Cooperative Fault-Tolerant Control for Networks of Stochastic Nonlinear Systems with Non-differential Saturation Nonlinearity

Hongjing Liang, Guangliang Liu, Tingwen Huang, Fellow, IEEE, Hak-Keung Lam, Fellow, IEEE, and Bohui Wang

Abstract—This paper addresses the cooperative fault-tolerant control problem for networks of stochastic nonlinear systems with actuator faults and input saturation. The fuzzy neural networks (FNNs) are employed to estimate the unknown functions and stochastic disturbance terms. To analyze the nondifferential saturation nonlinearity, a smooth nonlinear function of the control input signal is constructed to estimate the saturation function. A novel adaptive fault-tolerant control protocol is proposed by using backstepping design technique. By using the stochastic Lyapunov functional strategy, it is proved that all the followers’ outputs eventually converge to a small neighborhood of the leader’s output, and all the signals in the closed-loop systems are bounded in probability. Finally, the performance of the proposed control strategy is illustrated through simulation.

Index Terms—Communication topology, networks of stochastic nonlinear systems, fuzzy neural networks, input saturation, actuator faults.

I. INTRODUCTION

In the past few decades, the research on stochastic systems has received extensive attention due to the typical exhibitions of stochastic phenomena in many actual systems, such as biological systems [1], [2], unmanned air vehicle (UAV) formations [3], satellite clusters [4] and adaptive control systems [5], [6]. The stochastic multi-agent systems are seldom considered in the existing papers, although stochastic modeling has played an important role in many stochastic systems [7]–[9]. In [10], to unitedly overcome the bottlenecks of resource, communication, and computation in distributed optimization, the random sleep scheme is creatively introduced into algorithm design, which allows each agent to independently control its update frequency. Zhou et al. in [11] proposed a novel adaptive fuzzy control scheme to solve the problem of adaptive fuzzy tracking control for a class of nonlinear systems by using the adaptive backstepping technique. Zhu et al. in [12] studied the high-order stochastic systems subject to unmeasured states, in which the fuzzy states observer was utilized to handle the uncertain parts in systems. In [13], a fuzzy generalized predictive control law was first proposed and constructed, which offers pioneering work for the predictive control of a nonlinear complexity system. This served as a foundation bridge in combining research fuzzy system and generalized predictive control. By the barrier Lyapunov function and combining a backstepping design technique and an adding a power integrator, the authors in [14] developed a novel controller to control high-order uncertain nonlinear system. In [15], Sun et al. proposed a multiagent-based consensus algorithm for distributed coordinated control, which was firstly applied to Energy Internet and was an important breakthrough for energy management. A decentralized controller was designed by Lyapunov-based recursive method to ensure the global stability for stochastic nonlinear systems [16]. Based on the backstepping technique, the authors in [17] developed a new adaptive fuzzy control protocol to solve the event-triggered containment control problem for stochastic nonlinear multi-agent systems.

In most industrial systems, the saturation nonlinearities are inevitable [18]–[25]. Since the input saturation nonlinearity maybe reduce the systems performance, and also may lead to instability such as undesirable inaccuracy or oscillations, it is difficult to handle a case that the nonlinear systems with saturation nonlinearities. By using the sliding mode approach, an adaptive control method for spacecraft systems was proposed in [18] subject to input saturation. A new adaptive auxiliary signals was established in [19] to compensate for the influence of the dead zones and actuator faults on the control performance. The Ref. [20] gave a more greater flexibility approach to solve the synchronization issue for network systems with saturation nonlinearities. In [21], the authors investigated the problem of event-triggered adaptive control for a class of nonlinear systems with asymmetric input saturation. Ref [23] constructed a low-gain feedback protocol to solve the consensus problem of multi-agent systems with input saturation. In order to solve the global consensus problem of multi-agent systems with input saturation constraints, the authors in [24] proposed a linear protocol under fixed network topologies and time-varying network topologies. However, the aforementioned results on solving the nonlinear multi-agent systems subject to input saturation require that the systems...
should not be influenced by stochastic disturbance. In real industry, there are some stochastic systems, so it is important to research the control design of stochastic multi-agent systems subject to input saturation.

At the same time, the faults of actuator are also the main factor which make the controller design and stability analysis more difficult. Recently, researchers have achieved good research results in the study of actuator faults [26]–[34]. For instance, based on a weighted switching approach, the authors in [27] introduced a pair of variable weights in an efficient and straightforward way to solve the problem of observer-based fault estimation for discrete-time nonlinear systems. In order to overcome the impact of actuator faults on systems stability, Tao et al. in [29] designed an effective distributed controller to ensure systems’ stability when actuator fault occurred. In [31], an adaptive algorithm was proposed for dynamic systems with unknown actuator faults, while the compensation for actuator fault was based on an adaptive tuning of actuator parameter matrices. According to Lyapunov stability theory, a nonlinear parameterized radial basis function neural adaptive control algorithm was proposed to design the fault-tolerant tracking controller in [33]. So far, although remarkable results have been achieved in dealing with the above disadvantages. There are few studies on the coexistence problem about the aforementioned factors in the networks of stochastic nonlinear systems, which motivates our current research work.

We aim the adaptive fuzzy neural networks (FNNs) cooperative-fault-tolerant control protocol for networks of stochastic nonlinear systems with actuator faults and input saturation. The main advantages of our designed control protocol can be lain in the following:

1) An adaptive fuzzy neural network algorithm is proposed to transform the ideal weight vector into the multiplication of two parameters, and the proposed algorithm has few number of adjustable parameters, which can reduce the online calculation burden and easy to be applied into networks of stochastic nonlinear systems, and the completely unknown nonlinear terms and stochastic disturbances are effectively dealt by using the property of FNNs in the backstepping process.

2) Compared with the existing results of fault-tolerant control problems, the fault model used in this paper contains both abrupt faults and incipient faults, which is more general than the faults models in [35], [36]. In addition, the structure of actual control input v_i of the system is changed to broaden the application range of the obtained results.

3) The fuzzy neural network-based adaptive fault-tolerant control protocol is extended to networks of stochastic nonlinear systems subject to nonlinearity input saturation. The developed method does not need the prior knowledge of the bound for input saturation.

The rest of this paper is organized as follows. In Section II, the basic graph theory, the FNNs, and the problem formulation are introduced. The main technical results of this paper are given in Section III, which include the design of real control protocol and virtual control protocol. A numerical simulation is presented in Section IV. Finally, Section V draws our conclusion.

