Common goal areas in the treatment of upper limb spasticity: a multicentre analysis

Stephen Ashford¹, ²
Klemens Fheodoroff³
Jorge Jacinto⁴
Lynne Turner-Stokes¹, ²

¹ Regional Hyper-acute Rehabilitation Unit, Northwick Park Hospital, UK
² King’s College London, Faculty of life science and Medicine, Department of Palliative Care, Policy and Rehabilitation, UK
³ Department of Neurorehabilitation, Gailtal-Klinik, Hermagor, Austria
⁴ Centro de Medicina de Reabilitação de Alcoitão, Serviço de Reabilitação de Adultos 3, Estoril, Portugal

Address for correspondence:

Stephen Ashford,
Regional Rehabilitation Unit,
Northwick Park Hospital,
Watford Road,
Harrow, Middlesex
HA1 3UJ, UK
Tel: +44 (0) 20 8869 2812
Fax: +44 (0) 20 8869 2803
Abstract

Objective: We aimed to develop a goal classification of Individualised goals for spasticity treatment incorporating botulinum toxin intervention for upper limb spasticity to under-pin a more structured approach to future goal setting.

Design: Individualised goals for spasticity treatment incorporating botulinum toxin intervention for upper limb spasticity (n=696) were analysed initially from four studies published in 2008-2012, spanning a total of 18 centres (12 in the UK and 6 in Australia). Goals were categorised and mapped onto the closest matching domains of the WHO International Classification of Functioning. Confirmatory analysis included a further 927 goals from a large international cohort study spanning 22 countries published in 2013.

Results: Goal categories could be assigned into two domains, each subdivided into three key goal areas:

- **Domain 1: Symptoms/impairment n=322 (46%)**: a. pain/discomfort n=78 (11%), b. involuntary movements n=75 (11%), c. range of movement/contracture prevention n=162 (23%).
- **Domain 2: Activities/function n=374 (54%)**: a. passive function (ease of caring for the affected limb) n=242 (35%), b active function (using the affected limb in active tasks) n=84 (12%), c. mobility n=11 (2%).

Over 99% of the goals from the large international cohort fell into the same six areas, confirming the international applicability of the classification.

Conclusions: Goals for management of upper limb spasticity, in worldwide clinical practice, fall into six main goal areas.

Word count: 217

Keywords: Goal-setting, Activities, Arm, Muscle Spasticity, Botulinum toxin
Introduction

Spasticity is a common and distressing sequela of stroke, which interferes with upper limb movement and limits use of the limb for active functional tasks, as well as impacting on mobility and increasing the burden on caregivers. Goals for treatment of upper limb spasticity are diverse, depending on the individual aspirations and priorities of the patient and/or their family. This diversity presents a challenge for outcome measurement in this context, due to the potential variety of outcome evaluation methods required to capture change in different domains.

Goal attainment scaling is increasingly used as an outcome measure in clinical studies of spasticity intervention, but concerns have been raised about lack of standardisation in individual goal setting, which limits its comparability across different populations and settings. The development of a simple goal classification for use in this context, may assist clinicians to use goal attainment scaling in a more timely and structured manner. The identification of a subset of standardised measures to be used alongside goal setting may also help to make outcome measurement more comparable.

This short paper reports a secondary analysis of goal statements, rates of achievement and the measurement parameters that were used alongside them from five published studies that used goal attainment scaling as an outcome measure for treatment of upper limb spasticity using botulinum toxin.

Methods

Our initial analysis included goal statements from four studies published between 2008 and 2012:
1. Ashford and Turner-Stokes 2006: a small single centre, open label study from the UK recording the first published application of goal attainment scaling this context, (n=18, of which 9 had upper limb spasticity)

2. Ashford and Turner-Stokes 2008: a further small single centre, UK open label study, focussed on the use of botulinum toxin for management of shoulder girdle and proximal upper limb spasticity (n=16)

3. Turner-Stokes et al 2010: a secondary analysis of a multi-centre randomised controlled trial from Australia (n=90 patients from six centres)

4. Turner-Stokes et al 2013: the UK pilot for a large international prospective cohort - the Upper Limb International Spasticity (ULIS) series incorporating n=151 patients from 12 centres.

In all four studies, goals were set and systematically recorded using goal attainment scaling as described by Turner-Stokes 2009, based on the original method of Kiresuk and Sherman. These studies were selected based on the consistency of the goal setting process applied and the required recording of what goals were set.

