King's Research Portal

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librepure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 28. Jan. 2020
Phytochemical and biological studies on *Nephelium longan*

[Estudios fitoquímicos y biológicos sobre *Nephelium longan*]

Khondaker M. RAHMAN, Kamrun NAHAR, Mohammad Gias Uddin KHAN, Choudhury M. HASAN

Phytochemical Research Laboratory, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh.

Received 20 April, 2007. Accepted 27 June, 2007.

Abstract

Extensive chromatographic separation and purification of the organic solvent extracts of *Nephelium longan* (Sapindaceae) stem bark afforded two compounds; scopoletin and stigmasterol. The structures of these compounds were determined by spectroscopic analyses, including 1H and 13C NMR. Different crude extracts (n-hexane, carbon tetrachloride, chloroform and methanol) were tested for antimicrobial activity by standard disc diffusion method known as the Kirby-Bauer method and cytototoxicity was measured by brine shrimp lethality bio-assay. In the brine shrimp lethality bio-assay, the plant extracts showed some promising results as compared to the standard vincristine sulphate, and the test results showed statistical validity. The chloroform and carbon tetrachloride extracts were subjected to antimicrobial and antifungal study and with some exceptions the results are insignificant compared to the standard antibiotic ampicillin.

Key words: *Nephelium longan*, Sapindaceae, scopoletin, stigmasterol, antimicrobial, cytotoxic activity, Artemia salina.

Resumen

Tras extensivo uso de técnicas cromatográficas, la separación y purificación de los extractos orgánicos de las cortezas de *Nephelium longan* (Sapindaceae) hemos aislado los compuestos escopoletina y estigmasterol. Las estructuras de estos compuestos se determinaron por métodos espectroscópicos usando 1H y 13C RMN. La actividad antimicrobiana de los extractos crudos (n-hexano, tetracloruro de carbono, cloroformo y metanol) fueron ensayados usando la difusión en disco estándar (método Kirby-Bauer) y la actividad citotóxica se midió con el ensayo de la *Artemia salina*. En la prueba de citotoxicidad, los extractos mostraron efectos significativos comparados con vincristina. Para los estudios antimicrobianos solo se probaron los extractos cloroformico y tetracloruro de carbono pero los resultados fueron insigificantes comparados con el antibiótico de referencia ampicilina.

Palabras clave: *Nephelium longan*, Sapindaceae, escopoletina, estigmasterol, actividad antimicrobiana, citotoxicidad, *Artemia salina*.

INTRODUCTION

Nephelium longan (Fam. - Sapindaceae; Bengali name – *Kathlichu*) is a tree of 30 or 40 ft in height and 45 ft in width, with rough-barked trunk to 2 1/2 ft thick and long, spreading, slightly drooping, heavily foliaged branches. The longan is native to China and India, and is cultivated in Bangladesh, Thailand, Cambodia, Laos, Vietnam and Taiwan (Hooker, 1897). Botanical synonyms for this species include *Dimocarpus longan* Lour., *Euphoria longan* Steud., *Euphoria longana* Lam., and *Nephelium longana* Cambess. Closely allied to the glamorous lychee, in the family Sapindaceae, the longan, or lungan, also known as dragon's eye or eyeball, and as *mamoncillo chino* in Cuba, has been referred to as the "little brother of the lychee" (Morton, 1987).

The extract of the plant is anxiolytic (Okuyama *et al.*, 1999) and anti-mutagenic (Minakata *et al.*, 1985). No extensive work has been recorded previously on this plant. It has been reported to contain gallic acid, corilagin (an ellagitannin), ellagic acid (Rangkadilok *et al.*, 2005), soyacerebrosides I and II, 1-O-β-D-glucopyranosyl-(2S,3R,4E,8E)-2-(2'−lignoceroyl amino)-4,8-octadecadienyl-1,3-diol (longan cerebroside I) and its 8Z isomer (longan cerebroside II), momor-cerebroside I, and phytolacca cerebroside (Ryu *et al.*, 2003).
MATERIALS AND METHODS

General experimental procedures

1H- and 13C- NMR spectra were obtained from BCSIR (400 MHz Bruker NMR spectrometer with TMS as the internal reference). Silica gel (kieselgel G 60, mesh 70-230, particle size 0.043-0.063 mm) was used for column chromatography. PTLC was done on coated glass plates (kieselgel 60 PF254, Merck). All solvents used in the study were purchased from Merck.

Plant material

The stems of Nephelium longan were collected in the surroundings of Comilla, Comilla district, Bangladesh in August 2004 and were taxonomically identified by Mrs. Mahbuba Begum (Chief Scientific Officer, Bangladesh National Herbarium) and a voucher specimen has been deposited there (DACB 21369).