Notation 1: The following notations are used throughout this paper. $\max \{ \bullet \}$ and $\min \{ \bullet \}$ represent maximum and minimum eigenvalue, respectively. For a given vector or matrix x, x^T represents its transpose. \bullet refers to the absolute value, and $\| \bullet \|$ expresses 2-norm. $\sup (\bullet)$ represents the supremacy. $\arg \min \{ \bullet \}$ represents the value of the variable that minimizes the objective function. $\tanh (\bullet)$ refers to the hyperbolic tangent function. $\text{diag}(B_1, \ldots, B_k)$ denotes a diagonal matrix with B_1, \ldots, B_k as its diagonal elements.

II. Preliminaries

A. Graph theory

Graph $\mathcal{G} = (\mathcal{X}, \mathcal{E})$ is a directed graph to describe the information communication between agents, where $\mathcal{X} = \{x_1, \ldots, x_m\}$ is a nonempty set of follower agents, and $\mathcal{E} \in \mathcal{X} \times \mathcal{X}$ denotes the set of edges. The edge means that the jth follower only receives state information from the i-th follower, and satisfies $i \in N_j$, $i, j = 1, \ldots, m$, and $i \neq j$. Define the adjacency matrix $\mathcal{A} = (a_{i,j}) \in R^{m \times m}$, where $a_{i,j} = 1$ if $(x_i, x_j) \in \mathcal{E}$, and otherwise $a_{i,j} = 0$. The in-degree matrix of agent i is denoted as $D = diag(d_1, \ldots, d_m) \in R^{m \times m}$ with $d_i = \sum_{j=1}^{m} a_{i,j}$. The Laplacian matrix $\mathcal{L}_G = [l_{i,j}]_{m \times m} \in R^{m \times m}$ of \mathcal{G} is defined as $\mathcal{L}_G = D - \mathcal{A}$. In a digraph, a directed path from node i to node j is a sequence of edges $\{(x_i, x_h), (x_h, x_l), \ldots, (x_k, x_j)\}$ with distinct nodes $l = k, \ldots, h$. The digraph \mathcal{G} is said to contain a directed spanning tree, if there is a root node that has a directed path to any other node. For any distinct agents $x_i, x_j \in \mathcal{X}$, if there exists a directed path from agent i to agent j, then \mathcal{G} is called strongly connected.

This paper considers the multi-agent systems consisted of N followers and one leader. Without loss of generality, we mark the leader as 0 and followers as $1, \ldots, N$. The communication topology between the leader and the followers is represented by a diagonal matrix.

The following assumptions and lemma are given to solve the cooperative control problem.

Assumption 1: The augmented graph $\bar{\mathcal{G}} = (\bar{\mathcal{X}}, \bar{\mathcal{E}})$, with $\bar{\mathcal{X}} = \{x_0, x_1, \ldots, x_m\}$ exists a spanning tree, where the leader node 0 is the root node of $\bar{\mathcal{G}}$.

Assumption 2: The nth order time derivatives of leader output $y_{0}(t)$ is continuous bounded and available.

Lemma 1: [37] The digraph \mathcal{G} is said to have a spanning tree, if there is at least a directed path from the root to all other nodes. If denote $B = \text{diag}(b_1, 0, \ldots, b_{N,0})$, the node 0 is called the root of the spanning tree, then the matrix $\mathcal{L}_G + B$ is nonsingular.

B. Problem Formulation

Consider a class of stochastic nonlinear multi-agent systems

$$
dx_{i,h} = (g_{i,h}(x_i) x_{i,h+1} + f_{i,h}(x_i)) dt + \Psi_{i,h}(x_i) dw$$

$$
1 \leq h \leq n_i - 1
$$

$$
dx_{i,n_i} = (g_{i,n_i}(x_i) u_i + f_{i,n_i}(x_i)) dt + \Psi_{i,n_i}(x_i) dw$$

$$
y_i = x_{i,1}
$$

where $x_i = [x_{i,1}, \ldots, x_{i,n_i}]^T \in R^{n_i}$, and y_i $(i = 1, \ldots, m)$ are the systems’ state vector and output; $f_{i,h} (\cdot)$ and $\Psi_{i,h} (\cdot)$
(h = 1, ... n_i) are unknown smooth functions, g_i,h (·) is a continuous bounded function, w denotes an r-dimensional standard Brownian. u_i represents that nonsymmetric saturation nonlinearity is described as

\[
 u_i = \text{sat}(v_i) = \begin{cases}
 u_{i,\text{max}}, & v_i \geq u_{i,\text{max}} \\
 v_i, & u_{i,\text{min}} < v_i < u_{i,\text{max}} \\
 u_{i,\text{min}}, & v_i \leq u_{i,\text{min}}
\end{cases} \tag{2}
\]

with \(u_{i,\text{min}} < 0 \) and \(u_{i,\text{max}} > 0 \) being unknown constants, and \(v_i \) denotes the nonlinearity input saturation signal.

According to Fig. 1, it is quite clear that there are two sharp corners if \(u_{i,\text{max}} = v_i \), and \(u_{i,\text{min}} = v_i \). Thus, the backstepping method can not be directly used to design the control signal. Therefore, we proposed a smooth piecewise function to estimate the saturation function to deal with this problem. The function is defined as follows:

\[
 p(v_i) = \begin{cases}
 u_{i,\text{max}} \times \tanh \left(\frac{v_i}{u_{i,\text{max}}} \right), & v_i \geq 0 \\
 u_{i,\text{min}} \times \tanh \left(\frac{v_i}{u_{i,\text{min}}} \right), & v_i < 0 \\
 u_{i,\text{max}} \times \frac{e^{v_i - u_{i,\text{max}}} - e^{-u_{i,\text{max}}}}{e^{v_i} - e^{-v_i}}, & v_i \geq 0 \\
 u_{i,\text{min}} \times \frac{e^{v_i} - e^{u_{i,\text{min}}}}{e^{v_i} - e^{-v_i}}, & v_i < 0.
\end{cases} \tag{3}
\]

Then, \(\text{sat}(v_i) \) in (2) can be denoted as

\[
 u_i = \text{sat}(v_i) = p(v_i) + q(v_i) \tag{4}
\]

where \(q(v_i) = \text{sat}(v_i) - p(v_i) \) denotes a bounded function, and one has

\[
 |q(v_i)| = |\text{sat}(v_i) - p(v_i)| \leq \max\{u_{i,\text{min}}(\tanh(1) - 1), u_{i,\text{max}}(1 - \tanh(1))\} = D. \tag{5}
\]

Fig. 1 denotes an estimation of the saturation function. Furthermore, we define

\[
 p(v_i) = p(v_0) + p_{v_\mu}(v_i - v_0). \tag{6}
\]

By selecting \(v_0 = 0, (6) \) is rewritten as

\[
 p(v_i) = p_{v_\mu}v_i. \tag{7}
\]

To facilitate the design of the controller, the following assumptions are proposed.

