Spatio-temporal expression of Sox genes in murine palatogenesis

Momoko Waranabe, Katsushige Kawasaki, Maiko Kawasaki, Thantrira Portaveetus, Shelly Oommen, James Blackburn, Takahiro Nagai, Atsushi Kitatmura, Atsushi Nishikawa, Yasumitsu Kodama, Ritsuo Takagi, Takeyasu Maeda, Paul T. Sharpe, Atsushi Ohazama

PII: S1567-133X(16)30017-5
DOI: 10.1016/j.gep.2016.05.002
Reference: MODGEP 1011

To appear in: Gene Expression Patterns

Received Date: 6 April 2016
Revised Date: 25 May 2016
Accepted Date: 25 May 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Spatio-temporal expression of Sox genes in murine palatogenesis

Momoko Waranabe¹,²*, Katsushige Kawasaki¹,³,⁴*, Maiko Kawasaki¹,³, Thantrira Portaveetus³, Shelly Oommen³, James Blackburn³, Takahiro Nagai², Atsushi Kitatmura², Atushi Nishikawa², Yasumitsu Kodama², Ritsuo Takagi², Takeyasu Maeda¹, Paul T. Sharpe³ and Atushi Ohazama¹,³,**

¹: Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
²: Division of Oral and Maxillofacial Surgery, Department of Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
³: Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London SE1 9RT, UK
⁴: Oral Life Science, Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan

* Authors have contributed equally to this work

** Corresponding author: Atushi Ohazama
Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
Tel: +81-25-227-2816
Fax: +81-25-223-6499
E-mail: atushiohazama@dent.niigata-u.ac.jp

Keywords: Sox; Palatal development; In situ hybridization

Running title: Sox genes in palate development

Manuscript information: Text Pages = 16
Figures = 6
Words in paper = 3683
Words in Abstract = 151
Characters in title (including spaces) = 40
SUMMARY

Members of the Sox gene family play critical roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen Sox genes (Sox1-14, 17, 18 and 21) during murine palatogenesis from initiation to fusion of the palatal shelves above the dorsal side of the tongue. At palatal shelf initiation (E12.5), the localized expression of six Sox genes (Sox2, 5, 6, 9, 12 and 13) was observed in the shelves, whereas Sox4 and Sox11 showed ubiquitous expression. During the down-growth of palatal shelves (E13.5), Sox4, Sox5, and Sox9 exhibited restricted expression to the interior side of the palatal shelves facing the tongue. Following elevation of the palatal shelves (E14.5), Sox2, Sox11 and Sox21 expression was present in the midline epithelial seam. We thus identify dynamic spatio-temporal expression of Sox gene family during the process of palatogenesis.
INTRODUCTION

Cleft palate is one of the most common congenital birth defects in humans, suggesting that palatogenesis is easily perturbed by genetic and environmental factors (Gritli-Linde 2007, Dixon et al., 2011, Iwata et al., 2011). Many molecules have been identified in palatogenesis, which requires fine tuning in terms of the timing, location and size of their expression for normal palate development (Murray and Schutte 2004, Smith et al., 2013, Meng et al., 2009, Bush and Jiang 2012, Gritli-Linde 2007, Iwata et al., 2011, Dixon et al., 2011). The secondary palate initiates as the formation of palatal shelves that emerge from the internal side of the maxillary arch. The palatal shelves are composed of mesenchyme derived mainly from the neural crest and a thin layer of oral epithelium (Ito et al., 2003). The secondary palate develops through sequential and reciprocal interactions between the epithelium and mesenchyme, and involves multiple developmental events such as growth, elevation and fusion (Murray and Schutte 2004, Smith et al., 2013, Meng et al., 2009, Bush and Jiang 2012, Gritli-Linde 2007, Iwata et al., 2011, Dixon et al., 2011). The growing bilateral palatal shelves extend downward beside the developing tongue, and then elevate above the dorsal side of the tongue. Following elevation, the paired palatal shelves grow horizontally towards each other to meet along the midline. The midline epithelial seam (MES) is formed at this junction, and disappears allowing the fusion of the palatal shelves with mesenchymal confluence. It has been shown that many genes are differentially expressed along the anterior-posterior axis in the developing palate (Li and Ding 2007, Bush and Jiang 2012). Distinct shapes have also been reported in developing palatal shelves along the same axis (Yu and Ornitz 2011). This suggests that distinct molecular mechanisms are present in palatogenesis along the anterior-posterior axis.
Sox proteins are characterized by a highly conserved DNA binding motif and high mobility group (HMG) domain. Twenty Sox genes have been identified in mice. Members of the Sox gene family show dynamic and diverse expression patterns during development. Mutation analyses in mice provide evidence that they play multiple roles during development (Pevny and Lovell-Badge 1997, She and Yang 2015). Although mutation in Sox2, Sox5, Sox9 and Sox11 has been shown to result in cleft palate in human and/or mouse, the expression of the Sox family members – including Sox2, Sox5, Sox9 and Sox11 – in palate development remains unclear (Male et al., 2002, Langer et al., 2014, Sock et al., 2004; Langer et al., 2014, Bi et al., 2001, Mori-Akiyama et al., 2003, Smits et al., 2001).

