchor cohort meet criteria for major depressive disorder. However, the additional 

cohorts include individuals who self-reported their diagnosis, and might not have met 

criteria for major depressive disorder in a clinical setting. In particular, these 

additional cohorts included data from 23andMe, where case participants were 

defined by a positive endorsement of a single question "Have you ever been 

diagnosed with clinical depression?" (or a different version of this question with 

similar phrasing) (9). These participants self-reported a professional diagnosis of 

depression, rather than being ascertained via a direct examination of all criteria for 

major depressive disorder. As such, it was considered more appropriate to refer to 

these individuals as having major depression, rather than major depressive disorder 

(1). 

The PGC BD cohort consists of 32 studies (20,352 cases and 31,358 

controls) of Western European ancestries. Case individuals were required to meet 

international consensus criteria for a lifetime diagnosis of bipolar disorder using 

structured diagnostic instruments. Controls in most samples were screened for the 

absence of lifetime psychiatric disorders. 

In the UKB MDD cohort, participants were defined as cases if they met criteria 

based on questions derived from the Composite International Diagnostic Interview 

(CIDI). Participants were excluded if they self-reported previous diagnoses of 

schizophrenia (or other psychoses) or bipolar disorder. Controls were excluded if 

they self-reported any mental illness, reported taking any drug with an 
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antidepressant indication, had previously been hospitalised with a mood disorder or 

met previously-defined criteria for a mood disorder (Supplementary Table 1) (10).  

Quality control and imputation of UK Biobank data was performed centrally 

and is described elsewhere (11). Additional quality control was performed and is 

described in full elsewhere (5). In brief, participants were limited to unrelated 

individuals (KING correlation coefficient < 0.044 with all pairs, equivalent to removing 

all third degree-or-closer relatives) from probable Western European ancestries with 

good quality genotype data (passed Affymetrix and central UK Biobank quality 

assurance processes, genotyping call rate > 98%, concordant genotypic and 

phenotypic sex). Genome-wide association analyses (GWAS) of each UKB cohort 

were performed in BGenie v1.2, limited to variants with minor allele frequency (MAF) 

> 0.01 that were genotyped or imputed with confidence (IMPUTE2 INFO score > 0.4) 

(11, 12). All GWAS included six genotypic principal components (derived from the 

Western European ancestries subset of the UKBiobank using flashpca2) (13) and 

factors of genotyping batch and assessment centre as covariates to control for batch 

effects and population stratification. BGenie performs linear regressions on 

phenotypes residualised for covariates - as such, the resulting beta effect sizes (for 

all UKB analyses) were converted to odds ratios for meta-analysis using LMOR (14). 

Standard errors for the odds ratios were calculated by transforming the BGenie p-

value to a Z score and dividing log(odds ratio) by Z (15). 

Use of MAF > 0.05 as a cutoff 

All summary statistics were limited to variants with MAF > 0.05. This was 

chosen because previous analyses of the BD2 subtype suggested that including 

lower MAF variants may bias SNP-based heritability estimates (16). Specifically, the 
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BD2 subtype comprises multiple small cohorts, some with unbalanced case/control 

numbers. Consequently, potentially spurious effects in a single study can drive 

results for low-frequency variants. We therefore chose to remove lower frequency 

variants from all analyses in this paper. 

Population prevalences 

 SNP-based heritability estimates were transformed to the liability scale 

assuming that the combined population prevalence between major depressive 

disorder and bipolar disorder is the sum of the disorder prevalences. Specifically, we 

assumed a population prevalence of 15% for combined MDD, 1% for PGC BD, and 

thus 16% for MOOD. Further estimates were made for the lower bounds of 

prevalence and upper bounds of prevalence for comparison. Namely, we set lower 

bounds of population prevalence at 10% for combined MDD, 0.5% for PGC BD and 

10.5% for MOOD, and upper bounds at 20%, 2% and 22% for combined MDD, PGC 

BD and MOOD respectively. 

Definition of non-overlapping N 

As some analyses (particularly LD score regression) use the total number of 

subjects in the analysis for calculations, a "non-overlapping N" was estimated for 

each meta-analysis, using the following equation (derived from the equation 

describing the genetic covariance intercept in LD Score) (17): 

�1�R�Q���R�Y�H�U�O�D�S�S�L�Q�J���1��� ���1�����������1�����������J�F�R�Y�B�L�Q�W���
��
í�1���1������ 

where N1 is the cohort size of the larger component part of the meta-analysis, N2 is 

the same for the smaller cohort and gcov_int is the genetic covariance intercept from 

the calculation of genetic correlation between the component parts in LD Score. This 
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method can be extended to the meta-analysis of three cohorts in a two-step process 

(calculating a non-overlapping N for cohorts one and two, and then the non-

overlapping N for the meta-analysis of the combined one-two cohort with cohort 

three). In the case of MOOD herein, the non-overlapping N was calculated as if 

meta-analysing PGC MDD and PGC BD followed by UKB MDD; and as if meta-

analysing PGC MDD and UKB MDD followed by PGC BD. The average of the two 

results was taken as the non-overlapping N. Note that this equation implicitly 

assumes that the phenotypic correlation between the traits of interest in the 

overlapping samples is 1 (which is reasonable in this instance). Note also that the 

resulting non-overlapping N is underestimated in the presence of shared 

confounding between the cohorts (such as through population stratification) (18). 

Comparison of METACARPA with meta-analysis of independent cohorts 

We contributed individuals from the UK Biobank to PGC MDD, and so were 

able to define the overlap between PGC MDD and UKB MDD (3,087 cases and 

5,128 controls, representing 10% and 8% of UKB MDD respectively). To examine 

the robustness of meta-analysis using overlapping cohorts in METACARPA, we re-

ran UKB MDD excluding these overlapping individuals and then meta-analysed the 

results with PGC MDD using inverse variance weighted meta-analysis in METAL. 

We calculated genetic correlations between the results using LDSC, and calculated 

Pearson's correlations between the betas and p-values of the two analyses. Results 

of these analyses were highly consistent (betas r = 0.99, p-values r = 0.98, LDSC rg 

= 1), suggesting METACARPA can adjust adequately for overlap between cohorts. 
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Definition of GWAS loci 

GWAS results were clumped using PLINK1.9, assigning nominally-significant 

(p < 10-4) variants to a clump if they were in linkage disequilibrium (r2 > 0.1 in 

unrelated non-Finnish European participants from 1000 Genomes project) with a 

variant with a lower p-value lying within 3Mb (19, 20). Non-Finnish Europeans were 

used for the LD reference panel because they were the best match for the 

participants included in this analysis, who were of predominantly Western European 

ancestries. Loci were declared genome-wide significant if a variant in the locus 

reached the conventional threshold for genome-wide significance (p = 5 x 10-8). 

