Non-invasive attractor reconstruction analysis for early detection of deteriorations.
Non-invasive attractor reconstruction analysis for early detection of deteriorations

P.H. Charlton1,2, L. Camporota2, J. Smith2, M. Nandi1, M. Christie1, P.J. Aston3, R. Beale2

1King’s College London 2Guy’s and St Thomas’ NHS Foundation Trust 3University of Surrey

1. Early detection of deteriorations using attractor reconstruction

The importance of early detection of deteriorations
Clinical deteriorations of hospital patients leading to events such as cardiac arrests, critical illnesses, and deaths must be recognised early to maintain patient safety. Deteriorations are commonly preceded by changes in cardiovascular state. However, routinely measured cardiovascular parameters such as blood pressure often provide only minimal advanced warning (see right).

Non-invasive measurement
Attractor reconstruction has previously been applied to arterial blood pressure signals. These are only available in critical care via invasive measurement. In contrast, pulse oximetry signals are measured every 4-12 hours in hospital patients. We hypothesised that cardiovascular variability could be measured using this non-invasive signal instead. If so, attractor reconstruction could be used with all hospital patients, rather than just those in critical care.

Elimination of low quality measurements
If attractor reconstruction is to be used in hospital then it must be robust to artifact due to factors such as movement or loosening of sensor attachments. The Attractor Quality Index was proposed to discriminate between high and low quality attractor reconstruction. As shown below, high quality measurements result in a high density of points at the three vertices of a triangular attractor. The attractor quality index quantifies the presence or absence of these high density regions to determine the quality of attractor reconstruction.

Identification of low quality measurements
As shown below, there was high agreement between the heart rates derived from each signal when the Attractor Quality Index was below a threshold value (to the left of the red dashed line). Otherwise, there was poor agreement, demonstrating the ability of the Attractor Quality Index to discriminate between high and low quality measurements.

2. Proposed developments for clinical use

Non-invasive measurement
Pulse oximetry measures arterial blood volume, so is closely related to arterial blood pressure (left). It can be easily measured as shown below.

Elimination of low quality measurements

Pulse density volume (right) derived from arterial blood pressure and pulse oximetry signals using attractor reconstruction agreed very closely.

Similar trends in variability measures
Measures of cardiovascular variability (left) trended similarly between the two signals, although absolute values did not agree.

3. Clinical evaluation of developments

Dataset
Arterial blood pressure and pulse oximetry signals acquired from six critically ill patients were used to compare attractor reconstruction of the signals. Recordings were obtained before, during and after a change in cardiovascular state caused by increased vasopressor dosage (shown by grey shading) [1].

Agreement between signals’ heart rates
Heart rates (right) derived from arterial blood pressure and pulse oximetry signals using attractor reconstruction agreed very closely.

Identification of low quality measurements

As shown below, there was high agreement between the heart rates derived from each signal when the Attractor Quality Index was below a threshold value (to the left of the red dashed line). Otherwise, there was poor agreement, demonstrating the ability of the Attractor Quality Index to discriminate between high and low quality measurements.

References