Extraction and isolation

The air dried and pulverized plant material (200.0 g) was cold extracted with methanol and was successively partitioned with n-hexane, carbon tetrachloride and chloroform using modified Kupchan partitioning method. Evaporation under reduced pressure at 40°C using a Buchii Rotary Evaporator provided 2.5, 1.1, 3.0, and 4.5 g of n-hexane, carbon tetrachloride, chloroform and methanol soluble materials, respectively. The n-hexane solubles were fractionated by column chromatography (CC) over silica gel (60-120 mesh) eluting with n-hexane, EtOAc and MeOH in order of increasing polarity to obtain a total of 30 fractions (each 50 ml). The eluates were combined together on the basis of TLC analysis. The fraction eluted with 10% EtOAc in n-hexane was subjected to PTLC (mobile phase, 20% EtOAc in toluene with few drops of acetic acid, multiple development) to obtain compound 1 and fraction eluted with 15% EtOAc in n-hexane in were subjected to PTLC (mobile phase, 25% EtOAc in toluene with few drops of acetic acid, multiple development) to obtain compound 2.

Compound 1: 1H- NMR (300 MHz, CDCl$_3$): δ 6.25 (1H, d, J=9.5 Hz, H-3), 7.57 (1H, d, J=9.5 Hz, H-4), 6.90 (1H, s, H-5), 3.94 (3H, s, OMe-6), 6.09 (1H, s, OH-7), 6.83 (1H, s, H-8); 13C- NMR (125 MHz, CDCl$_3$): 161.5 (C-2), 103.3 (C-3), 114.0 (C-4), 113.5 (C-5), 143.3 (C-6), 144.1 (C-7), 107.6 (C-8), 149.8 (C-9), 111.6 (C-10), 56.5 (OMe-7).

Compound 2: 1H- NMR (400 MHz, CDCl$_3$): δ 3.55 (1H, m, H-3), 5.37 (1H, m, H-6), 0.90 (1H, H-20), 5.16 (1H, dd, J=15.0, 6.5 Hz, H-22), 5.03 (1H, dd, J=15.0, 9.0 Hz, H-23), 0.70 (3H, s, Me-18), 1.03 (3H, s, Me-19), 0.94 (3H, d, Me-21), 0.84 (3H, d, Me-26), 0.86 (3H, d, Me-27), 0.82 (3H, t, Me-29).

Antimicrobial Screening

The microorganisms were obtained from the Institute of Nutrition and Food Sciences (INFS), University of Dhaka, Bangladesh. The antibacterial activity of the test samples was measured by standard disc diffusion method following the protocols described by Bauer et al. (1966). Standard ampicillin disc and blank sterile filter paper disc (BBL, Cocksville USA, 6 mm in diameter) were used as positive and negative controls, respectively. A total of 16 microorganisms were used for the experiment. They are listed in tables 1 and 2.

Cytotoxicity Activities

All the tested extractives were dissolved in DMSO; the final concentrations were achieved by serial dilution from 50 to 0.39 μg/ml and cytotoxicity was evaluated by the Brine shrimp lethality bioassay. The assay was performed using three replicates and the results were compared with the standard, vincristine sulfate. DMSO was used as a negative control. For hatching, eggs were kept in brine with a constant oxygen supply for 48 h; the mature nauplii were then used in the experiment (Meyer et al., 1982; Persoone, 1988).

For the statistical validity of the results in the cytotoxicity analysis, the LC$_{50}$’s obtained from triplicate experiments and corresponding 95% confidence limits were calculated for the acute tests utilizing the computer program CT-TOX that uses the Binomial, Moving Average Angle, Probit, Spearman-Karber analyses (CTDEP, 1990; Vanhaecke et al., 1981). The statistical analysis used was dependent on the dose response of the test organisms. When multiple methods produced valid LC$_{50}$ values, the method that produced the narrowest 95% confidence limits was chosen. The Chi-square statistic for heterogeneity of variance was calculated for every set of data and compared with the tabular (critical) value to indicate how well the data fit the model.

RESULTS AND DISCUSSION

Repetitive chromatography of the n-hexane soluble of a methanol extract of N. longan stems afforded two
Compounds 1 and 2. Compound 1 was obtained as a white gum, which appeared as a blue spot on TLC plate under UV light at 254 nm. It also exhibited a blue fluorescence under UV light at 366 nm. The compound was identified as scopoletin by comparing the 1H NMR data with those published for this compound (Aldrich, 1992).