Results were visualised using FUMA, including mapping the loci to potentially 

affected genes through expression quantitative trait loci (eQTLs) and chromatin 

contact sites in brain tissues or neural progenitor cells (21). 

All genomic loci reaching genome-wide significance in at least one analysis 

were combined for annotation. Where loci from different GWAS overlapped, they 

were combined into a single locus ranging from the minimum base position from any 

of the constituent loci to the maximum. Annotation was performed using 

RegionAnnotator version 1.63 (https://github.com/ivankosmos/RegionAnnotator), 

which includes data from: the NHGRI-EBI GWAS Catalog; OMIM; GENCODE 

genes; genes previously implicated in autism and in intellectual disability; copy-

number variants previously implicated in psychiatric disorders; and mouse knockout 

phenotypes. Results from the GWAS Catalog module of RegionAnnotator were 

filtered to include only variants reaching genome-wide significance. Where multiple 

variants are listed as significant from a previous GWAS of a specific phenotype, only 

the variant with the lowest p-value is reported. Results from the GWAS Catalog 

module were supplemented by direct query of the NHGRI-EBI GWAS Catalog for 
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each region (data from 2018-11-05), lookup of top SNPs in http://atlas.ctglab.nl, and 

manual assessment of psychiatric and behavioural GWAS not yet listed in the 

NHGRI-EBI GWAS Catalog.  

Relationship between meta-analyses (hierarchical clustering) 

The relationship between the loci identified in the meta-analyses (MOOD, 

combined MDD) and the constituent analyses (PGC MDD, UKB MDD, PGC BD) was 

assessed using a hierarchically-clustered heatmap, with the 2014 PGC 

schizophrenia analysis (SCZ) included for comparison (22). For the purpose of this 

comparison, an index SNP was selected for each locus (the variant with the lowest 

p-value that was common to all four analyses) to obtain the direction of effect in each 

analysis. Index SNP p-values were converted to -log10(p-value). If the ORindex < 1 in a 

given analysis, the log10(p-value) was used in place of the -log10(p-value). A 

hierarchically-clustered heatmap was then generated using the default options of the 

heatmap.2 function of the gplots package in R v1.4.1 (complete clustering on the 

Euclidean distance between vectors) with clustering performed separately for rows 

and for columns (23, 24). 

Hierarchical clustering of genetic correlations between subtypes, and extension to 

examine relationships with related traits 

Genetic correlations between the major depressive disorder and bipolar 

disorder subtypes were hierarchically clustered using the method described above. 

In addition, we included results from six external GWAS relevant to mood disorders. 

We examined relationships with anxiety disorders (correlated with depressive 

phenotypes), schizophrenia (correlated with bipolar disorder), and ADHD (showed 

differing genetic correlations with PGC MDD and PGC BD) (22, 25, 26). We also 
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examined subjective wellbeing, which may reflect positive mood, and included 

measures of specific aspects of wellbeing, namely eudaimonic wellbeing (feeling life 

has meaning) and hedonic wellbeing (feeling happy) (27, 28). For hierarchical 

clustering only, the sign of genetic correlations with the three wellbeing phenotypes 

were reversed so that positive effect sizes meant poor outcomes for all phenotypes. 

We concluded that the genetic correlations between subtypes of major 

depressive disorder and bipolar disorder were indicative of a genetic mood disorder 

spectrum. To validate this conclusion, we performed a principal component analysis 

of the genetic correlation matrix as used for hierarchical clustering above (that is, 

including the six external GWAS with correlations with the wellbeing phenotypes 

reversed). Principal component analysis was performed using the prcomp function 

from base R, and using plot3D (https://cran.r-project.org/package=plot3D) for 

visualisation (23). 

Conditional and reversed-effect analyses 

Analyses were performed to understand which genomic loci are shared or 

distinct between the disorders, using mtCOJO, an extension of the GSMR method 

implemented in GCTA (29, 30). mtCOJO adjusts the results of a genome-wide 

association analysis, conditioning on the effects of a set of significantly associated, 

independent variants from a second set of summary statistics (a putative 

instrumental variable). This putative instrumental variable is also used as a proxy for 

the trait of interest to infer causal direction in GSMR analyses. The effect size 

estimated by this method is robust to confounding caused by genetic or 

environmental effects shared between the studies analysed, assuming these are 

uncorrelated with the instrumental variable. mtCOJO adjusts for sample overlap (i.e. 
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the same individuals being present in both datasets) using the genetic covariance 

intercept from LD score regression (29, 31). 

Conditional analyses in mtCOJO were performed on combined MDD 

conditional on PGC BD (MDDcBD), and on PGC BD conditional on combined MDD 

(BDcMDD). Variant selection for conditioning was performed with the default settings 

in mtCOJO, clumping using the UK Biobank dataset, and selecting at least ten 

variants with p<5x10-8, which were not in linkage disequilibrium (r2 < 0.05) with a 

variant with a lower p-value, and which did not show evidence of pleiotropy (passed 

the HEIDI-outlier analysis, threshold 0.01) (29). As down-sampled MDD had only 

eight variants with p<5x10-8, conditional analyses and GSMR were not performed 

using this meta-analysis. Similarly, BDcMDD had only six variants passing genome-

wide significance, so GSMR analyses with BDcMDD as the exposure were not 

possible. Results were clumped in PLINK using the procedure described above. 

Genetic correlations were compared between combined MDD and MDDcBD, and 

between PGC BD and BDcMDD, first using a z-test to identify putative differences (p 

< 0.05), and then formally testing by applying a block-jackknife (described below). A 

conservative Bonferroni correction was used to determine significance (p < 1.27x10-

4, approximate correction for 414 tests) (32–34). 

A further analysis was performed to identify loci with opposite directions of 

effect between combined MDD and PGC BD. For this analysis, the direction of 

effects for the PGC BD analysis was reversed, and the MOOD meta-analysis 

repeated as described in the main text. 
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GSMR 

GSMR uses the HEIDI test to remove pleiotropic variants from the instrument 

variable set. All analyses were run using the default settings in GSMR, assuming at 

least ten linkage-independent (r2 < 0.05) significant (p<5x10-8) variants pass the 

HEIDI test (threshold p<0.01). 

Comparing two genetic correlations using jackknife and LDSC 

Let there be four phenotypes A, B, C, and D. The goal is to compare the 

genetic correlation between A and B to the genetic correlation between C and D. 

