Inducible targeting of cDCs and their subsets in vivo

Jakob Loschko, Gereon J. Rieke, Heidi A. Schreiber, Matthew M. Meredith, Kai-Hui Yao, Pierre Guermonprez, Michel C. Nussenzweig

PII: S0022-1759(16)30074-6
DOI: doi: 10.1016/j.jim.2016.04.004
Reference: JIM 12171

To appear in: Journal of Immunological Methods

Received date: 10 March 2016
Revised date: 4 April 2016
Accepted date: 4 April 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Inducible targeting of cDCs and their subsets in vivo

Jakob Loschko1*, Gereon J. Rieke1, 3*, Heidi A. Schreiber1, Matthew M. Meredith1, Kai-Hui Yao1, Pierre Guermonprez4, 5, 6 and Michel C. Nussenzweig1, 2

1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
2Howard Hughes Medical Institute
3Rheinische Friedrich-Wilhelms University Bonn, 53113 Bonn, Germany
4The laboratory of phagocyte immunobiology, King’s College London, UK
5Centre for Molecular and Cellular Biology of Inflammation, King’s College London, UK
6Peter Gorner Department of Immunobiology, King’s College London, UK

*These authors contributed equally to this paper

Corresponding Author:
Jakob Loschko PhD
The Rockefeller University
1230 York Avenue
New York, NY 10065
Phone: 212-327-8067
Fax: 212-327-8370
jloschko@rockefeller.edu
Abstract

Conventional dendritic cells (cDCs) are essential immune cells linking the innate and adaptive immune system. cDC depletion in mice is an important method to study the function of these cells in vivo. Here we report an inducible in vivo system for cDC depletion in which excision of a loxP flanked Stop signal enables expression of the human diphtheria toxin receptor (DTR) under the control of Zbtb46 (zDCISIDTR). cDCs can be specifically depleted by combining zDCISIDTR mice with a Csf1rCre driver line. In addition, we show that zDCCre mice can be used to produce cDC specific conditional knockout mice (Irf8, Irf4, Notch2) which lack specific subsets of cDCs.
Introduction

Expression of Itgax (CD11c) has been widely used as a marker for conventional dendritic cells (cDCs) and to target these cells (Caton et al., 2007; Jung et al., 2002; Lindquist et al., 2004; Stranges et al., 2007). However, pDCs, NK cells, activated monocytes, macrophages, and some lymphocytes also express CD11c limiting its use and complicating the interpretation of experiments using CD11c as a marker or for cDC depletion.

We previously described that a two-gene approach using LysM and Csf1r expression can be used to specifically deplete monocytes, monocyte-derived cells, and macrophages (Schreiber et al., 2013). The discovery of a cDC restricted transcription factor Zbtb46 (zDC) provides an alternative means to identify and target pre-DC derived cDCs (Meredith et al., 2012; Satpathy et al., 2012). Mice that carry the green fluorescent protein under the control of the zDC gene (zDCGFP) show GFP expression specifically in cDCs (Satpathy et al., 2012) and zDCDTR mice can be used to deplete cDCs sparing other hematopoietic cells (Meredith et al., 2012). Here we describe a method for inducible depletion of cDCs; expression of the human diphtheria toxin receptor (DTR) under the control of the zDC gene is inhibited by a loxP flanked transcriptional Stop cassette (zDCISIDTR).