The 1H NMR spectrum (400 MHz, CDCl3) of compound 1 displayed signals characteristic of a 6,7-dioxygenated coumarin. The spectrum revealed two doublets at δ 6.28 and δ 7.60 characteristic of H-3 and H-4 protons respectively of the pyrone ring of a coumarin. The presence of two aromatic proton singlets at δ 6.92 and δ 6.85 were attributable to H-5 and H-8 respectively. In this spectrum a three-proton singlet at δ 3.95 was assigned for a methoxy group. Besides, a singlet at δ 6.09 could be attributable for a hydroxyl group. On this basis it was identified as scopoletin.

In our preliminary antimicrobial screening, the chloroform and carbon tetrachloride showed moderate activity against *Vibrio mimicus* and carbon tetrachloride extract showed mild to moderate activity against *Staphylococcus aureus* and *Vibrio parahaemolyticus*, as compared to the standard ampicillin (Table 1). Both chloroform and carbon tetrachloride extracts showed moderate antifungal activity against *Candida albicans* and *Aspergillus niger* (Table 2). The toxicological study showed some promising results for carbon tetrachloride extract which yielded LC50 of 3.13 μg/ml. Chloroform and methanol extracts showed moderate cytotoxic activity, LC50 17.17 μg/ml and 13.63 μg/ml respectively, whereas the positive control vincristine sulphate demonstrated an LC50 of 0.44 μg/ml.

CONCLUSIONS

The phytochemical study on the n-hexane soluble fraction yielded two pure compounds, scopoletin and stigmasterol, whose structures were established through comparison with published results. In the brine shrimp lethality bio-assay, the plant extracts showed some promising results as compared to the standard vincristine sulphate, and the test results showed statistical validity. The chloroform and carbon tetrachloride extracts were subjected to antimicrobial and antifungal study and with some exceptions the results are insignificant compared to the standard antibiotic ampicillin.
Table 1. Antibacterial activity of extracts of *Nephelium longan*

<table>
<thead>
<tr>
<th>Species</th>
<th>Diameter of Zone of Inhibition (mm)</th>
<th>CHCl₃ extract (100 μg/disc)</th>
<th>CCl₄ extract (100 μg/disc)</th>
<th>Ampicillin (30 μg/disc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus megaterium</td>
<td>7</td>
<td>7</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Sarcina lutea</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>-</td>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>7</td>
<td>-</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Gram Negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>7</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>-</td>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Shigella boydii</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Shigella dysenteriae</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Vibrio mimicus</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Salmonella paratyphi</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Vibrio parahaemolyticus</td>
<td>-</td>
<td>7</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

‘-’ indicates no sensitivity

Table 2: Antifungal activity of extracts of *Nephelium longan*

<table>
<thead>
<tr>
<th>Species</th>
<th>Diameter of Zone of Inhibition (mm)</th>
<th>CHCl₃ extract (100 μg/disc)</th>
<th>CCl₄ extract (100 μg/disc)</th>
<th>Ampicillin (30 μg/disc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharomyces cerevisaeae</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Candida albicans</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

‘-’ indicates no sensitivity

Table 3. Cytotoxicity of extracts of *Nephelium longan* on brine shrimps

<table>
<thead>
<tr>
<th>Sample</th>
<th>LC₅₀ (μg/ml)</th>
<th>95% Confidence Limit</th>
<th>Regression equation</th>
<th>χ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vincristine</td>
<td>0.44</td>
<td>0.20-0.98</td>
<td>y=3.1817+0.407x</td>
<td>1.125</td>
</tr>
<tr>
<td>Hexane extract</td>
<td>29.93</td>
<td>17.78-49.71</td>
<td>y=0.238+0.7131x</td>
<td>1.766</td>
</tr>
<tr>
<td>CCl₄ extract</td>
<td>3.13</td>
<td>1.08-9.04</td>
<td>y=4.048+0.3411x</td>
<td>1.604</td>
</tr>
<tr>
<td>CHCl₃ extract</td>
<td>17.17</td>
<td>8.59-34.34</td>
<td>y=3.1507+0.3828x</td>
<td>1.943</td>
</tr>
<tr>
<td>MeOH extract</td>
<td>13.63</td>
<td>8.04-23.12</td>
<td>y=1.6987+0.5892x</td>
<td>2.703</td>
</tr>
</tbody>
</table>
Acknowledgments

The authors are thankful to Institute of Nutrition and Food Sciences (INFS) for supplying the test bacteria, BCSIR, Dhaka for running the NMR spectra and Bangladesh National Herbarium for identifying the plant.

REFERENCES

CTDEP. 1989. CT-TOX Multimethod Computer Program. IBM PC Version 1.0, Statistical Software package developed by the Bureau of Water Management, Connecticut Department of Environmental Protection, Water Toxics Laboratory, Hartford, CT, USA.