Goal statements were extracted from the datasets of all the four studies, and classified and mapped onto the WHO International Classification of Functioning (ICF) with a view to reducing the number of goal categories to a smaller number of ‘key goal areas’. Classification of goals for studies 1 and 2 was undertaken by both authors (LTS and SA) independently and then compared, with any disagreements discussed and rectified. Classification of goals for studies 3 and 4 was taken from the existing datasets. In addition to the goal classification which was the primary aim of this work, we also interrogated the datasets for rates of goal achievement and also any parameters or standardised measures that had been used to provide quantification in goal evaluation (e.g. visual analogue scales, numerical rating scales etc.) within the different goal areas. This information was not always
recorded and was not available for all data sets and is therefore preliminary evaluation at this stage.

Confirmatory analysis of a further 927 goal statements from a large international cohort involving 84 centres in 22 countries (the ULIS-II study) published in 2013, was undertaken to confirm or refute the goal classification.

Results

A total of 696 individualised primary and secondary goals for treatment of upper limb spasticity using botulinum toxin injection were analysed from the first four studies. Goal classification is summarised in Table 1 with a list of measured goal parameters / standardised measures that were identified in each goal area. Overall 322 (46%) of goals were set in the domain of symptoms and impairment, whilst 374 (54%) goals were related to activities.

Key goal areas in the domain of ‘Symptoms and impairment’ were:

- Reduction of spasticity-related pain (11%)
- Prevention of contractures and deformity, by improving passive range of movement (23%).
- Control of unwanted involuntary movements, such as associated reactions whilst walking or spasms (11%).

Key goal areas in the domain of ‘Activities’ were:
• Making it easier to care for the affected limb (‘passive function’14) e.g. maintaining palmar/axillary hygiene, skin integrity, dressing the limb including splint application etc. (35%)

• Using the affected limb for some purpose (‘active function’14) defined either by the motor task for function (e.g. grasping/holding/releasing objects, lifting and carrying or fine finger dexterity) (12%) – or by a functional task e.g. eating/drinking, household tasks, or activities related to work or hobbies (5%), or both.

• Improved mobility - such as safer transfers, standing balance, improved walking (gait pattern, speed or endurance), confidence or reduction of falling/tripping (2%).

Other goal areas that were used only occasionally related to improving body image (cosmesis) (1%) and facilitating therapy (0.01%)

The analysis of goal areas reported in the fifth study6 confirmed that that 99% of the goals fell into the same six areas. This supports the conclusion that our findings have saturated.

Table 2 compares the distribution of goals set and achieved within each goal area and demonstrates the same goal categories in these two different data sets. Rates of achievement were generally higher in the fifth study, which may reflect the concerted approach to training in the use of goal attainment scaling that was taken in this study6.

Discussion

In this study, analysis of a total 1623 goals from five published studies led to the identification of 6 key goal areas in two principal domains, which were mapped on to the WHO ICF. Our analysis confirms that, despite their diversity, goals for management of upper limb spasticity fall broadly into six main goal areas.
The large number of goals analysed across 18 centres spanning two continents in our first analysis provided a firm basis for selection of the six key goal areas. The subsequent confirmatory goals analysis from the large international cohort involving 22 countries across four continents (the ULIS-II study) \(^6\) supports the conclusion that our findings have saturated and have world-wide applicability.

The findings have been used to inform the development of a structured approach to goal setting - the Goal Attainment Scaling – Evaluation of Outcome for Upper-limb Spasticity (GAS-eous) method, which is a structured process for applying goal attainment scaling alongside recording of standardised measures. This method and its development are described in an article in the International Journal of Therapy and Rehabilitation \(^{15}\).

The approach of identifying the common goal areas and associated subsets of standardised measures is by no means confined to the management of spasticity, but has the potential for wider application both in rehabilitation and in other areas of health and social care. In time this may lead to the establishment of ‘goal banks’ as recommended by Tennant 2007 \(^8\) within the specific field of interest, that will further improve the utility and comparability of goal attainment scaling as a person-centred outcome measure for complex interventions.

Word count 1086

Clinical Messages

- Two domains for goal setting could be consistently identified of ‘symptoms and impairment’ and ‘Activities’.

- Six goal areas were identified, under the two domains; 1: Symptoms/impairment: pain, involuntary movements and range of movement. 2: Activities/function: passive function (ease of caring), active function (using the affected limb) and mobility.
Declarations of interest

Four of the studies from which data were drawn for this analysis were originally funded by Ipsen Ltd. However, this secondary analysis was conducted independently. Funding for the preparation of the manuscript was provided by the Dunhill Medical Trust.