Global estimates of these correlations can be computed using the LDSC software 

and will be noted r(A,B) and r(C,D). The same software can output jackknife delete 

values for genetic covariance: G(A,B), G(C,D), as well as for heritability: H(A,B) and 

H(C,D). These jackknife delete values are estimated by excluding blocks of values 

(here, number of blocks n = 200). The n-dimensional vectors G(A,B), G(C,D), H(A,B) 

and H(C,D) can be used to generate genetic correlation delete values R(A,B) and 

R(C,D). The difference between the global estimates r(A,B) and r(C,D) is d(AB,CD), 

and the difference between the vectors R(A,B) and R(C,D) is D(AB,CD). The global 

genetic correlation difference d(AB,CD) and the delete values D(AB,CD) are used to 

compute jackknife pseudovalues. The ith pseudovalue is 
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The mean and variance of the jackknife pseudovalues are 
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The jackknife estimate of the difference between the two correlations m(AB,CD) can 

then be compared to test H0 : �� = ��0 (��0 = 0 for no difference between genetic 

correlations), and a p-value can be derived from the z statistic: 
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Estimating local SNP-based heritability and genetic covariance in HESS 

Local estimates of SNP-based heritability and genetic correlation were 

obtained using HESS v0.5.3b (35, 36). All analyses used the reference panel 

provided with the software (1000 Genomes Project European individuals) and 

previously defined blocks of the genome in linkage equilibrium, with 50 eigenvectors 

for inverting the LD matrix and a minimum eigenvalue cutoff of 1 (37, 38). Overlap 

between cohorts was calculated consistent with the calculation of non-overlapping N 

(see above), assuming overlapping individuals had a phenotypic correlation of 1 (that 

is, overlapping individuals were controls in both studies). Local heritability estimates 

were calculated for all meta-analyses, component GWAS and subtypes. Local 

genetic covariance was calculated between combined MDD and PGC BD, between 

MOOD and down-sampled MOOD, and between all of the major depressive disorder 

and bipolar disorder subtype pairwise.  
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Gene-wise and gene-set enrichment analyses 

For all analyses, gene-wise p-values were calculated as the aggregate of the 

mean and smallest p-value across all SNPs annotated to Ensembl gene locations 

using MAGMA v1.06 (using the build 37 reference supplied on the MAGMA website) 

(39). SNPs were assigned to genes if they lay between 35kb upstream and 10kb 

downstream of the gene location (40). MAGMA accounts for possible confounders 

such as gene size, gene density, linkage disequilibrium and minor allele count. The 

threshold for genome-wide significance was defined at p < 2.6x10-6 (Bonferroni 

correction for the 19,041 genes tested). Genes passing genome-wide significance 

were defined as coming from the same locus if they lay within 100kb of each other, 

or if they overlapped a locus from the single variant analysis. Gene set analysis was 

performed in MAGMA for 13,567 gene sets. Significance was set at a Bonferroni-

corrected threshold of p = 5.34x10-6 for 9,361 effectively independent tests within 

each analysis.  

Gene set analysis was performed for all analyses. A gene set matrix P was 

generated with elements Pg,p = 1 if gene g was in set p and Pg,p = 0 otherwise. 

Association between gene set membership and gene-wise z-scores was computed 

using MAGMA. 13,567 gene sets were drawn from OpenTargets (downloaded 

January 2017) (41), GO ontologies, canonical gene sets drawn from MSigSB v5.2 

C2 and C5 datasets (42), and biological gene sets related to psychiatric disorders 

described in various scientific publications. There is considerable overlap of genes 

between gene sets (within and between sources). Gene sets that overlapped entirely 

were treated as a single gene set in analyses. The effective number of gene sets 

tested was defined as the number of principal components accounting for 99.5% of 

explained variance in the gene set similarity matrix, obtained by computing the 
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Tanimoto similarity between gene sets. This results in a Bonferroni-corrected 

threshold of p = 5.34x10-6 for 9,361 effectively independent tests for each matrix.  

Tissue and single-cell enrichment analyses 

Further analyses were performed to assess the enrichment of associated 

genes with expression-specificity profiles from tissues (version 7 data from the 

Genotype-Tissue Expression project) and broadly-defined ("level 1") and narrowly-

defined ("level 2") cell-types (Karolinska Institutet mouse brain single-cell RNA 

sequencing superset) (43, 44). Analyses were performed in MAGMA following 

previously described methods with minor modifications (44). Briefly, for the single 

cell data set (44), gene expression for each cell type was scaled to 1,000,000 unique 

molecular identifiers prior to computing specificity scores. Specificity scores are 

defined as the proportion of the total expression of a specific gene found in a given 

cell type. For the GTEx dataset, transcripts per million (TPM) were transformed to 

log2(TPM +1) prior to computing specificity scores. For each tissue or cell-type, the 

specificity scores were then rank-transformed to a standard normal distribution using 

the rntranform function from the GenABEL R package (45). The standard normalised 

specificity scores were then regressed on gene-wise association in the meta-

analysis, defined as the mean p-value across all SNPs assigned to the gene. 

Multiple-testing correction was applied using Bonferroni-correction within each 

analysis. 

Association with predicted brain tissue gene expression 

Variant-level meta-analysis results were used to predict gene expression 

using S-PrediXcan and genomic and transcriptomic reference data from the thirteen 

brain regions assayed in the GTEx project (version 7) (43, 46). Associations were 
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calculated between these predicted gene expression levels and each meta-analysed 

phenotype. Significance was set at 8.5x10-8, the Bonferroni correction for 586,469 

tests (45,113 genes across 13 tissues) as in the original S-PrediXcan publication 

(46). Genes were defined as coming from the same locus following the approach 

described for MAGMA analyses. 

Polygenic risk score prediction of UKB subtypes using PGC BD summary statistics 

In order to determine if the recurrent major depressive disorder subtype 

(rMDD) was genetically more similar to PGC BD than were other major depressive 

disorder subtypes (single episode major depressive disorder, sMDD;and 

subthreshold depression, subMDD), polygenic risk score analyses were performed 

using PRSice2 (47). PGC BD results were used as the base analysis to produce 

polygenic risk scores (PRS) in the genotyped data from the UKB sample, and these 

were then compared across the major depressive disorder subtypes using logistic 

regression (including the covariates described above for the UKB GWAS). PRS were 

derived using linkage-independent (r2 < 0.1, ± 250kb) variants at seven p-value 

thresholds from the PGC BD data (pT = 0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5). 

Correction for multiple-thresholding was performed by using 20000 permutations 

(using the permutation function in PRSice2) to produce an empirical p-value 

(minimum possible empirical p = 5x10-5). Variance explained was initially calculated 

as Nagelkerke pseudo-R2 (using the fmsb package in R) and was subsequently 

converted to liability scale using http://cnsgenomics.com/shiny/abc/ (48, 49). 

Population prevalences for each subtype were set as follows: rMDD = 0.05; sMDD = 

0.15; subMDD = 0.2. The population prevalence for each comparison was then 

calculated as each prevalence divided by the summed prevalence to give the 
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following: rMDD vs sMDD = 0.25 (that is, 0.05 / [0.05+0.15] ); rMDD vs subMDD = 

0.2; sMDD vs subMDD = 0.429. 