Mice that express the Cre recombinase under the control of the zDC gene represent an additional tool for cDC targeting (Loschko et al., 2016). To examine
its possible uses we have combined zDC^{Cre} mice with mice carrying loxP flanked IRF8, IRF4 and Notch2, respectively.
Material and methods

Mice

zDC^{slDTR} knockin mice were produced by homologous recombination in C57BL/6 albino embryonic stem cells at The Rockefeller University Gene Targeting Resource Center. The targeting strategy was the same as for the previously described zDC^{DTR} mice (Meredith et al., 2012). zDC^{slDTR} mice were maintained on an albino C57BL/6 background. Csf1r^{Cre} BAC transgenic mice were produced by DNA microinjection into mouse oocytes. <i>Irf4^{fl/fl}</i> (IRF4^{fl/fl}, stock number 9380), <i>Irf8^{fl/fl}</i> (IRF8^{fl/fl}, stock number 14175), <i>Notch2^{fl/fl}</i> (Notch2^{fl/fl}, stock number 10525), <i>Rosa26^{slYFP}</i> (Rosa26^{slYFP}, stock number 6148) mice were purchased from The Jackson Laboratory. All mice were housed in The Rockefeller University Comparative Bioscience Center under specific pathogen free conditions. All experiments were performed in accordance with the National Institutes of Health guidelines and approved by The Rockefeller University Animal Care and Use Committee.

DT injections

For transient cDC depletion mice were injected i.p. with 500 ng DT (Sigma) on the first day and 100 ng on all subsequent days. To analyze cell depletion mice were euthanized 16 hours after DT injection. For long-term cDC depletion DT was injected every other day.

Flow cytometry
For FACS analysis, cells were stained using antibodies against B220 (RA3-6B2), BST2 (eBio927), F4/80 (BM8), Gr-1 (RB6-8C5), Ly6C (AL-21), Ly6G (1A8), MHCII (M5/114.15.2), NK1.1 (PK136), Siglec-H (440c), CD3 (145-2C11), CD4 (RM4-5), CD8 (53-6.7), CD11b (M1/70), CD11c (N418), CD19 (1D3), CD115 (AFS98). PI (Sigma), DAPI (Invitrogen) or Aqua live/dead (Invitrogen) was added to exclude dead cells from analysis. Cells were analyzed on a LSR Fortessa flow cytometer (BD Biosciences). Analysis was performed using FlowJo software (Tree Star).

BM and spleen cell isolation

For isolation of mononuclear phagocytes spleens were mechanically disrupted and incubated with HBSS (Gibco) + 5% FBS + 0.5 mg/mL CollagenaseD (Roche) at 37 °C for 30 min. Cells were filtered through 100 µM cell strainers and washed. Erythrocytes were lysed with ACK Lysing buffer (Gibco). BM cells were isolated from femurs and tibiae and filtered through 100 µM cell strainers. Erythrocytes were lysed with ACK Lysing buffer (Gibco).

ELISA

Serum levels of Flt3L were determined by ELISA (R&D Systems) according to the manufacturer's protocol.

Statistical Analysis
Results are shown as a means + SEM. Comparisons between groups were done using Student’s two-tailed t test analysis. Statistical significance was determined as P values $<$0.05.
Results

The MNP lineage

Dendritic cells (DCs), monocytes, and macrophages are closely related and together comprise the mononuclear phagocyte (MNP) system. In mice the macrophage-DC progenitor (MDP) in the bone barrow (BM) gives rise to monocytes and a common DC progenitor (CDP). Monocytes circulate in the blood and peripheral tissues where they can be activated and develop into “inflammatory” DCs and some but not all types of macrophages (Hashimoto et al., 2013). CDPs give rise to plasmacytoid DCs (pDCs) and pre-DCs, progenitor cells that are committed to become cDCs (Liu et al., 2009). Both pDCs and pre-DCs leave the BM and seed lymphoid and non-lymphoid tissues (Geissmann et al., 2010). Pre-DCs differentiate into cDCs that can be divided into CD8α+ and CD11b+ cDCs, respectively (Fig. 1 and (Hildner et al., 2008; Lewis et al., 2011; Tamura et al., 2005)). In mice, pre-DCs appear to be heterogeneous and can be divided into cells committed to become CD8α+ or CD11b+ cDCs, respectively (Grajales-Reyes et al., 2015; Schlitzer et al., 2015).