Assumption 3: For the function \(p_{v_\mu} \) in (6), there is an unknown constant \(p_\mu \) such that

\[
 0 < p_\mu \leq 1. \tag{8}
\]

Remark 1: The actual control input signal \(v_i \) cannot be infinite in practical (i.e., there is no \(p_\mu = 0 \)), so there exists an unknown constant \(p_\mu \) that makes this assumption valid.

Assumption 4: There exist unknown constants \(\varphi_h > 0 \) such that \(\varphi_h \leq g_i,h(x_i) \) for all \(x_i \in R^{n_i} \), and on arbitrary bounded set in \(R^{n_i} \), \(\varphi_h > 0 \) also exists such that \(g_i,h(x_i) \leq \varphi_h, h = 1, \ldots, n_i \).

Remark 2: By means of Assumptions 3 and Assumptions 4, it can be further assumed that

\[
 0 < \varphi_{n_i} \leq p_{v_\mu}g_i,n_i(x_i) \tag{9}
\]

where \(\varphi_{n_i} = \min\{g_i,n_i(x_i), p_{v_\mu}g_i,n_i(x_i)\} \) is an unknown constant.

Substituting (4) into (1) and using (7), one gets

\[
\begin{align*}
 dx_{i,h} & = \left(g_i,h(x_i)x_{i,h+1} + f_i,h(x_i) \right) dt + \Psi_i,h(x_i) dw \\
 1 & \leq h \leq n_i - 1, \\
 dx_{i,n_i} & = \left(g_i,n_i(x_i) \left(p_{v_\mu}v_i + q(v_i) \right) + f_i,n_i(x_i) \right) dt \tag{10} \\
 & + \Psi_i,n_i(x_i) dw, \\
 y_i & = x_{i,1}.
\end{align*}
\]

where \(i = 1, \ldots, m \).

Remark 3: The above dynamics (10) is an non-strict feedback form. In the multi-agent systems (10), functions \(f_i,h (\cdot), g_i,h (\cdot), \Psi_i,h (\cdot) \) and all state vector \(x_i \) are not reported in the existing consensus works. The further stimulated our research interest for the multi-agent systems model. Meanwhile, compared to the existing stochastic strict-feedback multi-agent systems, \(f_i,h (\cdot) \) and \(\Psi_i,h (\cdot) \) are completely unknown.

Definition 1: [38] Given \(V(x,t) \) a twice continuously differentiable function. The differential operator \(L \) is defined as follows

\[
 LV = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f + \frac{1}{2} \text{Tr} \left\{ \Psi^T \frac{\partial^2 V}{\partial x^2} \Psi \right\}. \tag{11}
\]

with \(\text{Tr} \) being the matrix trace.

Definition 2: [38] Under the digraph \(G \), if for \(\forall \varsigma > 0 \), the tracking errors between the leader and followers are cooperatively semiglobally uniformly ultimately bounded(CSUUB) in probability, i.e., \(E \left| y_i(t) - y_{01}(t) \right|^\varsigma \leq \varsigma \) \((i = 1, \ldots, m)\) when \(t \to \infty \) with \(E \) being the expectation operator.

The accidental actuator faults might occur in practice, giving the systems real control input \(v_i \) and the designed input \(v_{di} \). Meanwhile, define the relationship between \(v_i \) and \(v_{di} \), as follows

\[
 v_i = \rho(t_r, t) v_{di} + \delta_d(t - t_f) \lambda_d(t) \tag{12}
\]

where \(\rho(t_r, t) \) denotes the “healthy indicator”, showing the actuator effectiveness, \(\delta_d(t - t_f) \lambda_d(t) \) expresses for uncontrollable additive actuator failures, \(t_r \) denotes the time instant when the actuator fails, and \(t_f \) means additive actuator fault occurs. The function \(\delta_d(t - t_f) \) characterizes the time profile
of a failure that occurs at some unknown time \(t_f \), and \(\lambda_d (t) \) is the bounded but uncontrollable part of the actuator output.

In this paper, two main types of failures are considered

1) **Abrupt Faults**

\[
\delta_d (t - t_f) = \begin{cases}
0, & t \leq t_f \\
1, & t > t_f.
\end{cases}
\]

(13)

2) **Incipient Faults**

\[
\delta_d (t - t_f) = \begin{cases}
0, & t \leq t_f \\
1 - e^{-\vartheta (t - t_f)}, & t > t_f
\end{cases}
\]

(14)

with \(\vartheta \in [0, \infty) \) being the faults in which the uncontrollable part \(\delta_d (t - t_f) \) occurs. In particular, \(\vartheta = 0 \) implies that all actuator faults are controllable and \(\vartheta = \infty \) means that the uncontrollable part appears abruptly, and \(0 < \vartheta < \infty \) corresponds to the situation where the uncontrollable part gradually occurs in the system. Note that, in this paper, we require the “healthy indicator” \(\rho (t) \) is \(0 < \rho (t) \leq 1 \), meaning that although the actuator missing its effectiveness, it is still working, so that \(v_i \) can always be affected by the control input \(\nu_{di} \). Meanwhile, there is no other restriction, and it could change over time.

Remark 4: Some interesting works on fault-tolerant control have been reported in [33], [35], [39]. We need less faults information to control our protocol than the above literature. More specifically, the adaptive control protocol proposed in [33] is based on the linear parametric decomposition of the failure signals. Such decomposition is impossible if there is a little or no message about the fault models. In [39], actuation fault compensation and control protocol were designed, while the system considered in this paper is nonlinear and uncertainties. In [35], only the additional fault is considered, which is more easier to deal with, because such a fault can be simply treated as additional disturbance. However, if the system has both abrupt faults and incipient faults considered in this paper, the underlying problem becomes more complicated to make the control design and stability analysis more challenging.

The control objective is to develop an adaptive fault-tolerant control protocol \(v_i (t) \) for the system (10) such that the outputs of stochastic nonlinear multi-agent systems \(y_i \) track a desired trajectory \(y_01 (t) \) while ensure that all closed-loop signals in system (10) are bounded in probability.

Define synchronization error as

\[
s_{i,1} = \sum_{j=1}^{m} a_{i,j} (y_i - y_j) + b_{i} (y_i - y_{01})
\]

(15)

with \(b_i \geq 0 \) being the pinning gains. Only when the \(i \)-th follower is able to receive the information from the leader node, \(b_i > 0 \).