Supplementary Results 

Conditional analyses 

We performed analyses of combined MDD conditioning on PGC BD 

(MDDcBD). Diminished effects (shrinkage of the odds ratio shrinkage towards 1) 

were observed in 51/63 loci reaching genome-wide significance in combined MDD, 

suggesting most loci significantly associated with combined MDD have the same 

direction of effect in PGC BD (Supplementary Table 13). Results from the reverse 

analysis (PGC BD conditioned on combined MDD: BDcMDD) support this 

conclusion, with 14/19 associated loci from PGC BD showing a diminished effect 

(Supplementary Table 13). 

The SNP-based heritability of the conditional analyses showed reduced 

estimates compared to the respective main analyses (MDDcBD: 7%, combined 

MDD: 9%, BDcMDD: 17%, PGC BD: 20%, Supplementary Table 2). Genetic 

correlations for MDDcBD mirror those for combined MDD, except that genetic 

correlations with schizophrenia (and related analyses, such as the schizophrenia-

bipolar disorder meta-analyses) were significantly smaller (Supplementary Figure 12, 

Supplementary Tables 5 and 14) (22, 50). The genetic correlations from BDcMDD 

were similar to PGC BD, with significant reductions only with studies of depression 

and anxiety (Supplementary Tables 15 and 15) (26, 51, 52).  

In addition to conditional analyses, we reversed the observed effects from 

PGC BD and meta-analysed with combined MDD. 32 loci were significant in the 
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resulting MOOD BD Reversed analysis (Supplementary Table 3). All loci were 

strongly associated with combined MDD (max p = 2x10-7), 27 passing genome-wide 

significance, compared with only one locus passing significance in PGC BD. 19 loci 

showed consistent direction of effect between combined MDD and PGC BD, 

indicating that these loci were driven by strong associations with combined MDD, 

rather than having a differing effect on major depressive disorder than on bipolar 

disorder. The smallest p-value observed in PGC BD for any of the 13 loci with 

differing directions of effect was p=6x10-6, for locus Rev2 on chromosome 7. This 

locus contains the CTTNBP2 gene, rare variants in which have suggestive evidence 

for implication in autism spectrum disorder (53). 

Down-sampled reversed analyses yielded three loci passing genome-wide 

significance (Supplementary Table 3). All of these loci passed genome-wide 

significance in down-sampled MDD and had shared directions of effect between 

PGC BD and down-sampled MDD, indicating these loci do not have a differing effect 

on major depressive disorder than on bipolar disorder. 

Tissue and cell-type expression specificity analyses showed high consistency 

between the main and the conditional analyses (Supplementary Tables 9-11). All 

brain tissues were enriched in both conditional analyses. In cell-type analyses, 

neuroblasts, adult dopaminergic neurons, embryonic GABAergic and midbrain 

nucleus neurons were significantly enriched in MDDcBD and not in BDcMDD. 

Conversely, medium spiny neurons (as well as both sets of pyramidal cells and the 

striatal interneurons) were significantly enriched in BDcMDD and not in MDDcBD. 

GSMR analyses also showed high consistency between the main and the 

conditional analyses, although these analyses were limited because BDcMDD had 
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too few variants with p<5x10-8 and so could only be used as an outcome, not an 

exposure, in GSMR analyses (Supplementary Figure 13, Supplementary Tables 12). 

MDDcBD had no significant relationship with PGC BD (nor BDcMDD with combined 

MDD), suggesting that conditioning was effective at removing the bidirectional 

relationship seen between combined MDD and PGC BD. Otherwise, results 

observed for combined MDD were also observed for MDDcBD, except that the 

positive association of major depressive disorder on CAD was attenuated and did 

not pass significance in MDDcBD. Results observed for PGC BD (as an outcome) 

were also observed for BDcMDD. 

Gene-wise and gene set analyses 

Gene-wise association analyses in MAGMA identified 361 genes associated 

with the MOOD phenotype at p < 2.6x10-6 (Supplementary Table 16). Associated 

genes were distributed across 120 loci, including 47 of the loci identified in MOOD. 

However, proximity is only a weak indication of the association of a gene with a trait 

(54). More evidence is provided by the convergence of brain-derived eQTL and 

chromatin contact data from a locus onto a single gene (Supplementary Figures 14-

33 - note no figures are provided for chromosomes 8 or 21, as there are no 

significant loci on these chromosomes). In MOOD, such evidence suggested 

significant loci may act on NEGR1 (loci 2 and 3), RSRC1 (locus 14), TMEM161B 

(locus 18), LHX2 (locus 41), SOX5 (locus 53), LACC1 (locus 56), PCDH8 (locus 57) 

and ZC2HC1C (locus 61). However, diverse eQTL and chromatin contacts were 

observed at many of these loci, suggesting these associations may act through other 

genes as well. 
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Results from gene set analysis were generally similar between combined 

MDD and PGC BD, and in each of the conditional analyses (Supplementary Table 

17). Gene sets significantly enriched across all analyses included genes previously 

implicated in schizophrenia, targets of the RNA splicing proteins CELF4 and 

RBFOX1/RBFOX3, loss-of-function intolerant (pLI09) genes, and genes with 

products potentially involved in synaptic processes (Supplementary Table 17). 

Certain gene sets were enriched in one disorder only - for example, RBFOX2 targets 

were significantly enriched in combined MDD, but not in PGC BD. In contrast, gene 

sets annotated as mutation-intolerant (constrained and genic intolerance RVIS) were 

significantly enriched in PGC BD but not combined MDD. In the conditional analyses, 

results for combined MDD and MDDcBD were similar, with significantly associated 

gene sets falling into broad categories of psychiatrically associated, 

neurodevelopmental, and anthropometric gene sets (Supplementary Table 17). 

Fewer significant gene sets were observed in BDcMDD than in PGC BD, but 

included mutation-intolerant gene sets (Supplementary Table 17).  

Local SNP-based heritability and genetic covariance 

Genome-wide SNP-based heritability estimates on the observed scale were 

similar between LDSC and HESS for all main meta-analyses (Supplementary Table 

18). For both MOOD and combined MDD, local SNP-based heritability was 

significantly >0 in the region overlapping loci 2 and 3 (near NEGR1), and for multiple 

regions comprising locus 25 (the major histocompatibility locus; p < 2.94x10-5, 

Bonferroni correction for 1703 LD-independent regions). No regions had significant 

local SNP-based heritability for PGC BD. Combined MDD and PGC BD were 

significantly genetically correlated (0.29, compare 0.35 from LDSC; Supplementary 
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Table 19), but no regions had local genetic covariance that significantly differed from 

0 (p > 2.94x10-5).  

The observed SNP-based heritability of down-sampled MOOD from HESS 

was 11% (compare LDSC 8%; Supplementary Tables 2 and 18). Only one region, 

part of locus 25, had local SNP-based heritability significantly >0. One region on 

chromosome 10 had local SNP-based heritability significantly >0 in down-sampled 

MDD. However, this is probably a false positive, there are no variants significantly 

associated with down-sampled MDD in the region. In addition, this region 

encompasses the centromere of chromosome 10, which may result in the LD 

structure of the region being specified incorrectly. 