zDCISIDTR and Csf1rCre mice

zDC is expressed in cDCs and their immediate committed precursors but not in other cells of the MNP system (Fig. 1 and (Meredith et al., 2012; Satpathy et al., 2012)). zDC has been used to deplete (zDCDTR), label (zDCGFP) and target (zDCCre) cDCs (Loschko et al., 2016; Meredith et al., 2012; Satpathy et al., 2012). However, zDC is also expressed in endothelial cells. Therefore, prolonged cDC
depletion in zDCDTR mice by diphtheria toxin (DT) injection requires the use of bone marrow chimeras (BMC). To produce an inducible zDCDTR mouse, we inserted a loxP flanked transcriptional Stop element in front of the DTR, and inserted the cassette into the zDC gene (zDCISIDTR) (Fig. 2). Cre mediated excision of the Stop element results in DTR expression under the control of the zDC promoter.

To restrict DTR expression to cDCs in zDCISIDTR mice, we chose BAC transgenic mice expressing Cre under the control of the Csf1 receptor gene (Csf1rCre, Fig. 3A). Csf1r is expressed in monocytes, macrophages, and DC precursors (MDP and CDP) (Fig. 1). To determine the specificity of Cre expression in Csf1rCre mice we crossed Csf1rCre to Rosa26ISiYFP mice. Because pre-DCs descend from Csf1r+ CDPs we reasoned that pre-DCs in the BM as well as in the spleen of Csf1rCreRosa26ISiYFP mice should be labeled with YFP. As expected, all pre-DCs and cDCs were YFP+ (Fig. 3B). In addition, we found YFP expression in pDCs, monocytes and macrophages in Csf1rCreRosa26ISiYFP mice since these cells also descend from Csf1r+ precursor cells or express Csf1r, respectively (Fig. 3B). The percentage of labeled pDCs was lower than in cDCs, macrophages and monocytes possibly because pDCs can develop from myeloid as well as lymphoid precursors (Sathe et al., 2013). Thus, although Cre expression in Csf1rCre mice is not specific for cDCs, cDCs are efficiently targeted in these mice (near 100% recombination efficiency) and therefore Csf1rCre mice are suitable for cDC targeting.
Csf1rCre\textsuperscript{zDC\textsubscript{ISIDTR}} mice

Hemizygous Csf1rCre were bred to homozygous zDCISIDTR mice to obtain Cre+ (Csf1rCre+ zDCISIDTR) and Cre- control (Csf1rCre- zDCISIDTR) littermates (Fig. 4A). 16 hours after DT administration we found efficient depletion of cDCs but not monocytes, macrophages, CD8+ T or B cells (Fig. 4B). We observed slightly lower levels of pDCs and CD4+ T cells in Csf1rCre+ zDCISIDTR mice (Fig. 4B). However, we believe that these cells were not directly depleted by DT as they do not express zDC and hence do not express the DTR.

Expression of zDC in endothelial cells requires the use of BMC to deplete cDCs in zDCDTR mice (Meredith et al., 2012); otherwise zDCDTR mice die 24-48 hours after DT injection (Meredith et al., 2012). In Csf1rCre+ zDCISIDTR mice expression of DTR under the control of zDC is restricted to cells that descend from Csf1r expressing precursors. This approach omits endothelial cells. Among hematopoietic cells cDCs are the only cells expressing zDC and therefore DTR expression in Csf1rCre+ zDCISIDTR mice is restricted to these cells. Therefore cDCs can be efficiently depleted for at least 4 weeks directly in these mice without the requirement to produce BMC (Fig. 4C).