We therefore carried out comparative in situ hybridization analysis of seventeen Sox genes (Sox1-14, 17, 18 and 21) during murine palatogenesis. Here, we identify the dynamic spatio-temporal expression of Sox genes in palatal development.
RESULTS

Since distinct molecular mechanisms are present in palatogenesis along the anterior-posterior axis, we examined expression of the Sox gene family in the palatal tissues of the anterior, middle and posterior regions.

Neither Sox1 nor Sox3 expression could be detected in palatal shelves from embryonic day (E) 12.5 to E14.5 (data not shown).

In mice, the secondary palate initiates as palatal shelves that emerge at E12.5 from the internal side of maxillary arch. Sox2 showed strong expression in the epithelium of the palatal shelves (Fig. 1A-C). Sox4 was ubiquitously expressed in the maxillary arch, while its expression was slightly weaker in palatal shelf mesenchyme (Fig. 1D-F). Sox5 exhibited restricted expression in the presumptive maxillary bone region (Fig. 1G-I). Sox6 was expressed in the epithelium of the palatal shelves, while it also showed restricted expression in the presumptive maxillary bone region (Fig. 1J-L). Sox8 expression could not be detected in the palatal shelves at E12.5 (Fig. 1M-O). Sox9 exhibited restricted expression in the presumptive maxillary bone region (Fig. 2A-C). Sox11 showed ubiquitous expression in the maxillary arch (Fig. 2D-F). No expression of Sox12 was observed in developing palatal shelves (Fig. 2G-I). Weak expression of Sox13 was observed in epithelium of palatal shelves at the anterior region and the middle region, whereas Sox13 expression could not be detected in developing palatal shelves at the posterior region (Fig. 2J-L). No expression of Sox14 or Sox21 could be detected in palatal shelves at E12.5 (Fig. 2M-R). Additionally, there were no significant differences in expression of Sox2, Sox4, Sox5, Sox6, Sox9 and Sox11 in the palatal shelves between the regions of the anterior-posterior axis.
In mice, the bilateral palatal shelves extend downward beside the developing tongue at E13.5. *Sox2* exhibited restricted strong expression in the epithelium of palatal shelves (Fig. 3A-C; Langer et al., 2014). *Sox4* expression was restricted to the mesenchyme of the interior side of the palatal shelves facing the tongue (Fig. 3D-F). The expression of *Sox4* in the palatal shelves at the anterior region was stronger than those at the posterior region. *Sox5* was weakly expressed in the mesenchyme of the palatal shelves facing the tongue at the middle region, whereas no expression could be detected in the palatal shelves at other regions (Fig. 3G-I). *Sox6* showed expression in the epithelium of the palatal shelves and presumptive maxillary bone region (Fig. 3J-L). Weak expression of *Sox8* was observed in the epithelium of the palatal shelves at the anterior and the middle regions (Fig. 3M-O). *Sox9* expression was restricted to the mesenchyme at the tip of the palatal shelves at the anterior region, and to the mesenchyme of the interior side of the palatal shelves facing the tongue at the middle and posterior regions (Fig. 4A-C). *Sox11* was strongly expressed in both the epithelium and mesenchyme of the palatal shelves at the anterior region, while expression in the mesenchyme became significantly weaker at the middle and the posterior regions (Fig. 4D-F). Weak *Sox12* expression was observed in the epithelium of the developing palatal shelves at E13.5 (Fig. 4G-I). No expression of *Sox13* or *Sox14* could be detected in the palatal shelves at E13.5 (Fig. 4J-O). *Sox21* was expressed in epithelium of palatal shelves at the anterior region (Fig. 4P-R).

At E14.5, the bilateral palatal shelves elevate horizontally and grow towards the midline to make contact with each other, forming the midline epithelial seam (MES). Weak expression of *Sox2* was observed in the MES, while *Sox2* was strongly expressed in epithelium facing the oral cavity (Fig. 5A-C; Langer et al., 2014). *Sox4* showed expression in palatal epithelium, whilst it was weakly expressed in the mesenchyme (Fig. 5D-F). *Sox5* expression was
observed in the mesenchyme around the MES at the anterior and the middle regions, whilst it was weakly expressed in the mesenchyme at the posterior region (Fig. 5G-I). Sox6 was expressed in the epithelium of the palate, excluding the MES, whilst it showed expression in the maxillary bone (Fig. 5J-L). Weak expression of Sox8 was observed in the MES at the posterior region, whereas other regions showed no Sox8 expression in the MES (Fig. 5M-O). Sox9 showed restricted expression in the mesenchyme around the MES for all regions (Fig. 6A-C). Sox11 was expressed in the MES, whilst it was weakly expressed in the epithelium facing the oral cavity (Fig. 6D-F). Weak expression of Sox12 was observed in the epithelium and maxillary bone (Fig. 6G-I). No expression of Sox13 or Sox14 could be detected in the palatal shelves at E14.5 (Fig. 6J-O). Sox21 was weakly expressed in the epithelium including the MES at the posterior region, whereas no expression of Sox21 was observed at the either anterior or middle regions (Fig. 6P-R).