To facilitate our stability analysis, the following lemmas are needed.

Lemma 2: [37] Defining \(s_{*,1} = (s_{1,1}, \ldots, s_{m,1})^T \), \(y = (y_1, \ldots, y_m)^T \), \(y_{01} = (y_{01}, \ldots, y_{01})^T \), one gets

\[
\|y - y_{01}\| \leq \|s_{*,1}\|/\Delta (L + \iota)
\]

(16)

where \(\Delta (L + \iota) \) denotes the minimum singular value of \(L + \iota \).

Lemma 3: [40] If there exist a function \(V (p, q) \in C^{2,1} \), two positive constants \(\varpi \) and \(\nu \), \(E_{\infty} \)-functions \(\kappa_1 \) and \(\kappa_2 \), such that

\[
\begin{cases}
\kappa_1 (\|p\|) \leq V (p, q) \leq \kappa_2 (\|p\|) \\
LV \leq -\varpi V (p, q) + \nu
\end{cases}
\]

(17)

for \(\forall p \in R^n \) and \(\forall q > 0 \), there is a unique solution for systems (10) of \(\forall p_0 \in R^n \), and all signals are bounded in probability.

Lemma 4: [41] If \(\bar{a}, \bar{b}, \bar{p}, \bar{q} \) are positive real numbers and \(\bar{a}, \bar{b} \), satisfy \(\frac{1}{\bar{a}} + \frac{1}{\bar{b}} = 1 \), then, following inequality holds:

\[
\bar{p}\bar{q} \leq \frac{1}{\bar{a}} \bar{a}^2 + \frac{1}{\bar{b}} \bar{b}.
\]

C. **FNNs Approximation Property**

In this part, we use the FNNs to estimate unknown nonlinear functions. According to [42], the fuzzy logic systems (FLSs) are divided into a fuzzy reasoning and fuzzy rules. The fuzzy reasoning could be mapping \(\Gamma \in R \) by applying the fuzzy rules in the form of IF-THEN. The \(i \)-th (\(i = 1, \ldots, n \)) fuzzy rule in the form of IF-THEN is defined as

If \(\epsilon_1 (q) \) and \(\ldots \epsilon_m (q) \) is \(A_i \), then \(B (r) \) is \(O^i \)

with \(A_1^i, A_2^i, \ldots, A_m^i \) and \(O^i \) being fuzzy sets. \(F \) denotes the number of fuzzy rules. By applying center-average, singleton fuzzifier and product inference, the outputs of systems could be described as

\[
B (x) = \sum_{i=1}^{F} \bar{g} (\Pi_{j=1}^{m} \Lambda_{A_j} (\epsilon_j)) = W^T \bar{S} (\epsilon)
\]

(18)

where \(\Lambda_{A_j} (\epsilon_j) \) denotes the fuzzy variable membership function value; \(n \) is all number of the rules; \(\bar{g} \) point at which \(\Lambda_{O^i} (\bar{y}) = 1 \); \(W^T = [\bar{y}^1, \bar{y}^2, \ldots, \bar{y}^n] \) is the adjustable parameter vector; \(\bar{S} (\epsilon) = [s^1, s^2, \ldots, s^n] \) represents basis vector with \(s^i \) being defined as

\[
s^i = \frac{\left(\Pi_{j=1}^{m} \Lambda_{A_j} (\epsilon_j) \right)}{\sum_{i=1}^{m} \left(\Pi_{j=1}^{m} \Lambda_{A_j} (\epsilon_j) \right)}.
\]

Remark 5: The FNNs in this paper and literatures [43] depend on a defined set of priority membership functions. Then, according to the centers of membership functions, the adjustable parameters are gained. Any parameters of the priority portion are nonadjustable and depended on the right select of the expert. In [44], it does not need priori message for the IF portion of the rules, therefore, it is not susceptible to initial design assumptions. Meanwhile, the developed method in [44] maintains the well characteristic of linearity for the adjustable parameters.

Based on the approximation property of the FNNs, a continuous real-valued function \(\Gamma (Z) \) defined over a compact set \(\mathcal{D} \), there always exists a \(W^* \in R^m \) such that

\[
\Gamma (Z) = W^* T \bar{S} (Z) + \varepsilon^* \quad (20)
\]
where ε^* shows the estimation error and $\xi(Z)$ denotes basis function vector, generally speaking, it is assumed to be bounded by ε. W^* is optimal weight vector, which used only for analytical aims. W^* is defined as

$$W^* = \arg \min_{W \in \mathbb{R}^n} \left\{ \sup_{X \in \Omega} \left| f(X) - W^T S(X) \right| \right\}.$$ \hspace{1cm} (21)

In this paper, The FNNS will be applied to estimate the unknown nonlinear function $\Gamma_{i,h}(Z_{i,h})$ with $Z_{i,h} \in \mathbb{D}$, one has

$$\Gamma_{i,h}(Z_{i,h}) = W_{i,h}^T \xi_{i,h} (Z_{i,h}) + \varepsilon_{i,h}^r$$ \hspace{1cm} (22)

where $\Gamma_{i,h}(Z_{i,h})$ and $Z_{i,h}$ are defined later. The FNNS applied in this paper can be replaced by the radial basis function NNs [45] and FLSs [46].

Let $\theta_{i,h} = \varphi_i^r \left\| W_{i,h}^* \right\|$, where $\tilde{\theta}_{i,h} \geq 0$ is given to estimate $\theta_{i,h}$. Define $\hat{\theta}_{i,h} \equiv \tilde{\theta}_{i,h} - \theta_{i,h}$, where $\hat{\theta}_{i,h}$ will be adaptively adjusted.

III. DISTRIBUTED ADAPTIVE CONTROLLER DESIGN

In this section, a distributed fault-tolerant control protocol will be proposed by backstepping technique. In the following design, we define the following coordinate transformation

$$s_{i,h} = x_{i,h} - \alpha_{i,h-1}, h = 2, \ldots, n_i$$ \hspace{1cm} (23)

with $\alpha_{i,h-1}$ being the virtual control signal.