As previously demonstrated cDC depletion results in elevated levels of Flt3L (Fig. 4D and (Birnberg et al., 2008; Meredith et al., 2012)); this has been associated with a myeloproliferative disorder (Birnberg et al., 2008). We also observed
elevated levels of neutrophils and monocytes in the spleen of mice depleted of cDCs for 4 weeks (Fig. 4E). This “side-effect” has to be kept in mind when depleting cells for a prolonged period of time. We conclude that Csf1r$^{Cre^+}$zDCISIDTR mice can be used to efficiently deplete cDCs in vivo.

cDC specific conditional knockout mice lacking cDC subsets

cDCs can be divided into two subsets; IRF8/Batf3 dependent CD8α$^+$ cDCs and IRF4/Notch2 dependent CD11b$^+$ DCs (Hildner et al., 2008; Lewis et al., 2011; Tamura et al., 2005). To test whether the two cDC subsets can be depleted using zDCCre mice we crossed them with IRF8$^{fl/fl}$, IRF4$^{fl/fl}$ or Notch2$^{fl/fl}$ mice and compared Cre$^-$ and Cre$^+$ littermates. zDC$^{Cre^+}$IRF8$^{fl/fl}$ mice had normal frequencies of pDCs and cDCs in the spleen (Fig. 5A, B). However, they had significantly fewer CD8α$^+/DEC205^+$ cDCs compared to their Cre$^-$ littermates (Fig. 5A, C). We conclude that zDCCre mice can be used to conditionally delete Irf8 expression in cDCs to produce mice deficient in the CD8α$^+/DEC205^+$ cDC subset.

In contrast, zDC$^{Cre^+}$Notch2$^{fl/fl}$ as well as zDC$^{Cre^+}$IRF4$^{fl/fl}$ mice did not show reduced frequencies of CD8α$^+$ cDCs. However, we detected lower percentages of CD11b$^+$ cDCs in these mice. Some CD11b$^+$ cDCs also express CD4, ESAM and DCIR2, respectively. We found fewer cells expressing these markers in zDC$^{Cre^+}$Notch2$^{fl/fl}$ and zDC$^{Cre^+}$IRF4$^{fl/fl}$ mice indicating that Notch2 and IRF4 are required for full differentiation of CD11b$^+$ cDCs (Fig. 6A, C, D, F). In IRF4$^{fl/fl}$ mice expression of GFP marks cells with recombined loxP sites (Klein et al., 2006).
Analyzing GFP expression showed that in the majority of cDCs loxP sites recombined. Therefore, the reason for incomplete absence of CD11b+ cDCs cannot be inefficient recombination and IRF4 deletion. More likely Cre mediated deletion of IRF4 happens at a time during cDC differentiation where IRF4 is already at least partially dispensable.

We conclude that zDCCre mice can be used to deplete CD8α+ cDCs (zDC\textsuperscript{Cre+IRF8fl/fl}) and produce mice that show reduced frequencies albeit not complete deletion of CD11b+ cDCs (zDC\textsuperscript{Cre+Notch2fl/fl} and zDC\textsuperscript{Cre+IRF4fl/fl}). Whether the remaining CD11b+ cDCs in zDC\textsuperscript{Cre+Notch2fl/fl} and zDC\textsuperscript{Cre+IRF4fl/fl} mice show functional impairment has to be investigated.
Discussion

Gene targeting is an essential tool to study the function of cDCs in vivo. A frequent limitation of these in vivo models is partial specificity. Until recently CD11c expression was the most specific marker to target cDCs. CD11c has been used to label (CD11cYFP), deplete (CD11cDTR), and conditionally target (CD11cCre) cDCs (Caton et al., 2007; Jung et al., 2002; Lindquist et al., 2004; Stranges et al., 2007). However, CD11c expression is not restricted to cDCs but also found in pDCs, activated monocytes, macrophages and some NK cells (Hohl et al., 2009; Meredith et al., 2012; Schreiber et al., 2013; Serbina et al., 2003).