Genetic correlations of mood disorder subtypes 

Genetic correlations between the bipolar disorder and major depressive 

disorder subtypes suggest a spectrum of genetic relationships between major 

depressive disorder and bipolar disorder, with BD2 bridging the two disorders 

(Supplementary Figure 34). Adding in six external phenotypes resulted in two 

clusters, with two sets of intermediate phenotypes (Supplementary Table 10, 

Supplementary Figures 35-40). Major depressive disorder subtypes cluster with 

anxiety disorders and the wellbeing spectrum, albeit with negative genetic 

correlations with wellbeing. The relationship of the wellbeing spectrum with 

depressive disorders was captured more effectively by hedonic rather than 

eudaimonic wellbeing - however, neither of these wellbeing subtypes clustered with 

depressive disorders, reinforcing previous conclusions that wellbeing is 

multidimensional (55). In contrast, schizophrenia clusters with schizoaffective bipolar 

disorder and bipolar disorder type 1, consistent with the greater genetic similarity of 
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these subtypes to schizophrenia (16, 56). ADHD has a moderate genetic correlation 

with bipolar disorder type 2, but not with the other bipolar disorder subtypes, arguing 

that the weaker genetic correlation between ADHD and bipolar disorder (compared 

to major depressive disorder) is specific to type 1 bipolar disorder. 

Principal component analysis identified three principal components 

accounting for >90% of the variance in the genetic correlation matrix (Supplementary 

Figure 41). The first principal component accounted for 59% of the variance, and 

described the spectrum as proposed above, separating the cluster of schizophrenia, 

schizoaffective bipolar disorder, and bipolar disorder type 1 from the cluster of the 

depressive disorders, with bipolar disorder type 2 and ADHD intermediate between 

the two. The second (21% variance explained) principal component separated the 

eudaimonic and hedonic wellbeing phenotypes from the other phenotypes, and the 

third principal component (12% variance explained) separated ADHD from the other 

phenotypes (Supplementary Figure 41). 

Estimates of local heritability (Supplementary Table 18) and genetic 

covariance (Supplementary Table 19) were calculated in HESS to assess whether 

specific regions of the genome were shared or distinct between subtypes. However, 

with the exception of BD1 and rMDD, SNP-based heritability estimates on the 

observed scale from HESS did not differ significantly from 0 (BD1 = 33%; BD2 = 3%; 

SAB = 0.4%; rMDD = 9%; sMDD = 0%; subMDD = 0.1%). This most likely resulted 

from the small cohort size of the subtype analyses, which results in a downward bias 

in SNP-based heritability estimation in HESS (36). No regions had significant local 

SNP-based heritability for any of the subtypes (all p > 2.94x10-5, Bonferroni 

correction for 1703 LD-independent regions). BD1 and rMDD were genetically 
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correlated (0.36, compare 0.31 from LDSC; Supplementary Table 10), but no region 

had a genetic covariance significantly >0 (all p > 2.94x10-5). 

Genetic correlations of PGC MDD and PGC BD with mood disorder subtypes 

The genetic correlation of PGC MDD and BD2 was stronger than those with 

BD1 (�ûrg [difference between rg estimates] = 0.39, p = 1x10-4) and with SAB (�ûrg = 

0.52, p = 2x10-5), but the genetic correlations with BD1 and with SAB were not 

significantly different (�ûrg = 0.14, p = 0.05). PGC BD had a stronger genetic 

correlation with rMDD than with subMDD (�ûrg = 0.27, p = 3x10-5), but the genetic 

correlation between PGC BD and sMDD was not significantly different to those with 

rMDD (�ûrg = -0.07, p = 0.5) nor with subMDD (�ûrg = 0.20, p = 0.009). 

Results from PGC MDD + subtype meta-analyses 

Bipolar disorder subtypes 

64 loci reached genome-wide significance across the meta-analyses between 

PGC MDD and the bipolar disorder subtypes (MDD-BD1, MDD-BD2, and MDD-SAB; 

Supplementary Table 3). Of these, 54 also reached significance in MOOD. The ten 

remaining loci were significant in MDD-BD2 alone (four loci), in MDD-BD2 and in 

MDD-SAB (three), in MDD-BD1 and in MDD-BD2 (one), in MDD-BD1 (one), and in 

MDD-SAB (one). Gene-wise association analyses in MAGMA identified 272 genes 

associated at p < 2.6x10-6 in at least one of the meta-analyses (Supplementary 

Table 16). Associated genes were distributed across 86 loci, including 44 of the loci 

identified by at least one single variant meta-analysis. 

Heritability estimates for the meta-analyses between PGC MDD and the 

bipolar disorder subtypes were all very similar, ranging from 8-10% (assuming a 
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lower bound of population prevalence of 10.5%, and an upper bound of 22%; 

Supplementary Table 2). Genetic correlations with previously-published traits were 

broadly similar across the different meta-analyses, and mirrored those from the main 

MOOD meta-analysis (psychiatric and behavioural, reproductive, and 

sociodemographic traits; Supplementary Table 5). 

Major depressive disorder subtypes 

65 loci reached genome-wide significance across the meta-analyses between 

PGC MDD and the major depressive disorder subtypes (MDD-rMDD, MDD-sMDD, 

and MDD-subMDD; Supplementary Table 3). Of these, 52 also reached significance 

in the MOOD analysis - the remaining 13 loci were significant in MDD-rMDD alone 

(four loci), in MDD-subMDD alone (four), in MDD-rMDD and MDD-subMDD (three), 

in all three analyses (one) and in MDD-sMDD and MDD-subMDD alone (one). Gene-

wise association analyses in MAGMA identified 261 genes associated at p < 2.6x10-6 

in at least one of the meta-analyses (Supplementary Table 16). Associated genes 

were distributed across 93 loci, including 45 of the loci identified by at least one 

single variant meta-analysis. 