Sox7, Sox17 and Sox18 belong to group F of the Sox gene family. SoxF members have been shown to be implicated in regulating blood and lymphatic vascular development (Francois et al., 2010, 2011; Morini and Dejana 2014). A punctate expression pattern of Sox7, Sox17 and Sox18 was seen throughout the mesenchyme of the palatal shelves from E12.5 to E14.5, and probably represents vascularization of the tissue (data not shown). Sox10 has been reported to play a critical role in neural development (Bondurand and Sham 2013, Weider et al., 2013). Sox10 also shows a punctate expression pattern in the palatal shelves from E12.5 to E14.5, and is likely to be related to nerve development (data not shown).
DISCUSSION

Members of the Sox gene family show dynamic and diverse expression patterns during development of many organs, and analysis of mutations in mice suggest that the Sox gene family plays multiple roles during development (Pevny and Lovell-Badge 1997, She and Yang 2015). Our results show dynamic spatio-temporal expression of Sox genes in the developing palatal shelves, through which they may play a critical role in palate development.

Sox2 mutation has been shown to result in the failure of fusion of the palatal shelves in both human and mouse (Male et al., 2002, Langer et al., 2014). Expression of Sox2 was observed in the epithelium of the palatal shelves including the MES, which disappears through apoptosis to allow the fusion of the palatal shelves, with mesenchymal confluence. It has previously been shown that Sox2 is involved in regulating apoptosis (Chen et al., 2014, Feng et al., 2013, Lin et al., 2012). It is thus likely that Sox2 is essential for palatogenesis through its regulation of apoptosis of the MES region.

It was originally believed that the tip of the vertical palatal shelf beside the tongue at E13.5 corresponded to the medial edge region in the horizontal palatal shelf at E14.5. This has recently been shown not to be the case. It is in fact the interior side of the palatal shelves facing the tongue that forms the prospective medial edge of the palatal shelves (Jin et al., 2010). In theory, this region grows horizontally to a position above the dorsal side of the tongue, rather than the palatal shelves undergoing physical rotation. Indeed, expression of several genes including Goosecoid were observed in both the interior side facing the tongue before elevation and the medial edge of the palatal shelves after elevation (Jin et al., 2010). Our results also revealed that Sox5 and Sox9 were expressed in the interior side of the palatal
shelves facing the tongue before elevation and the medial edge of the palatal shelves after elevation. Sox9 mutation has been shown to lead to cleft palate (Bi et al., 2001, Mori-Akiyama et al., 2003). Sox5 mutants also exhibit cleft palate due to failure of palatal shelf elevation (Smits et al., 2001). It is possible that the interior side of the palatal shelves is a key region for the elevation process.

Sox11 mutant mice show failure of palatal shelf formation (Sock et al., 2004). Our results revealed that Sox11 was expressed in both the mesenchyme and epithelium of the palatal shelves at E12.5 when palatal shelves begin forming. It is possible that Sox11 is an essential molecule for the initiation of palate development.

Histological differences are known in palatal shelves along the anterior-posterior axis (Yu and Ornittz 2011). For example, shelf elevation in the anterior region occurs at a later stage in comparison with those of more posterior region (Yu and Ornittz 2011). In addition to histological differences, many genes are differentially expressed in the developing palate along the anterior-posterior axis (Li and Ding 2007, Bush and Jiang 2012). Our results also revealed that Sox4, Sox5, Sox9, Sox11, Sox13 and Sox21 showed different expression patterns in the palatal shelves along the anterior-posterior axis. It is conceivable that they have different roles in palatogenesis between the regions of the palatal shelves.