Among hematopoietic cells expression of zDC is restricted to cDCs (Meredith et al., 2012; Satpathy et al., 2012). However, endothelial cells express zDC as well (Satpathy et al., 2012), and therefore zDCDTR mice die after DT administration. The inducible zDCISIDTR mouse described here allows prolonged depletion of cDCs in non-BMC mice, which is a significant improvement. The same inducible zDCISIDTR mouse can also be used to deplete cDC subsets when combined with Cre driver lines that are specific for CD8\alpha+ and CD11b+ cDCs, respectively. Potential candidate genes include Xcr1, Ly75 (DEC205), Itgam (CD11b), and Clec4a4 (Dcir2). The available CD4Cre and CD8Cre mice have been tested but proved to be not useful for targeting cDCs (data not shown).
An alternative approach to deplete cDC subsets is to produce cDC specific conditional knockouts. Mice lacking IRF8 in cDCs (zDC^{Cre+IRF8^{fl/fl}}) for example lack CD8α⁺ cDCs. Although Batf3 deficient mice also lack CD8α⁺ cDCs (Hildner et al., 2008) compensatory mechanisms can lead to Batf3 independent CD8α⁺ cDC development (Tussiwand et al., 2012). zDC^{Cre+IRF8^{fl/fl}} mice provide a valuable tool to study the contribution of CD8α⁺ cDCs during immune activation (Esterhazy et al., 2016).

Although IRF4 deficient mice lack CD4⁺ cDCs (Tamura et al., 2005) zDC^{Cre+Notch2^{fl/fl}} and zDC^{Cre+IRF4^{fl/fl}} mice are only partially deficient in CD11b⁺/CD4⁺ cDCs. This discrepancy could be due to timing of deletion. In zDC^{Cre+Rosa^{lsl/YFP}} mice pre-DCs are YFP⁻ (data not shown) whereas pre-DCs in zDC^{GFP} mice are GFP⁺ (Satpathy et al., 2012). We speculate that by the time the loxP sites have recombined and YFP starts getting expressed the cells already became MHCII⁺ cDCs. In case of zDC^{Cre+Notch2^{fl/fl}} and zDC^{Cre+IRF4^{fl/fl}} mice this would mean that differentiation of cDCs might be complete before deletion of Notch2 and IRF4, respectively and that zDC expressing cells are not dependent on Notch2 or IRF4 for their final differentiation. Another explanation for the presence of CD11b⁺ cDCs in zDC^{Cre+Notch2^{fl/fl}} and zDC^{Cre+IRF4^{fl/fl}} mice could be incomplete deletion or that mRNA and/or protein have a long half-life. IRF4 deficient cDCs were described to be functionally impaired (Vander Lugt et al., 2014). Whether CD11b⁺ cDCs are functionally defective in zDC^{Cre+IRF4^{fl/fl}} mice remains to be investigated.
Conflict of interest

The authors report no competing financial interests.

Acknowledgements

We are grateful to members of the Nussenzweig laboratory for helpful discussion, reagents, or critical reading of the manuscript. This work was supported in part by National Institutes of Health (NIH) grant number AI 13013. M.C. Nussenzweig is an HHMI investigator.
References

Fig. 1. The MNP network. The macrophage-DC progenitor (MDP) resides in the bone marrow and gives rise to monocytes (mono) and common DC progenitors (CDP). Monocytes circulate in the blood and can differentiate into “inflammatory” DCs and some but not all macrophages after activation. CDPs are restricted to become pDCs or pre-DCs. Both cells seed peripheral tissues. pre-DCs become CD8α⁺ and CD11b⁺ cDCs, respectively. Cells expressing Csf1r and zDC, respectively, are labeled accordingly.

Fig. 2. Generation of the zDC^{LSIDTR} mouse. Schematic diagram of the Zbtb46 (zDC) locus. 5’ and 3’ UTRs are shown in black, coding regions in white. A transcriptional Stop element flanked by loxP sites and followed by the sequence encoding for IRES-DTR-mCherry was introduced in the 3’UTR of zDC right after the endogenous Stop codon. After Cre mediated recombination of loxP sites the DTR-mCherry fusion protein is expressed under the control of the zDC promoter.