Step 1: According to (15) and Itô formula, we can obtain

$$ds_{i,1} = \left[(d_i + b_i) (f_{i,1} (x_i) + g_{i,1} (x_i) x_{i,2}) - \sum_{j=1}^m a_{i,j} \left[f_{j,1} (x_j) + g_{j,1} (x_j) x_{j,2} \right] b_j y_{01} \right] dt$$

$$+ \left[(d_i + b_i) \Psi_{i,1} (x_i) - \sum_{j=1}^m a_{i,j} \Psi_{j,1} (x_j) \right] dw.$$ \hspace{1cm} (24)

Select the Lyapunov candidate function as follows:

$$V_{i,1} = \frac{1}{4} s_{i,1}^4 + \frac{\varphi_i}{2 r_{i,1}} \hat{\theta}_{i,1}^2$$ \hspace{1cm} (25)

where $r_{i,1}$ ($i = 1, \ldots, m$) is a design constant.

By (11) and (24), one gets

$$LV_{i,1} = s_{i,1}^3 \left[(d_i + b_i) [g_{i,1} (s_{i,2} + \alpha_{i,1}) + f_{i,1} (x_i)] \right]$$

$$- \sum_{j=1}^m a_{i,j} \left[g_{j,1} (x_j) x_{j,2} + f_{j,1} (x_j) \right] b_j y_{01}$$

$$+ \frac{3}{2} s_{i,1}^2 \Phi_{i,1}^T \Phi_{i,1} + \frac{\varphi_i}{r_{i,1}} \hat{\theta}_{i,1} \dot{\hat{\theta}}_{i,1}$$ \hspace{1cm} (26)

where

$$\Phi_{i,1} = (d_i + b_i) \Psi_{i,1} (x_i) - \sum_{j=1}^m a_{i,j} \Psi_{j,1} (x_j).$$ \hspace{1cm} (27)

By applying Assumption 4 and Young’s inequality, we have

$$s_{i,1}^3 (d_i + b_i) g_{i,1} s_{i,2} \leq \frac{3}{4} s_{i,1}^2 \beta_{i,1}^2 s_{i,2}^{\bar{r}_i}$$

$$+ \frac{1}{4} (d_i + b_i)^4$$ \hspace{1cm} (28)

$$\Rightarrow \frac{3}{2} s_{i,1}^2 \Phi_{i,1}^T \Phi_{i,1} \leq \frac{3}{4} \left(\frac{1}{2} \beta_{i,1}^2 s_{i,2}^2 \right) \| \Phi_{i,1} \|^4 + \frac{3}{4} \| \Phi_{i,1} \|^4$$ \hspace{1cm} (29)

where $\tau_1 > 0$ and $l_{i,1} > 0$ are the design constants.

Substituting (28) and (29) into (26), it yields

$$LV_{i,1} \leq s_{i,1}^3 \left[(d_i + b_i) g_{i,1} (s_{i,2} + \alpha_{i,1}) + \Gamma_{i,1} - b_i y_{01} \right]$$

$$+ \frac{3}{2} s_{i,1}^2 \Phi_{i,1}^T \Phi_{i,1} \leq \frac{3}{4} \left(\frac{1}{2} \beta_{i,1}^2 s_{i,2}^2 + \frac{\varphi_i^r}{r_{i,1}} \right) \| \Phi_{i,1} \|^4 + \frac{3}{4} \| \Phi_{i,1} \|^4$$ \hspace{1cm} (30)

where $\Gamma_{i,1} = \varphi_i \left[\varphi_i \left(\hat{\theta}_{i,1} \right) \right] \xi_{i,1} (Z_{i,1})$. That is, for $\forall \varepsilon_{i,1} > 0$, one gets

$$\Gamma_{i,1} (Z_{i,1}) = \varepsilon_{i,1} + W_{i,1}^T \xi_{i,1} (Z_{i,1}), \quad | \varepsilon_{i,1} | \leq \varepsilon_{i,1}.$$ \hspace{1cm} (31)

Based on Young’s inequality, we have

$$s_{i,1}^3 \varepsilon_{i,1} \leq \frac{\varphi_i}{r_{i,1}^2} \left[\| \varepsilon_{i,1} \|^4 + \frac{\varphi_i}{r_{i,1}} \| \varepsilon_{i,1} \|^3 \right]$$ \hspace{1cm} (32)

Choose an intermediate virtual control signal and adaptive law as

$$\alpha_{i,1} = \frac{1}{(d_i + b_i)} (- c_{i,1} s_{i,1} + b_i y_{01})$$

$$- \frac{\varphi_i}{r_{i,1}^3} \frac{\| \varepsilon_{i,1} \|^3}{\| \xi_{i,1} (Z_{i,1}) \|^2} + \frac{\varphi_i}{r_{i,1}^3} \frac{\| \varepsilon_{i,1} \|^3}{\| \xi_{i,1} (Z_{i,1}) \|^2 + \beta_{i,1}}$$ \hspace{1cm} (33)

$$\dot{\hat{\theta}}_{i,1} = r_{i,1} s_{i,1}^3 \| \xi_{i,1} (Z_{i,1}) \| - \beta_{i,1} \hat{\theta}_{i,1}$$ \hspace{1cm} (34)

where $c_{i,1}$ is positive design constants.

Substituting (33)-(35) into (30) yields

$$LV_{i,1} \leq \frac{- g_{i,1} c_{i,1} s_{i,1}^2}{\| \varepsilon_{i,1} \|^2} - \frac{\varphi_i}{r_{i,1}^2} \frac{\| \varepsilon_{i,1} \|^3}{\| \xi_{i,1} (Z_{i,1}) \|^2} + \beta_{i,1}$$

$$+ s_{i,1}^3 W_{i,1}^T \xi_{i,1} (Z_{i,1}) + \frac{3}{4} \| \Phi_{i,1} \|^4$$

$$+ \frac{3}{2} s_{i,1}^2 \Phi_{i,1}^T \Phi_{i,1} \leq \frac{3}{4} \beta_{i,1}^2 s_{i,2}^2 \| \xi_{i,1} (Z_{i,1}) \|^2 + \beta_{i,1}$$ \hspace{1cm} (35)

By applying Young’s inequality, we can get

$$- \frac{\varphi_i}{r_{i,1}^2} \| \varepsilon_{i,1} \|^3 \leq - \frac{\varphi_i}{r_{i,1}^2} \| \varepsilon_{i,1} \|^3 + \frac{\varphi_i}{r_{i,1}^2} \theta_{i,1}^2$$ \hspace{1cm} (36)

According to Assumption 4, the following inequality holds

$$s_{i,1}^3 W_{i,1}^T \xi_{i,1} (Z_{i,1}) + \varphi_i \| \varepsilon_{i,1} \|^3 \| \xi_{i,1} (Z_{i,1}) \|$$
By applying Young’s inequality, we can obtain
\[
g_{i,h} s_{i,h}^3 \leq \frac{3}{4} \zeta_{i,h}^4 + \frac{1}{4} \zeta_{i,h}^{-3} r_{i,h}^{-4} + \frac{3}{4} \zeta_{i,h}^{-2}.
\]
(47)

where $\tau_h > 0$ is the design parameter.