Stephen Ashford is funded by the National Institute of Health Research (NIHR) in the form of a Clinical Lectureship award. This paper presents independent research funded by the National Institute for Health Research (NIHR) UK and NIHR CLAHRC Northwest London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the NIHR CLAHRC Northwest London or the Department for Health, UK.

Acknowledgements

We would like to thank all of the patients, clinicians and investigators who were involved in the five under-pinning studies. In particular, we are grateful to our key international collaborators: Prof Ian Baguley (Westmead Hospital, Sydney, Australia), Dr Stephen de Graaff (Epworth Hospital, Melbourne Australia), who were involved as investigators in some of the original studies used in this analysis and have continued to support the ongoing work in this area.

Table 1: Breakdown of goals set (n=696) and standard measures in each area

<table>
<thead>
<tr>
<th>Goal Domain</th>
<th>Goal area</th>
<th>No. of goals set</th>
<th>% of goals set</th>
<th>Goal parameters / standard measures used*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms and impairment N=322 goals (46%)</td>
<td>Spasticity-related pain or discomfort</td>
<td>78</td>
<td>11%</td>
<td>Visual analogues scales (VAS), numerical rating scales, Scale of Pain Intensity (SPIN) 16</td>
</tr>
<tr>
<td></td>
<td>Involuntary movements during use of other limbs (associated reactions) or spasms</td>
<td>75</td>
<td>11%</td>
<td>Carry angle, spasm frequency, Associated Reaction Rating Scale (ARRS) 17</td>
</tr>
<tr>
<td></td>
<td>Range of movement, prevention of contractures/ deformity, splint tolerance,</td>
<td>162</td>
<td>23%</td>
<td>Goniometry, anatomical distances (e.g. finger-palm), splint tolerance times</td>
</tr>
<tr>
<td>Activities N=374 goals (54%)</td>
<td>Passive function - Ease of caring for the affected limb</td>
<td>242</td>
<td>35%</td>
<td>Ease of care ratings (VAS or numerical rating), carer burden, time to complete task Arm Activity measure (ArmA) – passive function 18-20</td>
</tr>
<tr>
<td></td>
<td>Active function - Domestic and community tasks</td>
<td>120</td>
<td>17%</td>
<td>Ability to complete the defined task, Time taken, control/quality of movement Arm Activity measure (ArmA) – active function 18-20</td>
</tr>
<tr>
<td></td>
<td>Using the limb in an active function task</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improved mobility ** (e.g. transfers, standing, walking, balance, confidence, avoiding falls)</td>
<td>11</td>
<td>2%</td>
<td>Gait speed (e.g. 10 metre walk), endurance (e.g. 6 minute walk), video, falls frequency, confidence rating</td>
</tr>
<tr>
<td></td>
<td>Therapy facilitation and cosmesis - perception of body image</td>
<td>8</td>
<td>1%</td>
<td></td>
</tr>
</tbody>
</table>

*All standardised measures or ordinal scales used to quantify goal attainment are indicated. These measures were inconsistently applied in the four primary studies analysed in the goals analysis and in many cases were not used. Data for goal parameter use were not available for all studies.

**Goals for upper limb intervention related to improved mobility reflect the impact of the spastic upper limb on mobility.
Table 2. Proportion of goals set and achieved in the different goal areas

<table>
<thead>
<tr>
<th>Goal Domain</th>
<th>Goal area</th>
<th>Combined analysis of 696 goals</th>
<th>Analysis of the 927 goals from ULIS-II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No. of goals set</td>
<td>No. goals achieved</td>
</tr>
<tr>
<td>Symptoms and impairment</td>
<td>Pain</td>
<td>78</td>
<td>66 (85%)</td>
</tr>
<tr>
<td></td>
<td>Involuntary movements</td>
<td>75</td>
<td>51 (65%)</td>
</tr>
<tr>
<td></td>
<td>Impairment</td>
<td>162</td>
<td>95 (59%)</td>
</tr>
<tr>
<td>Activities</td>
<td>Passive function</td>
<td>242</td>
<td>151 (62%)</td>
</tr>
<tr>
<td></td>
<td>Active function</td>
<td>120</td>
<td>32 (27%)</td>
</tr>
<tr>
<td></td>
<td>Mobility</td>
<td>11</td>
<td>6 (54%)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>8</td>
<td>7 (87%)</td>
</tr>
</tbody>
</table>