Fig. 3. Fate mapping using a BAC transgenic Csf1r^{Cre} mouse. (A) Schematic diagram of the Csf1r locus. 3’ UTR is shown in black, coding regions in white. To express Cre recombinase in cells that actively transcribe Csf1r, we inserted IRES-Cre into the 3’ UTR of Csf1r right after the endogenous Stop codon. (B) Dot plots show gating strategy in the spleen to define pDCs, cDCs, pre-DCs, RPMs and monocytes. pDCs (BST2⁺CD11c⁺), cDCs (B2T2Lin⁻CD11c^{high}MHCII⁺), pre-DCs (B2T2Lin⁻CD11c⁺MHCII⁺Flt3⁺Sirpα⁺), RPM (Lin⁻CD11b^{low} F4/80⁺), monocytes (Lin⁻CD11b⁺F4/80⁻Ly6G⁻Ly6C⁺CD115⁺).
Histograms show percentage of cells expressing YFP in Csf1rCreRosaISLYFP mice (open histograms) or RosaISLYFP control mice (filled grey histograms). Graph depicts percentage of indicated cells expressing YFP.

Fig. 4. Csf1rCrezDCISDTR mice. (A) Hemizygous Csf1rCre mice were bred with homozygous zDCISDTR mice. Resulting offspring consists of Cre− control (Csf1rCre−zDCISDTR) and Cre+ (Csf1rCre+zDCISDTR) mice. (B) 500 ng DT was injected i.p.; 16 hours later spleens were isolated and cDC depletion was determined by flow cytometry. Graphs depict percentage of pDCs, cDCs, monocytes, macrophages, T and B cells among living splenocytes. Each data point represents one individual mouse (n=5-8). (C, D) Mice received 500 ng DT the first day and 100 ng every other day thereafter for 4 weeks. (C) Graph depicts percentage of pDCs and cDCs among living splenocytes. Each data point represents one individual mouse (n=10-11) (D) Graph depicts serum levels of Flt3L in pg/mL. Each data point represents one individual mouse (n=10-11). (E) Graphs depict percentage of neutrophils and monocytes among living splenocytes. Each data point represents one individual mouse (n=10-11). * P value < 0.05

Fig. 5. zDCCreIRF8fl/fl mice. (A) Flow cytometric analysis of splenocytes from Cre− (zDCCre−IRF8fl/fl) and Cre+ (zDCCre+IRF8fl/fl) mice. (B) Graph depicts frequency of pDCs and cDCs among living splenocytes. (C) Graph depicts ratio of CD8α+, DEC205+ and CD11b+ cDCs. Each data point represents one individual mouse (n=9). * P value < 0.05
Fig. 6. zDC_{Cre}^{Notch2^{fl/fl}} and zDC_{Cre}^{IRF4^{fl/fl}} mice. (A) Flow cytometric analysis of splenocytes from Cre^- (zDC_{Cre}^{Notch2^{fl/fl}}) and Cre^+ (zDC_{Cre}^{Notch2^{fl/fl}}) mice. (B) Graph depicts frequency of pDCs and cDCs among living splenocytes. Each data point represents one individual mouse (n=8). (C) Graph depicts ratio of CD8α^+, CD11b^+, CD4^+, ESAM^+ and DCIR2^+ cDCs. Each data point represents one individual mouse (n=7-8). (D) Flow cytometric analysis of splenocytes from Cre^- (zDC_{Cre}^{IRF4^{fl/fl}}) and Cre^+ (zDC_{Cre}^{IRF4^{fl/fl}}) mice. (E) Graph depicts frequency of pDCs and cDCs among living splenocytes. Each data point represents one individual mouse (n=10). (F) Graph depicts ratio of CD8α^+, CD11b^+, CD4^+, ESAM^+ and DCIR2^+ cDCs. Each data point represents one individual mouse (n=6-10). * P value < 0.05
Figure 2
Figure 4

A

B

C

D

E