Therefore, one has
\[
LV_{i,h} \leq LV_{i,h-1} + s_{i,h}^3 (\Gamma_{i,h} + g_{i,h} \alpha_{i,h})
\]
\[
- \frac{1}{4} s_{i,h}^4 (d_i + b_i) + \frac{3}{4} \zeta_{i,h}^{-3} \zeta_{i,h}^{-4} r_{i,h}^{-4}
\]
\[
+ \frac{3}{4} \zeta_{i,h}^{-2} r_{i,h} + \frac{3}{4} \zeta_{i,h}^{-1} \theta_{i,h} \theta_{i,h}
\]
(49)

where
\[
\Gamma_{i,h} (Z_{i,h}) = f_{i,h} - L \alpha_{i,h-1} + \frac{3}{4} \zeta_{i,h}^{-2} s_{i,h}^4 \theta_{i,h}^4
\]
\[
+ \frac{1}{4} s_{i,h}^4 (d_i + b_i) + \frac{3}{4} \zeta_{i,h}^{-3} \zeta_{i,h}^{-4} r_{i,h}^{-4}
\]
(50)

where $Z_{i,h} = [x_{i,h}, x_{i,h}^T, \ldots, \theta_{i,h-1}]^T$, and for $k = 2$, take $\bar{d}_i + \bar{b}_i = d_i + b_i$, and for $3 \leq k \leq n_i - 1$, take $\bar{d}_i + \bar{b}_i = 1$.

Similarly, the FNN is applied to estimate the unknown function $\Gamma_{i,h} (Z_{i,h})$, that is, for all $e_{i,h} > 0$, one has
\[
\Gamma_{i,h} (Z_{i,h}) = e_{i,h} + W_{i,h}^T \xi_{i,h} (Z_{i,h})
\]
\[
| e_{i,h} | \leq e_{i,h}
\]
(51)

By using Young’s inequality and (51), one gets
\[
s_{i,h}^3 e_{i,h} \leq \frac{3}{4} \zeta_{i,h}^{-3} \zeta_{i,h}^{-4} + \frac{1}{4} \zeta_{i,h}^{-3} r_{i,h}^{-4}
\]
(52)

We select the intermediate virtual control law as
\[
\alpha_{i,h} = -c_{i,h} s_{i,h} - \frac{\partial \theta_{i,h}^2 s_{i,h}^2 \theta_{i,h}^2 (Z_{i,h})}{\theta_{i,h} | s_{i,h}^3 \theta_{i,h} (Z_{i,h}) | + \beta_{i,h}}
\]
(53)

where $c_{i,h} > 0$ denotes the design parameter.

The parameter adaptive law is chosen as
\[
\dot{\theta}_{i,h} = r_{i,h} | s_{i,h}^3 \theta_{i,h} (Z_{i,h}) | - \beta_{i,h} \theta_{i,h}
\]
(54)

with $r_{i,h} > 0$ being a design constant.

Substituting (52)-(54) into (49), it yields
\[
LV_{i,h} \leq LV_{i,h-1} + s_{i,h}^3 W_{i,h}^T \xi_{i,h} (Z_{i,h}) + \frac{1}{4} \zeta_{i,h}^{-3} r_{i,h}^{-4}
\]
\[
- \frac{1}{4} s_{i,h}^4 (d_i + b_i) + \frac{3}{4} \zeta_{i,h}^{-3} \zeta_{i,h}^{-4} r_{i,h}^{-4}
\]
\[
- \frac{3}{2} \zeta_{i,h}^{-2} s_{i,h}^4 + \frac{1}{4} \zeta_{i,h}^{-3} \zeta_{i,h}^{-4} r_{i,h}^{-4}
\]
\[
+ \frac{3}{4} \zeta_{i,h}^{-1} \theta_{i,h} \theta_{i,h}
\]
(55)

Based on Young’s inequality, one gets
\[
\frac{\varphi_{i,h}^2 \beta_{i,h}}{r_{i,h} \theta_{i,h} \theta_{i,h}} \leq \frac{\varphi_{i,h}^2 \beta_{i,h}}{2 r_{i,h} \theta_{i,h}^2} + \frac{\varphi_{i,h}^2 \beta_{i,h}}{2 r_{i,h} \theta_{i,h}^2}
\]
(56)
Then, similar to formula (38), (55) can be rewritten as

$$LV_{i,n} \leq -\sum_{j=1}^{h} c_{i,j} s_{i,j}^4 + \sum_{j=1}^{h} \frac{\phi_{i,j}^2}{2} \hat{\theta}_{i,j}^2 + \frac{1}{4} \hat{\varphi}_{i,n}^2 \tau_{i,n+1} + \tau_{i,n}$$

where

$$\tau_{i,n} = \tau_{i,n-1} + \frac{3}{4} \tau_{i,n}^2 + \frac{\beta_{i,n} \theta_{i,n}^2}{2}$$

$$c_{i,n}^* = c_{i,n} - \frac{3}{2} \tau_{i,n}.$$

Step ni: In this step, we will structure a real controller. Based on lô formula and (23), we have

$$ds_{i,n} = \left(g_{i,n} \left(P_{o,v} \xi_{i,n} + q \left(v_{n} \right) \right) + f_{i,n} \left(x_{i} \right) \right) dt - L \Lambda_{i,n-1} dt + \left(\Psi_{i,n} \left(x_{i} \right) - \sum_{j=1}^{n_i-1} \frac{\partial \Lambda_{i,n-1}}{\partial \xi_{i,j}} \Psi_{i,j} \right)^T d\dot{w}$$

where $L \Lambda_{i,n-1}$ is defined in (43) with $h = n_i$.