Epithelial-mesenchymal interaction plays a critical role in palate development. Sox2, Sox12, Sox13 and Sox21 showed restricted expression in the epithelium, whereas Sox5 and Sox9 were expressed in the mesenchyme. It is possible that Sox family members are relevant to epithelial-mesenchymal interactions during palatogenesis.
Our data indicates that eleven members of the Sox family showed expression during palatal development. So far, only Sox2, Sox5, Sox9 and Sox11 mutation have been reported to lead to cleft palate (Male et al., 2002, Langer et al., 2014, Sock et al., 2004; Langer et al., 2014, Bi et al., 2001, Mori-Akiyama et al., 2003, Smits et al., 2001). Sox genes are classified into nine subgroups according to homology within the HMG domain and other structural motifs, as well as functional assays (Pevny and Lovell-Badge 1997, Wegner 1999). Only members belonging to Group F of the Sox family exhibited identical expression patterns during palate development. It has been shown that there is the redundancy between different Sox group members in organogenesis (Ito 2010, Kawasaki et al., 2015). In palatogenesis, Sox4 expression was found to be similar to those of Sox11 at E12.5 and those of Sox5 at E13.5. It is therefore possible that redundancy also occurs between members of the Sox gene family during palate development.
Materials and Methods

Production and analysis of transgenic mice

CD1 mice were used for this study. The day on which vaginal plugs were found was considered as embryonic day (E) 0.5. To accurately assess the age of embryos, somite pairs were counted and the stage confirmed using morphological criteria – such as relative size of maxillary and mandibular primordia, extent of nasal placode invagination, and the size of limb buds. Mouse heads were fixed in 4% paraformaldehyde, embedded and serially sectioned at 8 µm.

In situ hybridization

Radioactive in situ hybridization with 35S-UTP-radiolabelled riboprobes was performed as described previously by Ohazama et al., 2008.

Acknowledgments

Y.O.-K. is supported by Nihon University. M.K. and K.K. is supported by JSPS International Program for Young Researcher Overseas Visits. This study was supported in part by a grant-in-aid (15K11237, 26861708) from the Ministry of Health, Labour and Welfare of Japan.
REFERENCES

Bondurand N, Sham MH. The role of SOX10 during enteric nervous system development. Dev Biol. 2013 Oct 1;382(1):330-43

Francois M, Harvey NL, Hogan BM. The transcriptional control of lymphatic vascular development. Physiology 2011; 26: 146–155

Li Q, Ding J. Gene expression analysis reveals that formation of the mouse anterior secondary palate involves recruitment of cells from the posterior side. Int J Dev Biol. 2007;51(2):167-72

She ZY, Yang WX. SOX family transcription factors involved in diverse cellular events during development. Eur J Cell Biol. 2015 Dec;94(12):547-63

Figure Legends

Figure 1. The expression of Sox (2, 4, 5, 6, 8) genes in rodent palatal development at E12.5

In situ hybridisation of Sox2, Sox4, Sox5, Sox6 and Sox8 on anterior (A,D,G,J,M), middle (B,E,H,K,N) and posterior (C,F,I,L,O) frontal head sections at E12.5. Scale bars: 500µm.

Figure 2. The expression of Sox (9, 11, 12, 13, 14, 21) genes in rodent palatal development at E12.5

In situ hybridisation of Sox9, Sox11, Sox12, Sox13, Sox14 and Sox21 on anterior (A,D,G,J,M,P), middle (B,E,H,K,N,Q) and posterior (C,F,I,L,O,R) frontal head sections at E12.5. Scale bars: 500µm.

Figure 3. The expression of Sox (2, 4, 5, 6, 8) genes in rodent palatal development at E13.5

In situ hybridisation of Sox2, Sox4, Sox5, Sox6 and Sox8 on anterior (A,D,G,J,M), middle (B,E,H,K,N) and posterior (C,F,I,L,O) frontal head sections at E13.5. Scale bars: 500µm.

Figure 4. The expression of Sox (9, 11, 12, 13, 14, 21) genes in rodent palatal development at E13.5

In situ hybridisation of Sox9, Sox11, Sox12, Sox13, Sox14 and Sox21 on anterior (A,D,G,J,M,P), middle (B,E,H,K,N,Q) and posterior (C,F,I,L,O,R) frontal head sections at E14.5. Scale bars: 500µm.

Figure 5. The expression of Sox (2, 4, 5, 6, 8) genes in rodent palatal development at E14.5
In situ hybridisation of Sox2, Sox4, Sox5, Sox6 and Sox8 on anterior (A,D,G,J,M), middle (B,E,H,K,N) and posterior (C,F,I,L,O) frontal head sections at E14.5. Scale bars: 500µm.

Figure 6. The expression of Sox (9, 11, 12, 13, 14, 21) genes in rodent palatal development at E14.5

In situ hybridisation of Sox9, Sox11, Sox12, Sox13, Sox14 and Sox21 on anterior (A,D,G,J,M,P), middle (B,E,H,K,N,Q) and posterior (C,F,I,L,O,R) frontal head sections at E14.5. Scale bars: 500µm.
<table>
<thead>
<tr>
<th>Sox2</th>
<th>Sox4</th>
<th>Sox5</th>
<th>Sox6</th>
<th>Sox8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Anterior**
- **Middle**
- **Posterior**