Heritability estimates for the meta-analyses between PGC MDD and the major 

depressive disorder subtypes were all similar, ranging from 7-10% (assuming a 

lower bound of population prevalence of 10%, and an upper bound of 20%), 

although estimates for MDD-rMDD were slightly higher than those for MDD-sMDD 

and MDD-subMDD (Supplementary Table 2). Genetic correlations with previously-

published traits were broadly similar across the different meta-analyses, and 

mirrored those from the main MOOD meta-analysis (psychiatric and behavioural, 

reproductive, and sociodemographic traits; Supplementary Table 5).  
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Gains in discovery through adding individuals with different mood disorder diagnoses 

The PGC MDD analysis was meta-analysed with PGC BD and UKB MDD 

cohorts and with the subtypes of both bipolar disorder and major depressive 

disorder. The relative increase in mood-disorder associated loci obtained by adding 

1000 effective cases from different definitions to the PGC MDD GWAS was 

assessed. Effective cases were defined as half of the effective N (2 / [[1+Cases] + 

[1+Controls]]) (57). The resultant increase in locus discovery per 1000 effective 

cases of UKB MDD, PGC BD and each subtype is described in Supplementary 

Table 20. With the exception of SAB (the power of which is very low), meta-analysis 

with PGC MDD resulted in an increased number of loci in all cases, with BD2 

providing the most additional loci per 1000 effective cases (0.67). BD1 cases 

provided a similar amount of additional loci to rMDD (0.5 vs 0.51), and both out-

performed sMDD (0.2). This suggests BD1 cases may function in a similar manner to 

rMDD cases in meta-analysis with PGC MDD, while BD2 cases appear to be 

equivalent to more extreme rMDD cases. As expected, like-for-like, rMDD cases 

provide more loci than sMDD cases, most likely due to increased heterogeneity of 

sMDD cases (potentially because single depressive episodes may be more likely to 

represent a reaction to a specific event). This fits with the higher heritability of 

recurrent major depressive disorder (45%) versus single episode major depressive 

disorder (34%) (58). These conclusions mirror the increase in mean-chi-square of 

each meta-analysis compared to PGC MDD alone (Supplementary Table 20). 

However, limitations remain, including the unknown effects of error (such that it is 

difficult to assess the meaning of differences between subtypes robustly) and the 

fact that the major depressive disorder subtypes are drawn from the same source 
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(UK Biobank), which may differ from clinically-ascertained major depressive disorder 

cohorts, both in heterogeneity and in severity (4, 59). 

Associations of polygenic risk scores for PGC BD with UKB MDD subtypes 

Polygenic risk scores derived from the PGC BD analysis (Supplementary 

Table 21, Supplementary Figure 41) were significantly positively associated with 

rMDD when compared to sMDD (p = 3x10-16; empirical p = 5x10-5) and when 

compared to subMDD (p = 3x10-19; empirical p = 5x10-5). In contrast, the association 

between the PGC BD risk score and sMDD compared to subMDD was not significant 

when taking into account the multiple thresholds tested (p = 0.04; empirical p = 

0.13). Grouping rMDD and sMDD together as UKB MDD cases, the PGC BD risk 

score was significantly positively associated with UKB MDD cases compared to 

controls (p = 6x10-40; empirical p = 5x10-5). Taken together, these results suggest 

that rMDD has more in common genetically with PGC BD than does sMDD. This 

mirrors previous findings that showed BD2 was more similar genetically to PGC 

MDD than was BD1 (16). 

Relationship of meta-analysis results (hierarchical clustering) 

Hierarchical clustering of the significant loci from MOOD and combined MDD 

with the same loci from PGC MDD, UKB MDD, and PGC BD (and the PGC2 SCZ for 

comparison) (22) resulted in MOOD clustering most closely with PGC MDD. This 

indicates that the primary contribution to significant loci in the meta-analysis came 

from PGC MDD rather than PGC BD (Supplementary Figure 42). Results from UKB 

MDD for these loci clustered closer to PGC BD than to PGC MDD, suggesting that 

the component analyses cluster primarily by their contribution to the meta-analysis, 

rather than by trait. Despite this similarity between UKB MDD and PGC BD when 
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considering genome-wide significant loci, comparisons of the SNP-heritability of the 

component analyses (Supplementary Table 2) and of the genetic correlations 

between them (Supplementary Table 10) confirm that UKB MDD is more similar in 

general to PGC MDD than to PGC BD. 

Sensitivity analysis - Equivalently-powered cohorts 

Summary statistics were available from the PGC comprising the PGC MDD 

cohort without the inclusion of the 23andMe and the original UK Biobank cohorts. 

The mean chi-square of the meta-analysis between the down-sampled PGC MDD 

and UKB MDD was 1.35 (compared to 1.70 in combined MDD), similar to the mean 

chi-square of PGC BD and therefore suitable for the purpose of the sensitivity 

analysis (Supplementary Table 2). We therefore meta-analysed down-sampled PGC 

MDD, PGC BD and UKB MDD (down-sampled MOOD; cases = 95,418, controls = 

192,514, non-overlapping N = 280,214).  

19 loci reached genome-wide significance, of which 17 were present in 

MOOD and two did not reach significance in any of the main analyses 

(Supplementary Table 3). Hierarchical clustering of the significant loci from down-

sampled MOOD with the same loci from down-sampled PGC MDD, UKB MDD, and 

PGC BD (and the PGC2 SCZ for comparison) (22) resulted in all three component 

analysis clustering together, with the meta-analysis clustering separately 

(Supplementary Figure 43). This suggests that the clustering of PGC MDD with 

MOOD in the main paper resulted from the power difference. UKB MDD again 

clustered more closely with PGC BD than with down-sampled PGC MDD, although 

the genetic correlation of UKB MDD with down-sampled PGC MDD (rg = 0.86) was 

still greater than with PGC BD (rg = 0.34). 
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Nine of the 44 PGC MDD loci reached genome-wide significance in the down-

sampled MOOD meta-analysis (20% of all PGC MDD loci), as did both of the loci 

that reached genome-wide significance in down-sampled PGC MDD (Supplementary 

Table 3). In comparison, only two of the 19 PGC BD loci reached genome-wide 

significance in the meta-analysis (11%), suggesting that the addition of individuals 

with bipolar disorder to major depressive disorder cohorts still appears to enrich 

more for associations with major depressive disorder than for bipolar disorder.  

Two loci reaching genome-wide significance in down-sampled MOOD did not 

reach genome-wide significance in MOOD, of which one reached significance in 

PGC BD. The other is a multi-gene locus on chromosome 3 that has reached 

genome-wide significance in a wide variety of traits, including depressive symptoms 

(60). In addition to this locus, a further seven loci reached genome-wide significance 

in down-sampled MOOD that did not reach significance in PGC MDD or PGC BD 

including locus 30, near PCLO (but not locus 51, near DRD2). 

The estimate of SNP-heritability for down-sampled MOOD (11% with 

population prevalence 16%) was greater than that for MOOD (8.8%), but still 

remains more similar to PGC MDD (9%) than to PGC BD (17-23%; Supplementary 

Table 2) (1, 16). Similarly, the genetic correlations between down-sampled MOOD 

and other traits broadly recapitulated those for MOOD (Supplementary Table 5). 

Significantly greater correlations (compared with MOOD) were seen between down-

sampled MOOD and bipolar disorder, schizophrenia, combined analyses of bipolar 

disorder and schizophrenia, and the cross-disorder analysis, while reduced 

correlations were seen with PGC MDD and anxiety (Supplementary Table 7). 