Select the Lyapunov function candidate as

$$V_{i,n} = \frac{1}{4} \tilde{s}_{i,n}^4 + \frac{\varphi_{i,n}^2}{2 \tilde{s}_{i,n}} + \frac{\varphi_{i,n}^2}{2 \tilde{s}_{i,n}} \hat{\theta}_{i,n}^2$$

where $r_{i,n}$ ($i = 1, \ldots, m$) is a design parameter, by using (11) and (60), one has

$$LV_{i,n} \leq \frac{1}{4} \tilde{s}_{i,n}^4 + \frac{\varphi_{i,n}^2}{2 \tilde{s}_{i,n}} + \frac{\varphi_{i,n}^2}{2 \tilde{s}_{i,n}} \hat{\theta}_{i,n}^2$$

$$\frac{3}{2} \tilde{s}_{i,n} \theta_{i,n} \Psi_{i,n} \Phi_{i,n} \leq \frac{3}{4} \tilde{s}_{i,n}^4 \left(\Phi_{i,n} \left(Z_{i,n} \right) \right)^T d\dot{w}$$

$$s_{i,n}^4 g_{i,n} \left(v_{n} \right) \leq \frac{3}{4} \tilde{s}_{i,n}^4 \left(\tilde{s}_{i,n} + \frac{\varphi_{i,n}^2}{2 \tilde{s}_{i,n}} \right) \tilde{s}_{i,n}$$

with $c_{i,n}$, $r_{i,n}$, and $\beta_{i,n}$ being design constant.

Therefore, we have

$$LV_{i,n} \leq \frac{1}{4} \tilde{s}_{i,n}^4 + \frac{\varphi_{i,n}^2}{2 \tilde{s}_{i,n}} + \frac{\varphi_{i,n}^2}{2 \tilde{s}_{i,n}} \hat{\theta}_{i,n}^2$$

where

$$\Gamma_{i,n} \left(Z_{i,n} \right) = f_{i,n} + \frac{3}{4} \tilde{s}_{i,n}^2 \left(\tilde{s}_{i,n} + \frac{\varphi_{i,n}^2}{2 \tilde{s}_{i,n}} \right) \tilde{s}_{i,n}$$

$$- \frac{\varphi_{i,n}^2 \beta_{i,n}}{r_{i,n} \tilde{s}_{i,n}} \hat{\theta}_{i,n} \hat{\theta}_{i,n} \leq - \frac{\varphi_{i,n}^2 \beta_{i,n}}{2 \tilde{s}_{i,n} \tilde{s}_{i,n}} + \frac{\varphi_{i,n}^2 \beta_{i,n}}{2 \tilde{s}_{i,n} \tilde{s}_{i,n}} \theta_{i,n}^2$$

where

$$\tau_{i,n} = \sum_{j=1}^{n_i} \left(\frac{3}{4} \tilde{s}_{i,j}^2 + \frac{\varphi_{i,j}^2 \beta_{i,j}}{2 \tilde{s}_{i,j} \tilde{s}_{i,j}} \right) \tilde{s}_{i,j} + \hat{\theta}_{i,n} \hat{\theta}_{i,n}$$

$$c_{i,n}^* = c_{i,n} - \frac{3}{4} \tau_{i,n}.$$
Let
$$\eta_i = \min \{2c_{i,h}^*, \beta_{i,h} \} > 0, \ h = 1, \ldots, n_i \tag{76}$$
then we have
$$LV_{i,n_i} \leq -\eta_i V_{i,n_i} + \tau_i. \tag{77}$$
In the case of the healthy state or fault state of the actuator, the following theorem gives the stability analysis of the proposed control protocol.

Theorem 1: Consider the non-strict feedback stochastic nonlinear multi-agent systems (1) under Assumptions 1-4. We give the distributed control protocol (68) (healthy controller), (70) (fault-tolerant controller) and the adaptive law (69) to ensure that all the followers’ outputs eventually converge to a small neighborhood of the leader’s output and all signals are bounded in the closed-loop system (1) in probability.

Proof 1: Choose the total Lyapunov function candidate as
$$V = \sum_{i=1}^{m} V_{i,n_i} (t). \tag{78}$$
Based on (77), we have
$$LV \leq -\eta V + \tau \tag{79}$$
where \(\eta = \min \{\eta_i, i = 1, \ldots, m\} \), \(\tau = \sum_{i=1}^{m} \tau_i \).

According to Lemma 3 and the definition of \(V \), all signals in the closed-loop systems are CSUUB in probability.

Furthermore, according to [47] and (79), when \(t \geq 0 \), one gets
$$\frac{d(E[V(t)])}{dt} = E[LV(t)] \leq -\eta E(V(t)) + \tau. \tag{80}$$
From (80), we have
$$0 \leq E[V(t)] \leq \frac{\tau}{\eta} + \left(V(0) - \frac{\tau}{\eta} \right) e^{-\eta t}. \tag{81}$$
Further, when \(t \to \infty \), we can get
$$E[V(t)] \leq \frac{\tau}{\eta}. \tag{82}$$
For \(s_{i,1} = (s_{1,1}, \ldots, s_{m,1})^T \), according to (82) and the definition of \(V \), we obtain
$$E \left(\|s_{i,1}\|^4 \right) \leq E \left(s_{1,1}^2, s_{2,1}^2, \ldots, s_{m,1}^2 \right)^2 \leq 2E \left(s_{1,1}^4, s_{2,1}^4, \ldots, s_{m,1}^4 \right) \leq \frac{8\tau}{\eta}. \tag{83}$$
Theoretically, for \(\forall \varepsilon > 0 \), on account of the definitions of \(\eta \) and \(\tau \), by choosing the appropriate design parameters \(c_{i,h}, \beta_{i,h} \) and \(a_{i,h} \), one has
$$\frac{\tau}{\eta} \leq \frac{\varepsilon}{8} \left(\Delta (L + i) \right)^4. \tag{84}$$
Furthermore, when \(t \to \infty \), according to Lemma 3, one gets
$$E \left(\|y - y_{01}\|^4 \right) \leq E \left(\|s_{i,1}\|^4 \right) / \Delta (L + i)^4 \leq \varepsilon. \tag{85}$$
According to Definition 2, the tracking errors between the output of followers \(y_i(t) \) and the leader’s output \(y_{01}(t) \) are CSUUB in probability.

IV. Simulation Results

To illustrate the effectiveness of the developed control protocol, we consider the following networks of stochastic nonlinear systems
$$\begin{align*}
\dot{x}_{i,1} &= \left[x_{i,1} + x_{i,2} \sin(x_{i,1}) \right] dt + \left[0.2 x_{i,1} \sin(x_{i,1}) \right] dw \\
\dot{x}_{i,2} &= \left[0.8 \sin(x_{i,2}) + 0.5 \sin(t) + u_i \right] dt \\
&\quad + \left[1 - \cos(x_{i,2}^2) \right] dw \\
y_i &= x_{i,1}
\end{align*} \tag{86}$$
where \(u_i \) represents the output of the saturation nonlinearity, the nonsymmetric input saturation bounds are selected as \(u_{i,max} = 5 \), \(u_{i,min} = -6 \). The output of the leader is \(y_{01} = 0.5 \cos(t) \).