Interestingly, a significant negative correlation with IQ was observed (rg = -0.13, p = 

5x10-7), which was not observed in MOOD, PGC MDD nor PGC BD. Further 
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investigation of this genetic correlation revealed that the 23andMe depression cohort 

has a positive genetic correlation with IQ (rg = 0.06, p = 0.01); including this cohort in 

the PGC MDD sample obscured a negative genetic correlation with IQ. 

Overall, the sensitivity analyses suggest that the difference in power between 

combined MDD and PGC BD does contribute to the greater similarity of MOOD to 

PGC MDD than to PGC BD. However, the pervasive similarity to PGC MDD seen in 

the down-sampled analysis suggests the results seen in the main analysis are not 

just a consequence of the power difference. 

The observed SNP-based heritability of down-sampled MOOD from HESS 

was 11% (compare LDSC 8%; Supplementary Tables 2 and 18). Only one region, 

part of locus 25, had local SNP-based heritability significantly >0 in down-sampled 

MOOD. One novel region on chromosome 10 had local SNP-based heritability 

significantly >0 in down-sampled MDD (and in the down-sampled PGC MDD) – 

however, no significant variants were observed in this region, so this may be 

spurious. Down-sampled MDD and PGC BD were significantly genetically correlated 

(0.33, compare 0.37 from LDSC), but no regions had local genetic covariance that 

significantly differed from 0 (all p > 2.94x10-5; Supplementary Table 19). 
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Supplementary Figures  

Supplementary Figure 1 

 

 
 
Supplementary Figure 1: Manhattan and QQ plot of results for the mood disorders (MOOD) 

meta-analysis. Red line is 5x10-8 

 

Supplementary Figure 2 

 

 
 

Supplementary Figure 2: Manhattan and QQ plot of results for the combined MDD meta-
analysis. Red line is 5x10-8 
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Supplementary Figure 3 

 

 
 

Supplementary Figure 3: Manhattan and QQ plot of results for the MDD-BD1 meta-analysis. 
Red line is 5x10-8 

 
Supplementary Figure 4 

 

 
 
Supplementary Figure 4: Manhattan and QQ plot of results for the MDD-BD2 meta-analysis. 

Red line is 5x10-8 
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Supplementary Figure 5 

 

 
 

Supplementary Figure 5: Manhattan and QQ plot of results for the MDD-SAB meta-analysis. 
Red line is 5x10-8 

 
Supplementary Figure 6 

 

 
 

Supplementary Figure 6: Manhattan and QQ plot of results for the MDD-rMDD meta-
analysis. Red line is 5x10-8 
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Supplementary Figure 7 

 

 
 

Supplementary Figure 7: Manhattan and QQ plot of results for the MDD-sMDD meta-
analysis. Red line is 5x10-8 

 
Supplementary Figure 8 

 

 
 

Supplementary Figure 8: Manhattan and QQ plot of results for the MDD-subMDD meta-
analysis. Red line is 5x10-8 
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Supplementary Figure 9 

 

 
Supplementary Figure 9: Hierarchical clustering of the genetic correlations between major 

depression subtypes from UK Biobank (rMDD, sMDD, subMDD) and bipolar disorder 
subtypes (BD1, BD2, SAB). Blue = positive genetic correlation. Red = negative genetic 

correlation. Full genetic correlation results are provided in Supplementary Table 4. 
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Supplementary Figure 10 

 

 
Supplementary Figure 10: Hierarchical clustering of the genetic correlations between major 

depression subtypes from UK Biobank (rMDD, sMDD, subMDD) and bipolar disorder 
subtypes (BD1, BD2, SAB), in the context of genetic correlations with external traits 

(schizophrenia, anxiety disorders, attention deficit hyperactivity disorder, the wellbeing 
spectrum, hedonic wellbeing and eudaimonic wellbeing). Genetic correlations with the 
wellbeing spectrum are reversed, such that they are correlations with low wellbeing.  
Blue = positive genetic correlation. Red = negative genetic correlation. Full genetic 

correlation results are provided in Supplementary Table 4 and Supplementary Table 7 (for 
external traits).   
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Supplementary Figure 11 

 

 
 

Supplementary Figure 11: Cell-type expression specificity of genes associated with bipolar 
disorder (PGC BD, left) and the down-sampled major depressive disorder GWAS (down-
sampled MDD, right). Black vertical lines = significant enrichment (p < 2x10-3, Bonferroni 

correction for 24 cell types). See Supplementary Table 15 for full results. 
  

Down-sampled major 
depressive disorderBipolar disorder
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Supplementary Figure 12 

 

a)   

 
 

Supplementary Figure 12a: Selected genetic correlations of psychiatric traits with the main 
and conditional analyses of MDD (combined MDD, MDDcBD), and bipolar disorder (PGC BD 

and BDcMDD). Full genetic correlation results are provided in Supplementary Table 5. 
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Supplementary Figure 12 (continued) 

 
b) 

 
 

Supplementary Figure 12b: Selected genetic correlations of other traits with the main and 
conditional analyses of MDD (combined MDD, MDDcBD), and bipolar disorder (PGC BD and 

BDcMDD). Full genetic correlation results are provided in Supplementary Table 5. 
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Supplementary Figure 13 

  
 

Supplementary Figure 13: GSMR results from analyses with the main meta-analysis 
(MOOD), the main and conditional MDD (combined MDD, MDDcBD) and bipolar disorder 

(PGC BD, BDcMDD) analyses. External traits are coronary artery disease (CAD), 
educational attainment (EDU), body mass index (BMI), and schizophrenia (SCZ).  

* p < 0.004 (Bonferroni correction for two-way comparisons with six external traits). For 
figure data, including the number of non-pleiotropic SNPs included in each instrument, see 

Supplementary Table 12.  
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Supplementary Figure 14 

 
 

 
 

Supplementary Figure 14: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 1. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 15 

 

 
 

Supplementary Figure 15: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 2. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  



Coleman et al.  Supplement 
 

61 

Supplementary Figure 16 

 

 
 

Supplementary Figure 16: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 3. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 17 

 

 
 

Supplementary Figure 17: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 4. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 18 

 

 
 

Supplementary Figure 18: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 5. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 19 

 

 
Supplementary Figure 19: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 6. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 20 

 

 
 

Supplementary Figure 20: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 7. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  



Coleman et al.  Supplement 
 

66 

Supplementary Figure 21 

 

 
 

Supplementary Figure 21: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 9 (Note – there are no significant loci present on chromosome 8, so no circos 

plot is required). Outer circle: Plot of individual variants in each locus, coloured by LD to 
labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 

chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 
(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 22 

 

 
 

Supplementary Figure 22: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 10. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 23 

 

 
 

Supplementary Figure 23: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 11. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 24 

 

 
 

Supplementary Figure 24: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 12. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red) 
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Supplementary Figure 25 

 

 
 

Supplementary Figure 25: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 13. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 26 