Fig. 2. Graph \(G \) used in the simulation

Fig. 3. Healthy Controller

Apparentley, the adjacency matrix \(A \) and the Laplacian matrix \(L \) of the digraph \(G \) are, respectively,
$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \quad L = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

We consider the following faults model \(v_i = \rho(t_r, t) v_{di} + \delta_d(t - t_f) \lambda_d(t) \), when the actuator is healthy \(\rho(t_r, t) = 1 \), \(\delta_d(t - t_f) \lambda_d(t) = 0 \), i.e., \(v_{di} = v_i \). When the actuator is abrupt faults \(0 < \rho(t_r, t) < 1 \), \(\lambda_d(t) = 0.05 \cos(t) \), i.e., \(v_{di} = \frac{1}{\rho(t_r, t)} [v_i - 0.05 \cos(t)] \) \((t_r > 5) \).

When the actuator is incipient fault \(0 < \rho(t_r, t) < 1 \), \(\delta_d(t - t_f) = 1 - e^{-2(t-5)} \), \(\lambda_d(t) = 0.05 \cos(t) \). i.e., \(v_{di} = \)}
\[
1 / \rho(t_r) \left[v_1 - (1 - e^{-2(t-r)}) 0.05 \cos(t) \right] (t_r > 5) \]
Figs. 3-5 show the simulation results of health actuator, actuator with initial faults and actuator with abrupt faults, respectively.

Fig. 4. Controller with incipient faults

\[
\begin{align*}
\Lambda_{A_1} (Z^n) &= \exp \left[-0.5 (Z^n_1 + 5)^2 \right] \\
\Lambda_{A_2} (Z^n) &= \exp \left[-0.5 (Z^n_2 + 2)^2 \right] \\
\Lambda_{A_3} (Z^n) &= \exp \left[-0.5 (Z^n_3)^2 \right] \\
\Lambda_{A_4} (Z^n) &= \exp \left[-0.5 (Z^n_4 - 2)^2 \right] \\
\Lambda_{A_5} (Z^n) &= \exp \left[-0.5 (Z^n_5 - 5)^2 \right]
\end{align*}
\]
From these figures, we see that these simulation results validate the effectiveness of the proposed control protocol.

V. Conclusion

Fuzzy neural network-based adaptive fault-tolerant control protocol has been studied for the networks of stochastic nonlinear systems with nonsymmetric input saturation and actuator faults in this paper. Based on the FNNs approximation property and the backstepping technique, a novel adaptive fault-tolerant control protocol has been designed to guarantee that in the closed loop systems all the signals are bounded in probability and the tracking error converges to an arbitrarily small neighborhood around the origin. At last, these simulation results have been presented to illustrate the effectiveness of the proposed control protocol. In our future work, the T-S fuzzy-model-based [48] and [49] cooperative control would be an interesting and challenging and will be considered.

References

Hongjing Liang received the B.S. degree in mathematics from Bohai University, Jinzhou, China, in 2009, the M.S. degree in fundamental mathematics from Northeastern University, Shenyang, China, in 2011, and Ph.D. degree in control theory and control engineering from Northeastern University, Shenyang, China, in 2016.

He was a Temporary Research Associate with the Science Program, Texas A&M University, Doha, Qatar. He is currently an associate professor with the Bohai University, Jinzhou, China. His research interests include adaptive control, fuzzy control, multi-agent systems and their applications. He was a recipient of the Best Paper Award in Theory from ICCSS 2017 and the Outstanding Reviewer Award of CAA/Automatica Sinica 2019, respectively. He has been in the editorial board of Fluctuation and Noise Letters.

Guangliang Liu received the B.S. degree in automation from Liaoning Institute of Science and Technology, Benxi, China, in 2017. She is currently pursuing the M.S. degree in control theory and control engineering from Bohai University, Jinzhou, China.

His current research interests include multi-agent systems, adaptive fuzzy/neural control and bipartite consensus control.

Hak-Keung Lam received the B.Eng. (Hons.) and Ph.D. degrees in electronic and information engineering from the Hong Kong Polytechnic University, Hong Kong, in 1995 and 2000, respectively. During the period of 2000 and 2005, he worked with the Department of Electronic and Information Engineering at The Hong Kong Polytechnic University as Post-Doctoral Fellow and Research Fellow respectively. He joined as a Lecturer at Kings College London in 2005 and is currently a Reader.

His current research interests include intelligent control, computational intelligence and machine learning. He has served as a program committee member, international advisory board member, invited session chair and publication chair for various international conferences and a reviewer for various books, international journals and international conferences. He is an associate editor for IEEE Transactions on Fuzzy Systems, IEEE Transactions on Circuits and Systems II: Express Briefs, IET Control Theory and Applications, International Journal of Fuzzy Systems, Neurocomputing and Nonlinear Dynamics; and guest editor and on the editorial board for a number of international journals. He was named as highly cited researcher and is an IEEE fellow.

Bohui Wang (M’18) received his BS and MS degrees in computer science and technology from Shaanxi University of Technology and Xi'an University of Science and Technology, Shaanxi, China, in 2009 and 2012, respectively, and the Ph.D. degree in control science and engineering from Shanghai Jiao Tong University, Shanghai, China in 2016. He became a lecturer with the School of Aerospace Science and Technology, Xi'an Jiaotong University, Xi'an, China in 2016. He is currently with the Department of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. His current research interests include multi-agent systems, machine learning, fault-tolerant control, intelligent traffic control, and cyber-physical systems.

Dr. Wang is an Associate Editor for IEEE Access, IET Intelligent Transport Systems, and The Journal of Engineering. He is also an Associate Editor for The 15th and 16th International Conference on Control, Automation, Robotics and Vision (ICARCV 2018, 2019). He was the recipient of the Excellent Doctoral Thesis Award from China Simulation Federation and China Simulation Federation in 2018, Publons Peer Review Awards in 2018, and Outstanding Associate Editor of 2019 for IEEE Access. He is a member of IEEE, and a MIET member of IET.

Tingwen Huang received the B.S. degree from Southwest University, Chongqing, China, in 1990, the M.S. degree from Sichuan University, Chengdu, China, in 1993, and the Ph.D. degree from Texas A&M University, College Station, Texas, in 2002.

He was a Visiting Assistant Professor with Texas A&M University. In 2003, he joined Texas A&M University at Qatar (TAMUQ), Doha, Qatar, as an Assistant Professor and then he was promoted to a Professor in 2013, where he is currently a Professor with TAMUQ. His current research interests include neural networks, computational intelligence, chaotic dynamical systems, complex networks, and optimization and control.