 

 
 

Supplementary Figure 26: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 14. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 27 

 

 
 

Supplementary Figure 27: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 15. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 28 

 

 
 

Supplementary Figure 28: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 16. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 29 

 

 
 

Supplementary Figure 29: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 17. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 30 

 

 
 

Supplementary Figure 30: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 18. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 31 

 

 
 

Supplementary Figure 31: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 19. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 32 

 
 

 
 

Supplementary Figure 32: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 20. Outer circle: Plot of individual variants in each locus, coloured by LD to 

labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 
chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 

(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 33 

 

 
 

Supplementary Figure 33: Circos plot of significant loci from mood disorders (MOOD) on 
chromosome 22 (Note – there are no significant loci present on chromosome 21, so no 

circos plot is required). Outer circle: Plot of individual variants in each locus, coloured by LD 
to labelled index variant (r2 0.8 -> 1, orange -> red). Middle ring: position of locus on 

chromosome, loci shown in blue. Inner ring: Links between loci and nearby genes, by eQTLs 
(green), chromatin contacts (orange) or both (red)  
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Supplementary Figure 34 

 

 
 
 
Supplementary Figure 34: Genetic correlations across the mood disorder spectrum, with all 
paths. Arrows labels show genetic correlations. Solid arrows represent genetic correlations 

significantly different from 0 and not significantly different from 1.  
Dotted arrows represent genetic correlations significantly different from 0 and from 1.  

Dashed arrows represent genetic correlations not significantly different from 0.  
Significance in both cases means p < 0.00333 (Bonferroni correction for 15 tests). 
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Supplementary Figure 35 

 

 
 
 
Supplementary Figure 35: Genetic correlations across the mood disorder spectrum with all 

paths (as Supplementary Figure 34), in the context of genetic correlations with 
schizophrenia. Arrows labels show genetic correlations. Solid arrows represent genetic 

correlations significantly different from 0 and not significantly different from 1.  
Dotted arrows represent genetic correlations significantly different from 0 and from 1.  

Dashed arrows represent genetic correlations not significantly different from 0.  
For consistency with Supplementary Figure 31, significance in both cases means p < 

0.00333 (Bonferroni correction for 15 tests).  
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Supplementary Figure 36 

 

 
 
 
Supplementary Figure 36: Genetic correlations across the mood disorder spectrum with all 

paths (as Supplementary Figure 34), in the context of genetic correlations with anxiety. 
Arrows labels show genetic correlations. Solid arrows represent genetic correlations 

significantly different from 0 and not significantly different from 1.  
Dotted arrows represent genetic correlations significantly different from 0 and from 1.  

Dashed arrows represent genetic correlations not significantly different from 0.  
For consistency with Supplementary Figure 31, significance in both cases means p < 

0.00333 (Bonferroni correction for 15 tests).  
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Supplementary Figure 37 

 

 
 
 
Supplementary Figure 37: Genetic correlations across the mood disorder spectrum with all 

paths (as Supplementary Figure 34), in the context of genetic correlations with ADHD. 
Arrows labels show genetic correlations. Solid arrows represent genetic correlations 

significantly different from 0 and not significantly different from 1.  
Dotted arrows represent genetic correlations significantly different from 0 and from 1.  

Dashed arrows represent genetic correlations not significantly different from 0.  
For consistency with Supplementary Figure 31, significance in both cases means p < 

0.00333 (Bonferroni correction for 15 tests).  



Coleman et al.  Supplement 
 

83 

Supplementary Figure 38 

 

 
 
 
Supplementary Figure 38: Genetic correlations across the mood disorder spectrum with all 

paths (as Supplementary Figure 34), in the context of genetic correlations with the well-being 
spectrum. Arrows labels show genetic correlations. Solid arrows represent genetic 

correlations significantly different from 0 and not significantly different from 1.  
Dotted arrows represent genetic correlations significantly different from 0 and from 1.  

Dashed arrows represent genetic correlations not significantly different from 0.  
For consistency with Supplementary Figure 31, significance in both cases means p < 

0.00333 (Bonferroni correction for 15 tests).  
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Supplementary Figure 39 

 

 
 
 
Supplementary Figure 39: Genetic correlations across the mood disorder spectrum with all 

paths (as Supplementary Figure 34), in the context of genetic correlations with hedonic well-
being. Arrows labels show genetic correlations. Solid arrows represent genetic correlations 

significantly different from 0 and not significantly different from 1.  
Dotted arrows represent genetic correlations significantly different from 0 and from 1.  

Dashed arrows represent genetic correlations not significantly different from 0.  
For consistency with Supplementary Figure 31, significance in both cases means p < 

0.00333 (Bonferroni correction for 15 tests).  
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Supplementary Figure 40 

 

 
 
 
Supplementary Figure 40: Genetic correlations across the mood disorder spectrum with all 
paths (as Supplementary Figure 34), in the context of genetic correlations with eudaimonic 

well-being. Arrows labels show genetic correlations. Solid arrows represent genetic 
correlations significantly different from 0 and not significantly different from 1.  

Dotted arrows represent genetic correlations significantly different from 0 and from 1.  
Dashed arrows represent genetic correlations not significantly different from 0.  

For consistency with Supplementary Figure 31, significance in both cases means p < 
0.00333 (Bonferroni correction for 15 tests).  
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Supplementary Figure 41 

 
Supplementary Figure 41: Three-dimensional scatterplot of the first three principal 

components of the genetic correlation matrix of the mood disorder subtypes (green labels) 
with six external GWAS (orange labels). Principal component (PC) 1 separates BD1, SAB 
and schizophrenia from the depressive disorders, with BD2 and ADHD intermediate. PC2 
separates eudaimonic and hedonic wellbeing from the other phenotypes. PC3 separates 

ADHD from the other phenotypes.  
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Supplementary Figure 42 

 

 
 

Supplementary Figure 42: Distribution of polygenic risk scores derived from PGC BD 
(pThresh = 0.2) in individuals with recurrent major depressive disorder (rMDD cases), single 

episode major depressive disorder (sMDD cases), subthreshold depression (subMDD 
pseudo-cases) and controls. Black bars - significant differences in means (empirical p < 

0.05)  
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Supplementary Figure 43 

 

 
 

Supplementary Figure 43: Hierarchical clustering of the significant loci from the mood 
disorders meta-analysis (MOOD) with the same loci from PGC MDD, UKB MDD, PGC BD, 

and SCZ. Blue = positive direction of effect. Red = negative direction of effect. 
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Supplementary Figure 44 

 

 
 

Supplementary Figure 44: Hierarchical clustering of the significant loci from the down-
sampled mood disorders meta-analysis (down-sampled MOOD) with the same loci from 

down-sampled PGC MDD, UKB MDD, PGC BD, and SCZ. Blue = positive direction of effect. 
Red = negative direction of effect. 
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